Academic Documents for FY B. Tech. (Electronics Engineering)

Walchand College of Engineering, Sangli

(An Autonomous Institute)

Contents

S.No.	Description	Page No.				
1	Vision Mission and Objectives of Institute	3				
2	Vision, Mission, and Programme Educational Objectives of Department					
3	Programme Outcomes	5				
4	Curriculum Structure B. Tech. (Electronics Engineering) (2018-2022)	6				
5	Syllabus for FY B. Tech. (Electronics Engineering) (w. e. f., 2018-19)	19				
	Semester I Basic Science Courses Engineering Science Courses Humanities	20				
	Semester II Basic Science Courses Engineering Science Courses Humanities	46				
6	Academic Rules and Regulations (V1.6) [UG] (After 5 th Academic Council Meeting)	80				
7	Changes/Amendments in Academic Rules and Regulations [UG] (After 6 th and 7 th Academic Council Meeting)	113				
8	Academic Calendar	118				
9	Time table	120				

Vision Mission and Objectives of Institute

Vision:

1. To produce capable graduate engineers with an aptitude for research and leadership

Mission:

- 1. To impart quality education through demanding academic programmes.
- 2. To enhance career opportunities for students through exposure to industry.
- 3. To promote excellence by encouraging creativity, critical thinking and discipline.
- 4. To inculcate sensitivity toward society and a respect for the environment.

Objectives:

- 1. Achieve excellence in learning and research through continual improvement in both content and delivery of the academic programmes.
- 2. Promote close interaction among industry, faculty and students to enrich the learning process and enhance career opportunities for students.
- 3. Develop state of the art laboratories and other infrastructure commensurate with the need of delivering quality education and research services.
- 4. Strngthen the Institution through network of alumni and optimize use of resources by leveraging inter departmental capabilities.
- 5. Provide opportunities and ensure regular skill. Up gradation of faculty and staff through structured training programmes.

Vision, Mission, and Programme Educational Objectives of Department

Vision:

To be an Electronics Engineering program of the first choice by the aspiring students and prospective employers by implementing world class education practices.

Mission:

To meet above Vision, all stakeholders of this program are committed towards Outcome Based Education Philosophy by--

- 1. Adopting vibrant academic curricula and implementing innovative teaching learning processes
- 2. Providing opportunities to the students for the development of professional skills
- 3. Nurturing critical thinking and creativity in students
- 4. Inculcating in students the life-long learning attitude and sensitivity towards society & environment

Programme Educational Objectives (15)

Our program educational objectives are statements that define the characteristics that we expect our graduates to display 3-5 years after graduation. Programme Educational Objectives of Department of Electronics are

Graduates of Electronics engineering program after a span of three to four years of their graduation will:

- 1. Demonstrate technical competency by applying knowledge to solve problems related with engineering issues.
- 2. Exhibit skills and right attitude to succeed in their professional career.
- 3. Display thirst and quest for emerging technologies and for creating new knowledge with concern to society and environment

PROGRAM SPECIFIC OUTCOMES (B.Tech.)

Electronics Engineering	PSO1 . Analyze problems in various areas of communication and demonstrate expertise to suggest the solutions by using appropriate EDA tools.
	PSO2 . Demonstrate proficiency in developing hardware architectures for building electronic systems and expertise in implementing those using signal processing/ embedded system/ VLSI system design approaches.

Programme Outcomes

(A) PROGRAM OUTCOMES (B. Tech.)

Engineering Graduates will be able to:

1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Walchand College of Engineering, Sangli

(An Autonomous Institute)

Curriculum (Structure)

for

B.Tech. in Electronics Engineering

Academic Year

FY B. Tech. 2018-2019

SY B. Tech. 2019-2020

TY B. Tech. 2020-2021

Final Year B. Tech. 2021-22

Academic Documents for Electronics Engineering

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2018-19 First year B. Tech. Programme in Electronics Engineering Semester I

	C	ourse	Teaching Scheme				Evaluation Scheme																	
C	C	NT	Ŧ	T	р	C l'tr	G	N	larks															
Category	Code	Name	L	Т	Р	Credits	Component	Max	Min for Passing															
							ISE 1	10																
BS	4PH102	Physics for Electrical and Electronics	3			3	MSE	30		40														
D3	461102	Engineers	3			3	ISE 2	10		40														
		Linginicero					ESE	50	20															
							ISE 1	10																
BS	4MA101	Engineering	3	1		4	MSE	30		40														
В2	4MA101	Mathematics I	5	1		4	ISE 2	10		40														
							ESE	50	20															
							ISE 1	10																
FO	451 101	Basic Electrical				2	MSE	30	1	10														
ES	4EL101	Engineering	2			2	ISE 2	10		40														
							ESE	50	20															
		Basic Mechanical Engineering					ISE 1	10																
							MSE	30		10														
ES	4ME101		2			2	ISE 2	10		40														
							ESE	50	20															
																					ISE 1	10		
		English for					MSE	30		10														
HS	4HS101	Professional	2	1				3	ISE 2	10		40												
		Communication					ESE	50	20															
ES	4EN152	Computer Programming for Electronics Engineers	2		2	3	ISE	100	4	0														
BS	4PH151	Engineering Physics Laboratory			2	1	ISE	100	4	0														
ES	4EL151	Electrical Engineering Laboratory			2	1	ISE	100	4	0														
ES	4ME151	Mechanical Engineering Laboratory			2	1	ISE	100		0														
	Т	`otal	14	2	8	20	Total C Total Co			4														

Academic Documents for Electronics Engineering

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2018-19 First year B. Tech. Program in Electronics Engineering Semester II

	(Course	mest	-	ing S	cheme	Evaluat	ion Sch	eme				
Catagory			L	T	P	Credits			larks				
Category	Code	Name	L	1	P	Credits	Component	Max	Min for Passing				
		Chemistry for Electrical					ISE 1	10					
BS	4CH102	and Electronics	3			3	MSE	30		40			
00	4011102	Engineers	5			5	ISE 2	10		-10			
							ESE	50	20				
							ISE 1	10					
BS	4MA102	Engineering Mathematics	3	1		4	MSE	30		40			
20		II	5	-			ISE 2	10		10			
							ESE	50	20				
ES	4ME102	Engineering Graphics	1		4	3	ISE	100		40			
							ISE 1	10					
50		Introduction to			2		MSE	30	A.	10			
ES	4AM102	Engineering Mechanics	2			ISE 2	10		40				
		0 0					ESE	50	20				
										ISE 1	10		
ES	4CV101	Desis Civil Engineering	2			2	MSE	30		40			
ES	4C V 101	Basic Civil Engineering	Z			2	ISE 2	10		40			
							ESE	50	20				
							ISE 1	10					
BS	4BS10*	Elective on Basic	2			2	MSE	30		40			
0.0	40310	Sciences	2			2	ISE 2	10		40			
							ESE	50	20				
BS	4CH151	Engineering Chemistry Laboratory			2	1	ISE	100	4	0			
ES	4ME152	Workshop Practice			2	1	ISE	100	4	0			
ES	4CV151	Civil and Mechanics Laboratory			2	1	ISE	100	4	0			
		Total	13	1	10	19	Total C Total Cor			4			

	Elective on Basic Sciences					
4BS101	Biology for Engineers	4BS102	Material Science			
4BS103	Introduction to Geoscience	4BS104	Life Science			

Academic Documents for Electronics Engineering

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2019-2020 Second year B. Tech. Program in Electronics Engineering Semester I

	Course			eachi	ing Sc	heme	Evaluation Scheme															
Cotogowy	Code	Name	L	Т	Р	Credits	Component	N	larks													
Category	Code	Iname	L	1	r	Creuits	Component	Max	Min for Passing													
		Applied					ISE 1	10														
		Mathematics for					MSE	30														
BS	4MA203	Electrical and	3	0	0	3	ISE 2	10	40													
		Electronics Engineers					ESE	50	20													
							ISE 1	10														
HS	4HS203	Environmental	2	1	0	3	MSE	30	40													
пз	4H5205	Science		1	0	3	ISE 2	10	40													
							ESE	50	20													
							ISE 1	10														
PC	4EN201	Electronic Circuit Analysis and	3	0	0	0	0	0	0		3	MSE	30	40								
PC	4LIN201	Design- I	3	0		5	ISE 2	10	40													
		Design-1					ESE	50	20													
		Circuit Theory 3					ISE 1	10														
PC	4EN202		1 0	0	4	MSE	30	40														
rC.	4EINZUZ	Circuit Theory	5		0	0	0	0	U	0	0	0	0	U	0	0	0	0	4	ISE 2	10	40
							ESE	50	20													
							ISE 1	10														
PC	4EN203	Digital Electronics	3	0	0	3	MSE	30	40													
rC.	4EN203	Digital Electronics	5	0	0	3	ISE 2	10	40													
							ESE	50	20													
PC	4EN251	ECAD I	0	0	2	1	ISE	50	20													
re	4EIN231	Laboratory	0	0	2	1	ESE	50	20													
PC	4EN252	Digital Electronics	0	0	2	1	ISE	50	20													
10	HEIN232	Laboratory	0	0	2	1	ESE	50	20													
		Data structure and					ISE	50	20													
PC	4EN253	Algorithm Laboratory	2	0	2	3	ESE	50	20													
PC	4EN254	Simulation Tools Laboratory	1	0	2	2	ISE	100	40													
	Tot		17	2	8	23	Total C Total Cor															

Walchand College of Engineering, Sangli Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2019-2020 Second year B. Tech. Program in Electronics Engineering Semester II Course **Teaching Scheme Evaluation Scheme** Marks Т Р Category Code Name L Credits Component Min Max for Passing ISE 1 10 MSE 30 4HS201 Development of HS 2 0 0 2 40 Societies ISE 2 10 20 ESE 50 ISE 1 10 Electronic Circuit MSE 30 3 0 40 PC 4EN221 Analysis and 0 3 ISE 2 10 Design-II ESE 50 20 ISE 1 10 **MSE** 30 PC 40 4EN222 Signals and Systems 3 1 0 4 ISE 2 10 ESE 50 20 ISE 1 10 30 MSE Communication PC 3 0 3 40 4EN223 0 Engineering ISE 2 10 ESE 50 20 ISE 1 10 Microcontrollers and MSE 30 PC 3 0 0 3 40 4EN224 Peripherals ISE 2 10 Interfacing ESE 50 20 ISE 1 10 MSE 30 PC 4EN225 3 0 0 3 40 **Control Systems** ISE 2 10 $2\overline{0}$ ESE 50 ISE 50 20 0 2 PC 4EN271 ECAD II Laboratory 0 1 ESE 50 20 Communication ISE 50 20 PC 4EN272 Engineering 0 0 2 1 ESE 50 20 Laboratory Microcontrollers and ISE 50 20 Peripherals 0 PC 4EN273 0 2 1 Interfacing ESE 50 20 Laboratory 20 **Control Systems** ISE 50 PC 4EN274 0 0 2 1 Lab. ESE 50 20 **Total Credits: 22** Total 17 1 8 22 **Total Contact Hrs: 26**

Academic Documents for Electronics Engineering

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2020-21 Third year B. Tech. Program in Electronics Engineering Semester I

	Co	urse	1	eachi	ng Sc	heme	Evaluat	ion Scł	eme																
Category	Code	Name	L	Т	Р	Credits	Component	N	larks																
Category	Coue	Ivanie	L	1	I	Creatis	Component	Max	Min for Passing																
							ISE 1	10																	
OE	40E3**	Open Elective 1	3	0	0	3	MSE	30		40															
UL	40L3	Open Lieeuve I	5	0	U	0 3	ISE 2	10		-10															
							ESE	50	20																
		Fundamentals of					ISE 1	10																	
		Management and	4	0	0	4	MSE	30		40															
	4HS	Economics for	-	0	0	-	ISE 2	10		40															
HS	307/401	Engineers					ESE	50	20																
							ISE 1	10																	
PC	4EN301	Digital Signal	3	0	0	3	MSE	30		40															
гС	4EN301	Processing	3	0	U	U	U		U	U	U	U	U	U	U	U	U	U	U	U	5	ISE 2	10		40
							ESE	50	20																
							ISE 1	10																	
PC	4EN302	Electro Magnetic Engineering	3	1	0	4	MSE	30		40															
rC	4LIN302		3	1	0	4	ISE 2	10																	
							ESE	50	20																
																	ISE 1	10							
PE	4EN3**	Professional Elective	3	0 0	0 0	0	0	2	MSE	30	40	40													
ΓĽ	4EN3***	1	3	0	0	3	ISE 2	10		40															
							ESE	50	20																
							ISE 1	10																	
PE	4EN3**	Professional Elective	3	0	0	3	MSE	30		40															
ΥĽ	4EN3***	2	3	0	0	5	ISE 2	10		40															
							ESE	50	20																
PC	4EN351	DCD Laboratory	0	0	2	1	ISE	50	2	0															
гU	4611331	DSP Laboratory.	0	0	2	1	ESE	50	2	0															
DE	4EN1252	Mini Drojact	0	0		1	ISE	50	2	0															
PE	4EN352	Mini Project	0	0	2	1	ESE	50	2	0															
		Professional					ISE	50	2	0															
PE	4EN3**	Elective 2 Laboratory	0	0	2	1	ESE	50	2	0															
	То	otal	19	1	6	23	Total (Total Co			6															

Pro	fessional Elective 1	Professional Elective 2				
4EN311	Linear Algebra	4EN313	4EN363	Digital Communication		
4EN312	Biomedical Engineering	4EN314	4EN364	СОА		
4EN315	Microelectronics					

	Open Elective 1	
Course Code	Course Name	Offered by
4OE 315	Remote Sensing & GIS, GPS	Civil Engg.,
4OE329	Manufacturing Engineering	Mechanical
4OE330	Energy Engineering	Mechanical
4OE331	Mechanisms & Machines	Mechanical
4OE 343	Electrical Machine Technology	Electrical
4OE 357	Electronic Systems	Electronics Engg.,
4OE 371	Software Engineering and Database	CSE
	Essentials	
4OE 372	Algorithms and Applications	CSE
4OE 385	Internet of Things	IT
4OE 386	Python	IT
4OE 387	FOSS	IT

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme effective from 2020-21 Third year B. Tech. Program in Electronics Engineering Semester II

	Cou	irse	Т	eachi	ng Sc	heme	Evaluat	Evaluation Scheme							
Category	Code	Name	L	Т	Р	Credits	Component	N	Iarks						
Category	Coue	Ivaine	L	1	Г	Creuits	Component	Max	Min for Passing						
							ISE 1	10							
OE	40E3**	Open Elective 2	3	0	0	3	MSE	30		40					
OL	4015	Open Elective 2	5	U	U		ISE 2	10		-10					
							ESE	50	20						
		Elective Foundation					ISE 1	10							
HS	4HS3**	Course in	3	0	0	3	MSE	30		40					
115	-1105	Humanities	5	U	U	5	ISE 2	10		-10					
		Trumanties					ESE	50	20						
							ISE 1	10							
PC	4EN321	Embedded Systems	3	0	0	0	0	0	3	MSE	30		40		
IC	4LINJ21	Design	5	0					5	ISE 2	10		40		
							ESE	50	20						
							ISE 1	10							
PC	4EN322	FPGA Based System Design	3	0	0	3	MSE	30		40					
rc -			5	0	0	5	ISE 2	10							
							ESE	50	20						
						0	0	0				ISE 1	10		
PE	4EN3**	Professional	2	1	0				3	MSE	30		40		
I L	4EN3.	Elective 3	2	1	0	3	ISE 2	10		40					
							ESE	50	20						
							ISE 1	10							
PE	4EN3**	Professional	3	0	0	3	MSE	30		40					
PE	4EIN3***	Elective 4	3	0	0	5	ISE 2	10		40					
							ESE	50	20						
PC	4EN371	Embedded Systems	0	0	2	1	ISE	50	2	0					
rC	4EN3/1	Laboratory	0	0	2	1	ESE	50	2	0					
DC	4EN1272	FPGA based Design	ign 0 0 2	2	1	ISE	50	2	0						
PC	4EN372	Laboratory	U	0	2	1	ESE	50	2	0					
		Professional					ISE	50	2	0					
PE	4EN3**	Elective 3 Laboratory	0	0	2	1	ESE	50	2	0					
	Тс	tal	17	1	6	21	Total (Total Co			4					

Professional electives on theory courses may also be opted by students of other programme.

Elective Fo	Elective Foundation Course in Humanities						
4HS 301	Law and Engineering	4HS 304	Psychology				
4HS 302	Ethics and Holistic Life	4HS 305	Sanskrit/Foreign language				
4HS 303	Education, Technology and Society	4HS 306	Human Relations at Work				

	Professional Elective 3			Professional Elective 4		
4EN331	4EN381	Mobile Communication	4EN333	Antenna and wave propagation		
4EN332	4EN382	Digital Image Processing	4EN334	Digital CMOS IC Design		

	Open Elective 2									
Course Code	Course Name	Offered by								
4OE 309	Theory of Structures	Applied Mechanics								
4OE 336	Power Plant Engineering	Mechanical								
4OE 337	Fabrication Tech.	Mechanical								
4OE 338	Mech. Power Transmission	Mechanical								
4OE350	Renewable Energy	Electrical								
4OE366	Biomedical Instrumentation	Electronics								
4OE378	Data Analytics	CSE								
4OE379	Network Essentials	CSE								
4OE392	Web Design	IT								
4OE393	Cloud and virtualization	IT								
4OE394	Game Development	IT								

Walchand College of Engineering, Sangli (An Autonomous Institute) Teaching and Evaluation Scheme from year 2021-22 Final year B. Tech. Program in Electronics Engineering Semester I

	Co	urse]	ſeachi	ing Sc	heme	Evaluat	ion Sch	neme												
Catagony	Code	Name	L	Т	Р	Credits	Component	N	larks												
Category	Coue	Iname	L	1	r	Creatis	Component	Max	Min Pass												
	40E4**											ISE 1	10								
OE		1** Open Elective 2	3	0	0	3	MSE	30		40											
UE	40E4***	Open Elective 3	3	0	U	5	ISE 2	10		40											
							ESE	50	20												
							ISE 1	10													
PC	4EN401	Power Electronics	3	0	0	3	MSE	30		40											
rC	4EIN401	and Drives	5	0	U	5	ISE 2	10		40											
							ESE	50	20												
							ISE 1	10													
DE	PE 4EN4** Profes	Professional Elective 5	Professional Elective	Professional Elective	3	0	0	3	MSE	30		40									
PE			3	0	U	5	ISE 2	10		40											
							ESE	50	20	1											
							ISE 1	10													
PE	4EN4**	Professional Elective 6	3	0	0	3	MSE	30		40											
PE	4EIN4***		6	6	6	6	6	6	6	6	6	6	6	6	3	0	0	3	ISE 2	10	
							ESE	50	20]											
PC	4EN451	Real Time Operating	1	0	2	2	ISE	50	2	0											
PC	4EIN431	System Laboratory	1	0		2	ESE	50	2	0											
PC	4EN452	Professional Elective	0	0	2	1	ISE	50	2	0											
PC	4EIN432	5 Lab	0	0		1	ESE	50	2	0											
PC	4EN453	Power Electronics	0	0	2	1	ISE	50	2	0											
PC	4EIN433	and Drives Lab	0	0		1	ESE	50	2	0											
PC	4EN441	Project 1 and Seminar	0	0	6*	3	ISE	100	4	0											
		Essence of Indian					ISE 1	35													
MC	4IC 402		2	0	0	0	MSE	30	4	0											
		Knowledge					ISE 2	35													
	Тс	otal	1501219Total Credits: Total Contact Hr					5													

*Indicates contact hours per week per project batch of 8-10 students.

	Pro	fessional Elective 5	P	rofessional Elective 6
4EN4	11	Microwave Engineering	4EN414	Optical Communication
4EN4	12	Adaptive Signal Processing	4EN415	Advanced Control System
4EN4	13	Analog CMOS IC Design	4EN416	TCP/IP

Academic Documents for Electronics Engineering

	Open Elective 3									
Course Code	Course Name	Offered by								
4OE 402	Finite Element Method	APM								
4OE 416	Concrete Engineering and Technology	Civil								
4OE 429	Auto. Engg	Mechanical								
4OE 430	Aerospace Engg	Mechanical								
4OE 431	Ind. Automation	Mechanical								
4OE 443	Industrial Automation	Electrical								
4OE 457	Cyber Physical Systems	Electronics								
4OE458	Automobile Electronics	Electronics								
4OE 471	Cyber Security	CSE								
4OE 485	Data Visualization & Interpretation	IT								
4OE 486	Social Network Analysis	IT								
4OE 487	Basics of Soft Computing	IT								

(An Autonomous Institute) Teaching and Evaluation Scheme from year 2021-22 Final year B. Tech. Program in Electronics Engineering Semester II

	Cou	ırse	Т	eachi	ng Sc	heme	Evaluat	ion Sch	ieme	
		Nama	т	Т	р	Caralita	Comment	N	larks	
Category	Code	Name	L	1	Р	Credits	Component	Max	Min for Passing	
							ISE 1	10		
PE	4EN4**	Professional	2	0	0	2	MSE	30	40	
I L	4D1N4	Elective 7	2	U	0	2	ISE 2	10	40	
							ESE	50	20	
		** Professional Elective					ISE 1	10		
PE	4EN4**		2	0	0	2	MSE	30	40	
I L			2	U		2	ISE 2	10	40	
							ESE	50	20	
PC	4EN491	Project 2	0	0	8^*	8	ISE	50	20	
rc	4LIN491	5	0	U	0	0	ESE	50	20	
PC	4EN492	Summer internship [#]	0	0	0	1	ISE	100	40	
							ISE 1	35		
MC	4IC 401	Indian Constitution	2	0	0	0	MSE	30	40	
							ISE 2	35		
	Total60013Total Credits Total Contact									

Indicates internship to be completed during summer vacations after second year but before Final year semester I.

Pr	ofessional Elective 7		Professional Elective 8
4EN431	Radar and Navigation	4EN433	Satellite Communication
4EN432	Wavelet and Filter banks	4EN434	ІоТ

Semester	Ι	II	III	IV	V	VI	VII	VIII	Total
Credits	20	19	22	23	23	21	19	13	160

Walchand College of Engineering, Sangli (An Autonomous Institute) Curriculum Comparison for WCE and AICTE B. Tech.

	y	Ele	Electronics Engineering								
Sr. No.	Category	Creo	lits	%							
	C	AICTE	DEPT	AICTE	DEPT						
1	HS	12	16	7.5	10						
2	BS	25	21	15.6	13.1						
3	ES	24	18	15	11.3						
4	PC	48	60	30	37.5						
5	PE	18	24	11.3	15						
6	OE	18	9	11.3	5.6						
7	PC	15	12	9.4	7.5						
8	MC	0	0	0	0						
	fotal redits	160	160	100	100						

Category

Humanities and Social Sciences including Management courses (HS)
Basic Science courses (BS)
Engineering Science courses (ES)
Professional core courses (PC)
Professional Elective courses relevant to chosen specialization/branch ^{&} (PE)
Open subjects – Electives from other technical and /or emerging subjects (OE)
Project work, seminar and internship in industry or elsewhere (PC)

Mandatory Non- credit Courses (MC)

Additional Minor Engineering with additional 20 credits through SWAYAM/MOOCS

Student/s will be awarded an *additional Minor Engineering* along with B. Tech.(Electronics) if he/she completes an additional 20 credits **through SWAYAM/MOOCS.**

Walchand College of Engineering, Sangli

(An Autonomous Institute)

Curriculum (Structure and Syllabus)

for

First Year B. Tech.

Electronics Engineering

With effective from

Academic Year 2018-19

Title o	of the Course: Ph	vsics fo	or Ele	ectric	al &]	Elect	ronic	s Eng	zinee	rs. 4I	PH102	2	L		Т	Р	Cr
		J						~~ E	3				3		-	-	3
Pre-R	equisite Courses:	Studen	ts are	expe	cted t	to kno	ow the	e basi	c con	icept i	in Phy	vsics.					I
Textbo	ooks: 1. M. N. Av and Com 2. R. K. Ga Edition: 2	pany, N ur and S	lew D	elhi.	Revis	sed ed	lition	2014									
Refere	ences: 1. Halliday, 2. A. Beiser 3. Ajoy Gha 4. P. M. Ma 2 nd Editio 5. C. Kittel ⁶ 6. M. S. Ra edition, 2 ¹	, "Conc ttak, "O athews, 2 on, 2010 " Introd mchand	epts ptics' K. Ve). uctio	of M ", Tat enkat n to S	odern a Mc esan, Solid	Phy Graw " Tex State	sics", Hill t Boo e Phys	McC 5 th ed k of (sics",	ition, Q uan Wile	Hill I 2012 1 tum y, 8 th	nterna 2. Mech editic	itiona anics on, 20	1, 5 th 5", T 012.	' edit ata M	ion, 1cG	2003 raw 1	3. Hill
2.	To provide basic of To give deep insig To encourage the	ghts into	the t	under	stand	ing of	f engi	neeri	ng co	ourses							
	se Learning Outco				Igmee		and te	echnie	cal de	evelop	oment	1					
	ę	omes:										1	1		-	nitiv	
Cours CO	After the compl Describe optic polarization and production and	etion of al pher	f the nome ms o	cours mon f way	se the such	as stud	ent sl inter Expl	hould feren lain t	l be a ce, the m	able to diffra	o ction ds of	1	el	D	esci	nitiv ripto andii	r
Cours CO	After the complete optical polarization and applications. Explain Planck' uncertainty print applications; Discussional production print optications; Discussional productions; Discussional print optications; Discussional productions; Discussional print optications; Discussional productions; Discussional productional productions; Discussional productional productions; Discussional productional productions; Discussional productional	etion of al pher l in terr detect 's quant nciple, scuss fat	f the nome ms or ion tum h Schr	cours non f wa meth nypoth rödin	se the such ve mo ods o hesis, ger's f inte	as odel. of ul Com wav gratec	ent sl inter Expl ltraso	hould feren lain t nic v effec quatic uit.	l be a ce, the m waves t, He ons	able to diffra nethoo s and eisenb and	ction ds of d its erg's their	lev I	rel	D	erst	ripto	ng
Cours CO CO1	After the compl Describe optic polarization and production and applications. Explain Planck' uncertainty prim	etion of al phen l in terr detect s quant nciple, scuss fat on the ba al, semic activity	f the nome ms of ion cum h Schr oricat asis of condu and	cours non f wa meth iypoth rödin ion o of ban ictor Hall	se the such ve mo ods o hesis, ger's f inte id the and in effe	stud as odel. of ul Com wav gratec ory; e nsulat ct. D	ent sl inter Expl traso pton ze ed circu explai or. So Demo	hould feren lain t nic effec quatic uit. in fer olve t nstra	l be a ce, the m waves t, He ons mi le he pr te th	able to diffra nethoo s and eisenb and vel an voblem ne va	ction ds of d its erg's their nd its ns on rious	lev I	r el	D	erst	ripto andii andii	ng
Cours CO CO1 CO2 CO3	After the compl Describe optic polarization and production and applications. Explain Planck' uncertainty prin applications; Dis Classify solids of behavior in meta electrical condu methods of synth various fields.	etion of al phen l in terr detect s quant nciple, scuss fat on the ba al, semic activity nesis of	f the nome ms of ion cum h Schr oricat asis of condu and	cours non f wa meth iypoth rödin ion o of ban ictor Hall	se the such ve mo ods o hesis, ger's f inte id the and in effe	stud as odel. of ul Com wav gratec ory; e nsulat ct. D	ent sl inter Expl traso pton ze ed circu explai or. So Demo	hould feren lain t nic effec quatic uit. in fer olve t nstra	l be a ce, the m waves t, He ons mi le he pr te th	able to diffra nethoo s and eisenb and vel an voblem ne va	ction ds of d its erg's their nd its ns on rious	I lev I	r el	D Und Und	erst	ripto andii andii	ng
Cours CO CO1 CO2 CO3	 After the complementation Describe optic polarization and production and applications. Explain Planck' uncertainty print applications; Dist Classify solids of behavior in metate electrical condumethods of synth various fields. 	etion of al phen l in terr detect s quant nciple, scuss fat on the ba al, semic activity nesis of	f the nome ms of ion cum h Schr oricat asis of condu and	cours non f wa meth iypoth rödin ion o of ban ictor Hall	se the such ve mo ods o hesis, ger's f inte id the and in effe	stud as odel. of ul Com wav gratec ory; e nsulat ct. D	ent sl inter Expl traso pton ze ed circu explai or. So Demo	hould feren lain t nic effec quatic uit. in fer olve t nstra	l be a ce, the m waves t, He ons mi le he pr te th	able to diffra nethoo s and eisenb and vel an voblem ne va	ction ds of d its erg's their nd its ns on rious	I lev I	r el	D Und Und	erst	ripto andii andii	ng
Cours CO CO1 CO2 CO3	After the compl Describe optic polarization and production and applications. Explain Planck' uncertainty prin applications; Dis Classify solids of behavior in meta electrical condu methods of synth various fields.	etion of al pher l in terr detect s quant nciple, scuss fat on the ba al, semic activity nesis of	f the nome ms of ion cum h Schr pricat asis of condu and nano	cours non f wa meth nypoth rödin ion o of ban ictor Hall partic	se the such ve mo ods o hesis, ger's f inte and in effe cles an	stud as odel. of ul Com wav gratec ory; e nsulat ct. D nd sh e	ent sl inter Expl traso pton ze ed circu zyplan or. So Demon	hould feren lain t nic v effec quatic uit. in fer olve t nstra se of n	l be a ce, he n waves t, He ons mi le he pr te th nanop	able to diffra nethoo s and sisenb and vel an oblem ne va partic	ction ds of d its erg's their nd its ns on rious les in	I lev I I I	rel I I	D Und Und	erst	ripto andii andii	ng
Cours CO CO1 CO2 CO3	After the compl Describe optic polarization and production and applications. Explain Planck' uncertainty prin applications; Dis Classify solids of behavior in meta electrical condu methods of synth various fields.	etion of al pher l in terr detect s quant nciple, scuss fat on the ba al, semic activity nesis of g PO	f the nome ms of ion cum h Schr pricat asis of condu and nano	cours non f way methe rödin ion o of ban ictor Hall partic	se the such ve mo ods o hesis, ger's f inte and in effe cles an	stud as odel. of ul Com wav gratec ory; e nsulat ct. D nd sh e	ent sl inter Expl traso pton ze ed circu zyplan or. So Demon	hould feren lain t nic v effec quatic uit. in fer olve t nstra se of n	l be a ce, he n waves t, He ons mi le he pr te th nanop	able to diffra nethoo s and sisenb and vel an oblem ne va partic	ction ds of d its erg's their nd its ns on rious les in	I lev I I I	rel I I	D Und Und	erst	ripto andii andii	ng

Assessments:

Teacher Assessment: Two components of In-Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE-1 and **ISE-2** are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (Normally last three modules) covered after MSE.

Course Contents:	
Module 1: Optics	7Hrs.
Introduction, types of optics, diffraction, types of diffraction, Fresnel's diffraction: Fresnel's half period zones, zone plate, diffraction at straight edge. Fraunhofer's diffraction: diffraction due to single slit, double slits, plane diffraction grating. Polarization: optical activity, specific rotation of optical active substances, Laurent's half shade polarimeter.	
Module 2: Quantum Physics	8Hrs.
Introduction, black body radiation, Planck's quantum theory, Wien's displacement law and Rayleigh – Jeans law, phase velocity, group velocity and particle velocity, de-Broglie's hypothesis, Compton effect: theory and experimental verification, Heisenberg's uncertainty principle and its applications, wave function and its physical significance, Schrödinger's wave equation: time independent and time dependent, applications of Schrödinger's wave equation.	
Module 3: Ultrasonics	6Hrs.
Introduction, classification of sound, ultrasonic waves, generation of ultrasonic waves (Magnetostriction and Piezoelectric method), detection of ultrasonic waves by Kundt's tube, thermal detection and sensitive flame method, velocity of ultrasonic waves in liquid, applications of ultrasonic waves in scientific and engineering field.	
Module 4: Solid State Physics	6Hrs.
Introduction, formation of energy bands in solid, classification of solid on the basis of band theory, number levels in band, density of states, Fermi-Dirac statistics, Fermi level, variation of Fermi level with change in temperature for semiconductor, electrical conductivity of metal and semiconductor, Hall effect, basic concept of p-n junction.	
Module 5: Microelectronics	7Hrs.
Concept of microelectronics, types of integrated circuit, monolithic integrated circuit, crystal growth, epitaxial growth, oxidation, photolithography, diffusion, ion implantation, metallization, development of integrated components (diode, transistor, resistor and capacitor) in integrated circuit.	
Module 6: Nanophysics	6Hrs.
Introduction, nanoscale, nanomaterials, properties of nanomaterials, synthesis of nanomaterials (sol-gel, ball milling, colloids, microorganism), growth of nanomaterials, carbon nanotubes and its properties, Applications of nanomaterials.	
Module wise Measurable Students Plearning Outcomestion Electronics Engineering	
21	

After the completion of the course the student should be able to:

- 1. Module-1: describe Fresnel's and Fraunhofer type diffraction, polarization and applications in technological field.
- 2. Module-2: use the concepts of quantum mechanics and apply for solving the problems.
- 3. Module-3: acquire the knowledge of ultrasonic waves and implement in various fields.
 - 4. Module-4: explain the formation of bands in solid and acquire the knowledge of fermi level, electrical conductivity, Hall Effect and formation of p-n junction.
 - 5. Module-5: know the concept of microelectronics and how the integrated circuits are fabricated.
 - 6. Module-6: explain synthesis of nanoparticles and their applications.

Fitle of the Course: Er Pre-Requisite Courses: 1. P. N. and J. N. V Prakashan, Pune, 2. B.S. Grewal "H References: 1. Erwin Kreyszig Edition, 2015. 2. Wylie C.R "Adv 1999. 3. H. K. Dass, "Ad 4. B.V.Ramana, "H Course Objectives : 1) Introduce the bas of differential equation. 2) Provide exposure Course Learning Outco	Mathem Vartikar , 2006. Tigher Eng , "Advar <i>anced En</i> <i>vanced E</i> Tigher Eng	natics of "A To gineer nced H nginee	course ext Bo ring M Engine ering M	e at Hig ook of A lathema eering N <i>Mathem</i>	her Seco Applied I ntics", , I Aathema <i>atics",.,</i>	Mather Mather Khanna ttics", , Tata M S. Cha	matics a Publ , Wile McGra	y Easter aw Hill F	8 1 e nd II, V 44th Ed n Limite Publicationy Ltd.,	idyarthi Gr lition, 2017 ed Publicati ion, 8th Edi 1 st Edition,	on, 10 ^t tion
 Pre-Requisite Courses: Fextbooks: P. N. and J. N. V Prakashan, Pune, B. S. Grewal "H References: Erwin Kreyszig Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad' B.V.Ramana, "H Course Objectives : Introduce the bas differential equation. Provide exposure 	Mathem Vartikar , 2006. Tigher Eng , "Advar <i>anced En</i> <i>vanced E</i> Tigher Eng	natics of "A To gineer nced H nginee	course ext Bo ring M Engine ering M	e at Hig ook of A lathema eering N <i>Mathem</i>	her Seco Applied I ntics", , I Aathema <i>atics",.,</i>	Mather Mather Khanna ttics", , Tata M S. Cha	matics a Publ , Wile McGra	r Colleg , Vol I a lication, y Easter aw Hill F Compar	nd II, V 44th Ed n Limite Publicati	idyarthi Gr lition, 2017 ed Publicati ion, 8th Edi 1 st Edition,	4 iha on, 10 ^t tion
 Pre-Requisite Courses: Fextbooks: P. N. and J. N. V Prakashan, Pune, B. S. Grewal "H References: Erwin Kreyszig Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad' B.V.Ramana, "H Course Objectives : Introduce the bas differential equation. Provide exposure 	Mathem Vartikar , 2006. Tigher Eng , "Advar <i>anced En</i> <i>vanced E</i> Tigher Eng	natics of "A To gineer nced H nginee	course ext Bo ring M Engine ering M	e at Hig ook of A lathema eering N <i>Mathem</i>	her Seco Applied I ntics", , I Aathema <i>atics",.,</i>	Mather Mather Khanna ttics", , Tata M S. Cha	matics a Publ , Wile McGra	r Colleg , Vol I a lication, y Easter aw Hill F Compar	nd II, V 44th Ed n Limite Publicati	idyarthi Gr lition, 2017 ed Publicati ion, 8th Edi 1 st Edition,	4 iha on, 10 ^t tion
 Fextbooks: P. N. and J. N. V Prakashan, Pune, B.S. Grewal "H References: Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad B.V.Ramana, "H Course Objectives : Introduce the bas differential equation. Provide exposure 	Vartikar , 2006. Tigher Eng , "Advar anced En vanced E	"A Te gineer nced I nginee	ext Bo ring M Engine ering M cering T	bok of A Iathema eering N Mathem	Applied I atics", , I Mathema atics",.,	Mather Khanna ttics", , Tata M S. Cha	matics a Publ , Wile McGra	y Easter aw Hill F	nd II, V 44th Ed n Limite Publicati	idyarthi Gr lition, 2017 ed Publicati ion, 8th Edi 1 st Edition,	iha on, 10 ^t tion
 Fextbooks: P. N. and J. N. V Prakashan, Pune, B.S. Grewal "H References: Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad B.V.Ramana, "H Course Objectives : Introduce the bas differential equation. Provide exposure 	Vartikar , 2006. Tigher Eng , "Advar anced En vanced E	"A Te gineer nced I nginee	ext Bo ring M Engine ering M cering T	bok of A Iathema eering N Mathem	Applied I atics", , I Mathema atics",.,	Mather Khanna ttics", , Tata M S. Cha	matics a Publ , Wile McGra	y Easter aw Hill F	nd II, V 44th Ed n Limite Publicati	lition, 2017 ed Publicati ion, 8th Edi 1 st Edition,	on, 10 ^t tion
 References: Erwin Kreyszig Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad B.V.Ramana, "H Course Objectives : Introduce the bas f differential equation. Provide exposure Course Learning Outcome Course Learning Outcome Course Course Course Course Course Course Learning Course Learning Course Learning Course Learning Course Course Learning C	anced En vanced En	nced I nginee Engine	Engine ering M cering T	eering N Mathem Mathen	Aathema atics",., natics",	ttics", , Tata M S. Cha	, Wile McGra	y Easter aw Hill F Compar	n Limite Publicati ny Ltd.,	ed Publicati ion, 8th Edi 1 st Edition,	on, 10 ^t tion
 Erwin Kreyszig Edition, 2015. Wylie C.R "Adv 1999. H. K. Dass, "Ad B.V.Ramana, "H Course Objectives : Introduce the bas f differential equation. Provide exposure 	anced En vanced E ligher Eng	nginee Engine	ering N eering I	Mathem Mathen	atics",., natics",	Tata M S. Cha	McGra and &	aw Hill F Compar	Publicati ny Ltd.,	ion, 8th Edi 1 st Edition,	tion
Edition, 2015. 2. Wylie C.R " <i>Adv</i> 1999. 3. H. K. Dass, " <i>Ad</i> 4. B.V.Ramana, "H Course Objectives : 1) Introduce the bas of differential equation. 2) Provide exposure Course Learning Outco	anced En vanced E ligher Eng	nginee Engine	ering N eering I	Mathem Mathen	atics",., natics",	Tata M S. Cha	McGra and &	aw Hill F Compar	Publicati ny Ltd.,	ion, 8th Edi 1 st Edition,	tion
 1999. H. K. Dass, "Ad B.V.Ramana, "H Course Objectives : Introduce the bas f differential equation. Provide exposure Course Learning Outcome of the second se	vanced E. ligher Eng	Engine	eering	Mathen	natics",	S. Cha	and &	Compar	ıy Ltd.,	1 st Edition,	
 4. B.V.Ramana, "H Course Objectives : Introduce the bas of differential equation. Provide exposure Course Learning Outcome in the bas 	ligher Eng	0	0					•	•		2014.
Course Objectives : 1) Introduce the bas of differential equation. 2) Provide exposure Course Learning Outco		gineeı	ring M	lathema	utics ", T	The Mc	Graw	Hill cor	npanies	, 2006.	
 1) Introduce the bas of differential equation. 2) Provide exposure Course Learning Outco 	sic concer										
 1) Introduce the bas of differential equation. 2) Provide exposure Course Learning Outco 	sic concer										
of differential equation. 2) Provide exposure Course Learning Outco	sie concep	nte ra	anirad	to unde	arctand	constr	uct so	lye and	internre	t various tv	nec
2) Provide exposure	1	pis ici	quiicu		zistana,	constr	uci, si		merpre	t various ty	pes
	e to solve	engir	neering	g proble	ems usir	ıg impa	arted o	concepts	of math	nematics.	
	omes:										
CO After the comp	letion of	the c	course	the stu	ident sh	ould b	e	Bloom	's Cogr	nitive]
able to								level	Desc	criptor	
CO1 Explain mathem		oncept	ts relev	vant to a	address	proble	ms in	II	Unde	erstanding	
engineering fielCO2Solve engineering		cientif	fic prob	blems.				III	Appl	lying	-
	Č		.								
CO-PO Mapping :(a) F	Electroni	cs En	ngineer	ring							
a		c	d	e	f	g	h	i	j	k	
CO1 1 CO2 1		1 1	-								
	-	1									

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1 : Matrices	6Hrs.
Rank of matrix, Homogeneous and non-homogeneous linear equations, symmetric and	
skew symmetric and orthogonal matrices, Eigen values, Eigen vectors, Cayley Hamilton	
theorem, Diagonalisation of matrices.	
Module 2: Calculus	
Rolle's theorem, Mean value theorem, Taylor's and Maclaurin's theorem with	6Hrs.
remainders, L'hospital rule and indeterminate forms	
Module 3: Complex Number	7Hrs.
Polar form of complex number, Argand's diagram, De Moiver's theorem, roots of	
complex number, Hyperbolic function, exponential form of complex number, relation	
between circular and hyperbolic function.	
Module 4: Partial Differentiation and its application	8Hrs.
Partial derivative, chain rule for partial differentiation, Euler's theorem for homogeneous	
and non-homogeneous function, Jacobian, Error and approximation, maxima and minima	
of function of two variables.	
Module 5: First order ordinary differential equation and its application	8Hrs.
Exact, Linear, Bernoulli's equations, Euler's equations, Orthogonal trajectory,	
applications to simple electric circuit.	
Module 6: Curve tracing	5Hrs.
Tracing of curves for Cartesian and polar coordinate.	
Module wise measurable students learning outcome:	
After the completion of the course the student should be able to	
Module 1 : Matrices	
Solve problems related with matrices.	
Module 2: Calculus	
Solve problems in calculus.	
Module 3: Complex Number	
Solve problems in complex number.	
Academic Documents for Electronics Engineering	

Module 4: Partial Differentiation and its application Solve problems of partial differentiation Module 5: First order ordinary differential equation and its application

Explain and solve problems in First order ordinary differential equation.

Module 6: Curve tracing

Trace the different curves.

Tutorial:

During the tutorial we will ensure that the students have properly learnt the topics covered in the lectures. This shall include assignments, quiz, surprise test or declare test. The teacher may add another activity.

								Wald	chand	l Coll	ege (of Eng	ineerir	ng, Sangli	i
Fitle of	the Course: Ba	sic Elec	trica	l Eng	ineer	ing 4	4EL1	01				L	Т	Р	Cr
												2			2
Pre-Req	uisite Courses:														
Fextboo	oks:														
1. E	D.C. Kulshreshth	na, "Bas	ic Ele	ectrica	al Eng	ginee	ring"	, 1 st re	evised	d edit	ion N	IcGra ^v	w Hill	, 2012.	
2. E	D. P. Kothari and	1 I. J. Na	agrath	n, "Ba	asic E	lectri	cal E	ngine	ering	;", Ta	ta Mo	cGraw	Hill, 2	2010.	
Referen	ces:														
1. V	/. D. Toro, "Ele	ctrical E	Ingine	eering	g Fun	dame	ntals'	', Pre	ntice	Hall	India	, 1989			
2. E	E. Hughes, "Elec	trical ar	nd Ele	ectron	nics T	echno	ology	", Pe	arson	, 201	0.				
	/. N. Mittle and											tion T	MH. 2	006.	
Course	Develop skill to Learning Outco	omes:													
CO	After the com	pletion	of th	e cou	irse t	he st	uden	t will	be a	ble to)	Bl		Cognitiv	
												level		Descript	or
CO1	Explain princ machines.	iples, co	onstru	ction	and	worki	ng of	elect	rical			2	U	nderstand	ling
CO2	Solve electrica	al and m	agnet	tic cir	cuits							3		Applyin	g
	Mapping : nics Engineerin	σ													
		PO	a	b	c	d	e	f	g	h	i	j	k		
		CO1	2		1										
		CO2	2		1										
Assessm	ent:	CO3	2		1										
	nponents of In S								meste	er Exa	mina	tion (MSE)	and one l	End
	r Examination (ESE) ha	Ũ	20%,	30%	and 5	50% v	weigh	tage	respe		ly. Iarks			

ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: DC Circuits	Hrs.
Review of R-L-C- Electrical circuit elements, KCL and KVL. Star- delta conversion, voltage and current sources. Magnetic circuits, equivalence of heat and power. Thevenin, Norton and Superposition Theorems.	4
Module 2: AC Circuits	
Representation of sinusoidal waveforms, peak, RMS values, phasor representation real, reactive and apparent power. Analysis of single-phase, ac circuits consisting of R, L, C, RL, RC, RLC (series and parallel) circuits and three-phase balanced circuits. Voltage and current relations in star and delta.	4
Module 3: DC Machines	Hrs.
Construction, working principle and types of DC generator and Motor. Voltage and speed control methods, Speed-Torque characteristics. Principle, construction, working and application of stepper, servo and universal motors.	4
Module 4: Transformers	Hrs.
Construction, working principle and types of single-phase transformer, open circuit and short circuit tests: Losses, efficiency, all-day efficiency and regulation. Autotransformer Three-phase transformer construction and connections.	6
Module 5: AC Machines	Hrs.
Construction and working principle of single and three- phase induction motor. Types, torque- speed characteristics and applications of induction motor, Types of starters, AC generator.	4
Module 6: Wiring, Electrical Installations and Components of LT Switchgear	Hrs.
Switch fuse unit, MCB, ELCB, MCCB. Types of wire and cables. Staircase, Godown and Domestic wiring, CFL, LED, Fluorescent tube. Lighting schemes, Earthing, types of batteries, characteristics of batteries.	4
Iodule wise Measurable Students Learning Outcomes:after completion of the course students will be able to:	

Academic Documents for Electronics Engineering

- 1. Explain the KVL and KCL to solve electric and magnetic circuit.
- 2. Explain fundamentals of AC circuit.
- 3. Describe construction and working of DC machine.
- 4. Summarize construction and working of single- phase transformer and three- phase transformer.
- 5. Describe three- phase and single- phase Induction Motor with application.
- 6. Recognize wiring, illumination, supply system and installation components.

Title of the Course: Basic Mechanical Engineering 4ME101				
	L	Т	Р	Cr
	2	0	0	2

Pre-Requisite Courses:

Textbooks:

- 1. Agarwal, C. M. "Basic Mechanical Engineering", Wiley India Pvt. Ltd., 2014
- 2. Vasandani V. P. and Kumar D. S., "*Heat Engineering*", Metro Politian Book Company, 2nd Edition, 1975.
- 3. Hajra Choudhury S. K., "*Workshop Technology*" *Vol II [Machine Tools]*", Media Promoters and Publishers Pvt. Ltd., Tenth edition, reprint 2001

References:

- 1. Nag P. K,. "Thermodynamics", Tata McGraw Hill Publication, 3rd Edition, 2006
- 2. Rajput R.K, "Thermal Engineering", Laxmi Publication 2010.

Course Objectives :

- 1. Interpret the systems of conventional and non-conventional power plants.
- 2. Prepare the student to summarize concepts of basic mechanical systems and thermodynamics.
- 3. Discuss the properties of steam and its behavior with temperature and pressure.
- 4. Identify the power transmission, bearing and lubrication systems.
- 5. Introduce different manufacturing processes and machine tools for applications.

Course Learning Outcomes:

CO	After the completion of the course the student should be able to	Bloom's	s Cognitive
		level	Descriptor
CO1	Interpret the various terms related to energy generation, mechanical system, thermodynamic systems, manufacturing processes and machines	II	Understanding
CO2	Describe thermodynamic system, power producing/absorbing/ transmission devices and manufacturing processes/machines.	Π	Understanding
CO3	Distinguish the various energy generation, power transmission, mechanical systems, operations/machines involved in production processes.	II	Understanding
CO4	Calculate the operating and geometric parameters in thermodynamics and power transmission systems	III	Applying

CO-PO Mapping :

Electronics Engineering.

	a	b	c	d	e	f	g	h	i	j	k	l
CO1				1							1	
CO2				1	1						1	
CO3				1				1			1	
CO4				1	1							

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared to MSE: Assessment is based on 50% of course content ESE: Assessment is based on 100% course content v last three modules) covered after MSE.	t (Normally first three modules)	ormally
Course Contents:	l Dowen Dionte	5 II.ma
Module 1: Conventional and Non-Conventiona Steam power plant, Hydro power plant, solar therma		5Hrs
and Two Stroke Petrol & Diesel Engines. Diesel Pov power plant.		
Module 2: Study of Mechanical systems		4 Hrs
Pumps, Compressors, Refrigeration/Air conditioning systems.	g system, Hydraulic and Pneumatic	
Module 3: Basic Thermodynamics		5Hrs
First Law & Second Law of Thermodynamics. Gas Cycle, Air Standard efficiency, Numericals on above		
Module 4: Properties of steam		4Hrs
Introduction, Steam formation, Different forms of S and dryness fraction of steam, Internal energy. Simp		
Module 5: Power Transmission	• • •	5Hrs
Belt drives, Chain drives and gears drives, (Numeric velocity ratio), Couplings and their types. Function of Lubrication.		
Module 6: Manufacturing Processes		5Hrs
Metal casting processes- (Die casting, Sand casting) rolling, extrusion, drawing. Metal cutting operations reaming, shaping, gas cutting etc. Metal joining proc brazing.	- turning, drilling, milling, boring,	
Iodule wise Measurable Students Learning Outco	omes :	
tudent should be able to		

- 1. Summarize the Conventional and Non-Conventional Power plants and its functioning.
- 2. Describe and demonstrate the various mechanical systems.
- 3. Explain fundamental concepts of thermodynamics from engineering point of view.
- 4. Obtain and use the properties of steam and other parameters using standard steam tables.
- 5. Interpret the working of power transmission system, its types and solve some simple numerical related to design.
- 6. Relate different production processes commonly used in industries.

litle o	f the Course: English for Professional Communication 4HS101	L	T	Р	C
Dro De	equisite Courses: Higher Secondary Level	2	1	0	3
Textbo					
Refere					
1. I	K.R.Laxminarayanan, English for Technical Communication, Scitech, Six	kth Edi	tion, 2	008	
	William Sanborn Pfeiffer ,T.V.S. Padmaja , <i>Technical Communication: A</i> Pearson, Sixth Edition 2012	Practio	cal Ap	proach,	
	A.K.Jain, Praveen Bhatia, A.M.Shaikh, <i>Professional Communication Ski</i> edition ,2009	ells, S. (Chand	and Co:	Fift
4. <i>I</i>	Ashraf Rizvi , Effective Technical Communication, Tata McGraw Hills pu	blishin	g Con	npany 20)06
5. I	F.T.Wood,Remedial English Grammar, Macmillan, 2007				
6. <i>I</i>	Andrea J.Rutherford, Phd. Basic Communication Skills for Technology, Pe	earson	Educa	tion Asia	a,200
7. I	Exercises in Spoken English, Parts 1 and II CIEFL, Hyderabad, Oxford U	Jnivers	ity Pre	ess	
8. 5	Sanjay Kumar, Pushplata, Communication Skills, Oxford University Pres	s, First	editic	2012, n	
	e Objectives : Inculcate the importance of Technical English Communication Skills				
2.	Enhance their communicative competence				
3.	Enable the students to communicate with clarity and precision				
4.	Prepare the students to acquire structure and written expression required enable them to acquire proper behavioral skills	for the	ir prot	fession a	ınd
Course	e Learning Outcomes:			<u> </u>	
CO	After the completion of the course the student should be able to			Cognit	
CO1	Communicate clearly, precisely and competently in different scenario.	Leve	-1	Descrip Applyi	
CO2	Demonstrate the information through oral, written and graphic messages.	II	U	ndersta	nding
	Acquire basic proficiency in English including reading and listening	1	1		

	nics En PO	a	b	c	d	e	f	g	h	i	j	k	
	CO1							3					
-	CO2							3					
_													
	CO3							3					
eacher vo con meste ssessi SE 1	r Exam	ts of I	n Seme				d 50% v Mar 10	weights			ion (MS	E) and	one End
1SE SE 2							30						
SE Z							50						
	Contor	•4 ~ •											
1odul 1. 2. 3.	Subjec Modal Questi	entenc et Verb verbs on tags	Agree		nd Voc	abulary	y Buildi	ing					5Hr
1odul 1. 2. 3. 4.	e 1: Se Subjec Modal Questi Conne	entenc et Verb verbs on tags ctives	Agree	ment			y Build i reviation						5Hr
1odul 1. 2. 3. 4. 5.	e 1: Se Subjec Modal Questi Conne	entenc et Verb verbs on tags ctives yms, A	Agree S Antonyr	ment									5Hr
1odul 1. 2. 3. 4. 5. 6.	e 1: Se Subjec Modal Questi Conne Synon Redun	entenc et Verbs on tags ctives yms, A dancie	Agree S Antonyr	ment ns, and									5Hr
Iodul 1. 2. 3. 4. 5. 6. 7.	e 1: Se Subjec Modal Questi Conne Synon Redun	entenc t Verbs on tags ctives yms, A dancie	Agree s antonyr s	ment ns, and									5Hr
Iodule 1. 2. 3. 4. 5. 6. 7. 8.	e 1: Se Subjec Modal Questi Conne Synon Redun Mispla Passive	entenc t Verbs verbs on tage ctives yms, A dancie aced M es undan	Agree s antonyr s fodifier	ment ns, and s of Cor	Standa	urd abbr							5Hr
1odule 1. 2. 3. 4. 5. 6. 7. 8.	e 1: So Subjec Modal Questi Conne Synon Redun Mispla Passive e 2 : Fu I. Fea	entenc et Verbs verbs on tags ctives yms, A dancie aced M es undan tures a	Agree s antonyr s codifier nentals nd Fur	ment ns, and s of Cor	Standa	urd abbr							5Hr

4. Barriers and Breakdown of Communication	
5. Communication in an Organization	
i. Upward communication	
ii. Downward communication	
iii. Horizontal communication	
iv. Diagonal communication	
v. Informal communication / Grapevine communication	
Module 3 : Nature and Style of Writing 1. Describing	
2. Defining	
3. Classifying	3Hrs.
4. Providing examples or evidence	
5. Writing Introduction and Conclusion	
Module 4 : A. Non Verbal Communication 1. Kinesics or Body Language 2. Proxemics : Space Distance 3. Haptic 4. Vocalic : Paralinguistic features i. Pitch ii. Volume iii. Pauses iv. Rate of words/minute	2Hrs.
 5.Chronemics 6.Nonverbal Barriers B. Listening Skills 1. Process of Listening 2. Types of Listening 	2Hrs
Academic Documents for Electronics Engineering	

3. Barriers to effective Listening	
Module 5 :	
A. Oral Communication	
1. Speeches for different Occasions (Welcome Speech, Introductory Speech, Vote of	4Hrs
Thanks Speech)	
2. Group Presentations	
 Group Discussions Individual Presentations 	
5. Job Interviews	
B. Basics of Phonetics	
1. Improper Pronunciation	
2. Classification of Sounds in English	
3. Word Stress	111
4. Sentence Stress or Intonation	1Hr
5. Pronunciation and Articulation	
Module 6 : Writing Communication A. Basic Writing Skills : 1. Paragraph Writing	
2. Comprehension	
2. Comprehension	
3. Essay Writing	2Hrs
4. Sentence Structures	
5. Use of phrases & clauses in sentences	
6. Importance of proper punctuations	
7. Creating coherence	
8. Organising the principles of paragraphs in documents	
9. Techniques for writing precisely	2Hrs
B. Business Correspondence :	
1. Job Applications	
2. Complaint Letters and Adjustment Letters	2Hrs
3. Inquiry and Order	200
C. Official Correspondence :	
1. Memorandums	
2. Circulars 3. Notices	2Hrs
D.Report Writing :	
1. Individual Report	
2. Lab Report	
3. Inspection Reports	
-	

Module wise Measurable Students Learning Outcomes :

Module 1: Construct different types of sentences

Module 2: Communicate effectively and avoid barriers

Module 3: Understand the different styles of writing.

Module 4: Demonstrate the advantages and limitations of non verbal Communication

Module 5: Acquire proficiency in technical English and communicate confidently in different Formal situations.

Module 6: Write effective paragraphs, reports, letters and practice written communication effectively.

After the completion of the course the student should be able to:

1. Enrich their Vocabulary.

2. Improve their sentence structure.

3. Communicate confidently in different formal situations.

Tutorial: Computer Usage / Lab Tool :

Language lab activities are conducted on computers

Laboratory Experiences:

1. Listening and reading skills improved

2. Thinking and concentration are developed

Independent Learning Experiences:

Students prepare for Seminars, presentations, Group Discussions and also Written Tests confidently.

Course Na	me: Co	mputer P	rogra	amm	ing fo	or El	ectro	onics	Eng	ineerin	g	L	Т	Р	Cr		
EN152												2	0	2	3		
Pre-Requis	site Co	urses: Basi	ίς ςοι	irse c	of har	dwar	e and	l soft	ware	•							
Fextbooks	:																
		tkar, "Let V															
		y, "Progran															
		, Schaum's	, "Ou	tline	of Pr	ograi	nmir	ıg wi	th C	", McGı	aw-H	ill, 3^{1}	^{ra} editio	on, 2017			
References													-				
		than and D	ennis	5 M. I	Ritch	e, "I	he C	Prog	gram	ming La	angua	ge", I	Pearsor	n Educatio	on		
India, 2 nd																	
Course Ob			n a alz	:11a +/	tron	alata	toxt	dagar	ihad	nnahlar	naint	~ ~~~~	~~~~	witton	ing the		
		blem-solvin nguage wit								problet	ns int	o pro	grams	written us	sing the		
1 0	0	ledge on g				<u> </u>	0			nages si	uch as	. con	ditiona	l branchi	nσ		
		ictures, fun		-	-		-	Juter	iung	uuges s	uen u	. con	annona	ir orunem.	11 <u>6</u> ,		
-		Outcomes		,	r		- P										
													Bloc	om's Cog	nitive		
COs	After	the comple	etion	of the	e cou	rse th	e stu	dent	shou	ild be at	ble to	F	Level	Desc			
CO1	identi	ify and exp	olain	basic	c con	cepts	of C	prog	ram	ming			II	Unders			
CO2		ograming				<u> </u>		<u> </u>		ē	gram	s	III		Applying		
CO3	write	a program	for s	impl	e app	licati	ons	0		•	<u> </u>		III	Appl	lying		
CO-PO Ma	apping	:															
Electronics																	
		PO	1	2	3	4	5	6	7	89	10	11	12				
		C01			1		1					1					
		CO2			1		1					1					
		CO3			1		1					1					
Assessmen	ts :																
Feacher A		ent:															
00% ISE,	Continu	ious assess	ment	base	ed on	lab p	erfor	mano	ce, q	uiz relat	ed wi	th ex	perime	nts, mini	project		
pplication	program	n given in	grou	ps an	d ora	l at th	ne en	d of s	seme	ster							
Assessment	t Mar	ks Evalua	ation														
	20			s Ass	ignm	ent E	valua	ation									
									bas	ed on de	eclare	d test	s /quiz	zes /mini	project		
	50	Contin	nuous	геп	orma								-				
ISE	50	/semir			orma												
ISE		/semir	har et	c.							of ser	neste	r (Imple	ementatio	on and		
ISE	50 30	/semir	har et	c.							of ser	neste	r (Imple	ementatio	on and		
Course Co	30 ntents:	/semir Final j Oral)	nar et perfo	c. rman							of ser	neste	r (Impl	ementatio			
Course Co Module 1:	30 ntents: Basics	/semir Final j Oral) of C progr	nar et perfo ramn	c. rman ning	ce la	o test	cond	lucte	d at	the end							
C ourse Co Module 1: Program de	30 ntents: Basics	/semir Final j Oral) of C progr	nar et perfo ramn algor	c. rman ning rithm	ce lal	o test ido c	cond	flow	d at	the end	gram	struc	ture, si	imple C			
Course Co Module 1: Program de program, ba	30 ntents: Basics velopm asic syn	/semir Final j Oral) of C programent steps, itax / toker	nar et perfo ramn algon ns in	c. rman ning rithm C, ba	, pseu	o test ido c ata ty	conc ode,	lucte	d at	the end	gram nts, v	struc	ture, si les, arit	imple C thmetic,	Hour		
Course Co Module 1: Program de program, ba elational a	30 ntents: Basics evelopm asic syn nd logi	/semir Final j Oral) of C progr ent steps, ntax / toker cal operato	nar et perfo ramn algon ns in ors, i	c. rman ning rithm C, ba ncrer	, pseu asic d	o test ido c ata ty	conc ode, ypes decre	flow and soment	d at	the end , C pro , consta erators,	gram nts, v condi	struc ariab	ture, si les, arit l opera	imple C thmetic, tor, bit-			
Course Co Module 1: Program de program, ba elational a vise opera	30 ntents: Basics velopm asic syn nd logi tors, as	/semir Final j Oral) of C programent steps, itax / toker	ramn algon algon s in ors, i	c. rman ning rithm C, ba ncrer tors,	, pseu , pseu asic d nent expr	o test ido c ata ty and c essio	conc ode, ypes decre	flow and sement	d at	the end , C pro , consta erators,	gram nts, v condi	struc ariab	ture, si les, arit l opera	imple C thmetic, tor, bit-	Hour		

Walchand College of Engineering, Sangl	i
Lab session:	
1. Introduction to different compilers and C programming	
2. Programs to demonstrate different operators	
3. Programs to use data types, variables and constants	6
Module 2: Decision Making Blocks and Loops	
Statements blocks in C programming, if statement: if, ifelse, ifelse if, switch statement,	
Loops: for loop, while loop, do – while loop	4
Loop control statements: break, continue, goto lable, programming examples.	
Lab session:	
1. Programs to use decision making statements	6
2. Programs to use loops and loop control statements	U
3. Program to use switch case	
Module 3: Basics of C function, Storage classes	
Designing structured programs, defining a function, function declarations, calling function,	
Function arguments : call by value, call by reference (Pointer introduction), storage classes:	4
auto, register, static, extern, scope rules, block structure, user defined functions, recursive	-
functions, programming examples.	
Lab session:	
1. Programs to differentiate function call types	6
2. Programs to differentiate all storage classes	Ū
3. Programs to use inbuilt functions related with string	
Module 4: Arrays, Pointers	
Concept of arrays, declaration and initialization of arrays, storing and accessing array elements,	
arrays and functions, 2D array, character array / string and inbuilt functions, pointer to an array,	6
array of pointers, applications of arrays, memory mapping for arrays, pointer to pointer, pointer	-
and function, programming examples.	
Lab session:	
1. Program to create array (1D, 2D) and perform their simple operations	4
2. Program to illustrate use of pointer with simple data type (create pointer variable, assign value, access value, and show address using $(* \text{ and } *)$	
value, access value and show address using (* and &) Module 5: Structure and union	
Defining / declaring structure, storing / accessing structure elements, structure as function	
argument, pointer to structure, features of structure, union definition and declaration, structure	5
vs. union, memory mapping for structure and union, programming examples.	5
Lab session:	
1. Programs to study structure data types	4
2. Programs to study union data types	•
Module 6: Pointer arithmetic and applications	
Pointer arithmetic, pointer advantages and applications, programming Examples for pointer	~
applications, memory management, introduction to dynamic memory allocation.	3
Lab session:	
1. Programs to observe memory management in C programming	2
2. Programs on pointer application	
Computer Usage / Lab Tool: Windows / Linux based system, Turbo C++ compiler / Dev C++ cor	npile
/ Code blocks	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to	
After the completion of the course the student should be able to	

Academic Documents for Electronics Engineering

Module 1: transfer given pseudo sequential code into computer program.

Module 2: transfer any moderate complexity algorithm into C program.

Module 3: use pointer concept in function / program.

Module 4: write program using array.

Module 5: use derived data types like structures & union, in the program.

Module 6: to write a program for pointer applications.

Title of the Course: Engineering Physics Laboratory 4PH151	L	Т	Р	Cr
	-	-	2	1
Pre-Requisite Courses: Students are expected to know the basic practical know	owledge	e in HS	C Level	

Textbooks: 1. C. L. Arora "**Practical Physics**" S. Chand & Co Edition 2009. 2. P.R. Sasi Kumar "**Practical Physics**", PHI Learning Pvt.Ltd 1st edition 2011.

References:

Halliday, Resnic and Walker, "Fundamentals of Physics", John Wiley, 9th edition 2011.
 A. Beiser, "Concepts of Modern Physics", McGraw Hill International, 5th edition, 2003.
 Ajoy Ghatak, "Optics", Tata McGraw Hill 5th edition, 2012.

Course Objectives:

- 1. To gain practical knowledge by applying the experimental methods to correlate with the Physics theory.
- 2. To learn the usage of electrical and optical systems for various measurements.
- 3. To Apply the analytical techniques and graphical analysis to the experimental data.

Course Learning Outcomes:

CO	A 64 41.		1.4	- f 41		41 4.	- J 4 -			4.	Bloc	om's Cognit
CO	After th	e comp	Dietion	or the	course	e the sti	ident s	nouia	be able	to	level	Descrip
CO1	Calcula constant active su their si semicon	, value ubstanc imulatio	s of e es. De ons,	e/m of e monst Newtor	an ele rate Ha n's rir	ctron, artley a ng, an	Specifi and Co	c rotati lpitt's c	on of oscillato	optical or with	III	Applying
) Mappin ctronics I	0	ering b	с	d	e	f	g	h	i	j	k
	CO1					1						1
ssessi	ments: : I		ster E		on (ISE)				Mar	ks	
			ISE							10	0	
			-		-		•	regula ination.		atory s	session,	performanc

L	ist of Experiments (Minimum 8 experiments from the following list)	2 Hrs. each
1.	Find the diameter of the thin wire by diffraction of the light	Expt.
2.	Determination of wavelength of light by plane diffraction grating.	
3.	Determine the Specific rotation of sugar solution	
4.	Find the wavelength of He-Ne Laser using Plane diffraction grating.	
5.	Find the e/m for the cathode rays	
6.	Verify the expression for the resolving power of a telescope.	
7.	Measure the wavelength of ultrasonic waves by Kundt's tube method.	
8.	Design and simulate Colpitt's & Hartley Oscillator.	
9.	Determine the Planck's constant.	
10	. Find the wavelength and velocity of ultrasonic waves in liquid.	
11	. Study the I-V characteristic of semiconductor diode.	
12	. Newton's ring: Determination of wavelength of light and refractive index of liquid.	

Course N	lame	Electr	onics E	Inginee	ring L	aborato	ry 4E	N151			L	Т	Р	Cr
	• • •	0	1 oth	D1 '							0	0	2	1
Pre-Requ Textbook		Course	s: 12 ^{an}	Physics										
 R. P. Ja A. Ana Robert Ramak Referenc Morris Donald Robert PHI, 6^{tt} Course C 	ain, "I and Ku Boyle cant G ces: Mano I A. N F. Co ^h editi Dbjec	umar, "l estad, L aikwad, o, "Digi leamen, oughlin ion, 200 tives:	Fundam ouis Na , "Op-a tal Desi "Electi and Fre	nentals of ashelsky mp and ign", Pe conic Ci ederick	of Digi y, "Ele- Linear earson, ircuit A F. Dris	tal Desi ctronic I r Integra 4 th editi Analysis coll, "O	gn", P Device ted Ci on, 20 and D peratio	HI, 4 th e s and Ci rcuits", 1 11 esign", 7 onal amp	dition, 2 ircuits, F Pearson Tata Mc plifiers a	2016 Pearson, 4 th edition Graw H and linea	on, 2015 ill, 3 rd ec r integra	itior ated c	n, 201 bircuit	s",
The aim o												g stu	dents,	so
that they of				<u> </u>	Implen	nent sma	all digi	tal / ana	log elec	tronic ci	rcuits.			
Course L	learn	ing Out	tcomes								D1	,	C	- :4 :
COs	After	r the con	mpletio	n of the	course	e the stu	dent sl	nould be	able to					
<u>CO1</u>			·								Lev			riptor
CO1				A		and instr								lying
CO2			gital IC	, aloae	and of	p-amp ba	ased ci	rcuits.			II	L	Anai	yzing
CO-PO N Floctrico			a •											
	l Engineering: PO a b c d e f g h i										j	k		
								J						
(CO1	1	2									1		
	CO2	1	2									1		
Assessme Teacher A 100% ISE simulation Assessme	Assess E, Cor n task	ntinuous		os and o				· •	z related	with ex	perimen	ts, ci	rcuit	
		20	Conti	nuous A	Assign	ment Ev	aluatio	n						
		50	Conti		<u> </u>				d on dec	lared tes	sts /quizz	zes /r	nini p	roject
ISE	Final performance lab test conducted at the end of semester (Impleme										emen	tation	and	
ISE		30	Oral)	<u> </u>										

Experiment List: (Minimum 13 Lab sessions)

1) Identification of components and instruments required in lab to perform experiments based on Electronics.

- 2) Verification of truth table of all logic gates.
- 3) Realization of logic gates using basic building block (NAND/NOR).
- 4) Implementation of combinational logic circuit.
- 5) Study of P-N Junction diode characteristics
- 6) Working of Half-wave rectifiers

7) Working of Full-wave rectifiers

- 8) Working of clipper
- 9) Working of clampers

10) Study of transistor as a switch and amplifier (BJT and JFET)

- 11) Study of inverting and non-inverting amplifier (IC 741)
- 12) Implementation of opamp based application (Adder / Subtractor)

13) Working of multivibrator using IC 555 (Astable and Monostable)

Measurable Students Learning Outcomes based on above experiments:

After the completion of the course the student should be able to

1) identify and handle electronic components, ICs and instruments

2) implement and test diode, transistor and opamp based circuits

3) identify use of diode, transistor and opamp in various applications

4) apply knowledge to deal with electronic circuitry

Computer Usage / Lab Tool: Proteus Simulator, Analog / Digital Trainer kit, Digital Oscilloscope, Signal Generator, Multimeter and DC power supply.

Title of the Course: Mechanical Engineering Laboratory 4ME151				
	L	Т	Р	Cr
	0	0	2	1
	1	1	1	

Pre-Requisite Courses:

Textbooks:

- 1. Agarwal, C. M. "Basic Mechanical Engineering", Wiley India Pvt. Ltd., 2014
- 2. Vasandani V. P. and Kumar D. S., "*Heat Engineering*", Metro Politian Book Company, 2nd Edition, 1975.
- 3. Hajra Choudhury S. K., "*Workshop Technology*" *Vol II [Machine Tools]*", Media Promoters and Publishers Pvt. Ltd., Tenth edition, reprint 2001

References:

2. Rajput R.K, "Thermal Engineering", Laxmi Publication 2010.

Course Objectives :

- 1. Introduce the systems of conventional and non-conventional power plants.
- 2. Prepare the student to summarize concepts of basic mechanical systems and thermodynamics.
- 3. Induce the student to identify the power transmission, bearing and lubrication systems.
- 4. Impart the knowledge of manufacturing processes and machines.

CO	After the completion of the course the student should be able to	Bloom's Cognitive				
	able to	level	Descriptor			
CO1	Demonstrate working principle of power generating plant.	II	Applying			
CO2	Demonstrate the working principle of mechanical power converting/using systems	II	Applying			
CO3	Explain working and practical utility of various manufacturing systems/units.	III	Understanding			

^{1.} Nag P. K,. "Thermodynamics", Tata McGraw Hill Publication, 3rd Edition, 2006

CO-PO Mapping :

FY B.Tech Electronics Engineering.

	a	b	c	d	e	f	g	h	i	j	k	1
CO1				1							1	
CO2				1	1						1	
CO3				1				1			1	
CO4				1	1							

Assessments :

Teacher Assessment:

100% ISE, Continuous assessment based on the experiments, demonstration performed in the lab and followed by oral examination at the end of semester.

Assessment	Marks
ISE	100

Course Contents:

- 1. Study and demonstration of steam power plant.
- 2. Study and demonstration of diesel power plant.
- 3. Study and demonstration of solar power plant.
- 4. Demonstration of two stroke and four stroke internal combustion engines.
- 5. Study and demonstration of principle and working of refrigeration system.
- 6. Study and demonstration of principle and working of air conditioning system.
- 7. Study and demonstration of compressors.
- 8. Demonstration mechanical power transmission systems.
- 9. Study and demonstration hydraulic and pneumatic power transmission systems.
- 10. Study of bearings and its methods of lubrication.
- 11. Study and demonstration of various manufacturing systems/units Part one
- 12. Study and demonstration of various manufacturing systems/units Part two

l'itle of		• •	0 7						chand			f Eng	ineer	ing, S	Sang	<u>li</u>
4CH10	f the Course: Ch	emistry	for]	Elect	rical	and	Elect	ronic	s Eng	ginee	rs	L	Т		Р	C
+CП10	14										ŀ	L 03	0		P 0	03
Pro-Do	equisite Courses:	Che	mictr	•V 001	1 r 66 (at co	ond	arv o	nd hi	ohor	60001	ndary			0	0.
Textbo	-	Che	msu	y col	11 50 2	11 50	Jonua	ar y d	uu III	gner	SCLUI	iual y	ic vel			
	. Singh, "Enginee	ring Ch	emist	rv" N	New	Δσρ Ι	ublic	eation	3 rd F	Editio	n 20	005				
	si Chawla, "Engir)03.			
	P.C. and Jain Mo													ition.	201	3
Refere			0					1								
1.	O G Palanna, "Er	ngineeri	ng Cl	hemis	stry"	Tata	McGi	raw H	lill 20	009.						
2.	J Mendham, R.C	. Denne	y, J.E). Bar	mes, I	M.J.F	C Tho	mas,	"Qua	ntitat	ive C	hemio	cal an	alysi	is", V	Vogel
Pears	on Education, 6 th	Edition	, 200	8.												
3.	S.S Dara, "Engin	eering (Chem	istry'	' S. C	hand	and (Comp	any 2	2008.						
4	Askeland and Ph	ule "	The S	cienc	e and	l Eno	ineer	ing of	⁻ Mat	eriale	" Tho	mson	Puhl	icati	on 4	th
، Edition		, .		CICIC		. Ling		<u>5</u> 01	. 17140	J11415	inu		1 401	icati	- 11	I
Course	e Objectives :															
1 . To m	nake student fami	liar with	n engi	ineeri	ng pr	opert	ies as	socia	ted w	vith di	ffere	nt ma	terial	s to u	ise tł	nem
success	fully in practice.															
2. To p	rovide knowledge	e on met	thods	of ch	aract	eriza	tion a	nd ch	iemic	al ana	alysis					
Course	e Learning Outco	omes:														
CO	After the comp	letion o	f the	cour	se th	e stu	lont	houl	dha	ahla	to	R1	oom'	s Co	gniti	VA
	-	ienom o		cour			aciit i	snoui	a be	able	10	DI	oom	5 00	0	VC
			1 0110	cour			iciit i	snoui	u be	abic	ιο		vel		•	
CO1	_											lev		De	escrip	otor
C01	Explain chen	nical	analy	vsis,	wat	er	chem	uistry,	pł	nase	rule	lev e, II		De	escrip	otor
CO1	_	nical y and o	analy electr	vsis, conic	wat engi	er neeri	chem ng n	iistry, nateri	pl als a	nase nd v	rule vater'	lev e, II s		De	escrip	otor
C01	Explain chen electrochemistry industrial applic	nical y and o cations.	analy electr D	vsis, conic Draw	wat engi scher	er neeri matic	chem ng n of v	nistry, nateri vater	pł als a softe	nase nd v ners,	rule vater' phas	lev e, II s		De	escrip	otor
CO1 CO2	Explain chem electrochemistry	nical y and o cations. lepositio	analy electr D on tec	vsis, conic)raw chniqu	wat engi scher ies, e	er neeri matic lectro	chem ng n of v odes a	uistry, nateri vater and en	pł als a softe nergy	nase nd v ners, level	rule vater' phas	lev e, II s e		De Ur	escrip	otor tandi
	Explain chem electrochemistry industrial applie diagrams, film c	nical y and o cations. leposition of cho	analy electr D on tec emica	vsis, conic Draw chniqu al an	wat engi scher ies, e alysis	er neeri matic lectro s, ha	cherr ng n of v odes a rd w	iistry, nateri vater and en vater,	ph als a softe nergy	nase nd v ners, level engin	rule vater' phas s. eering	e, II s g II		De Ur	escrip	otor tandi
	Explain chem electrochemistry industrial applic diagrams, film c Classify types	nical y and o cations. leposition of cho	analy electr D on tec emica	vsis, conic Draw chniqu al an	wat engi scher ies, e alysis	er neeri matic lectro s, ha	cherr ng n of v odes a rd w	iistry, nateri vater and en vater,	ph als a softe nergy	nase nd v ners, level engin	rule vater' phas s. eering	e, II s g II		De Ur	escrip	otor tandi
	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc	nical y and o cations. lepositio of cho film dep entratio	analy electr D on tec emica oositio	vsis, conic Draw chniqu al an con tec	wat engi scher ues, e alysis chniq	er neeri matic lectro s, ha ues a	chem ng n of v odes a rd v nd bu	iistry, nateri vater and en vater, alk m	pl als a softe nergy ateria	nase nd v ners, level engin ıl/ thi	rule vater' phas s. eering n film	lev e, II s e g II n	vel	De Ur Ur	escrip	otor tandi tandi
CO2 CO3	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an	nical y and o cations. lepositio of cho film dep entratio	analy electr D on tec emica oositio	vsis, conic Draw chniqu al an con tec	wat engi scher ues, e alysis chniq	er neeri matic lectro s, ha ues a	chem ng n of v odes a rd v nd bu	iistry, nateri vater and en vater, alk m	pl als a softe nergy ateria	nase nd v ners, level engin ıl/ thi	rule vater' phas s. eering n film	lev e, II s e g II n	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. lepositio of cho film dep entratio	analy electr D on tec emica oositio	vsis, conic Draw chniqu al an con tec	wat engi scher ues, e alysis chniq	er neeri matic lectro s, ha ues a	chem ng n of v odes a rd v nd bu	iistry, nateri vater and en vater, alk m	pl als a softe nergy ateria	nase nd v ners, level engin ıl/ thi	rule vater' phas s. eering n film	lev e, II s e g II n	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an	nical y and o cations. lepositio of cho ïlm dep entratio d cell en	analy electr D on tec emica oositio n of mf.	vsis, conic Draw chniqu al an con tec solut	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. lepositio of cho ïlm dep entratio d cell en PO	analy electr Don tec emica oositio n of mf. a	vsis, conic Draw chniqu al an con tec solut	wat engi scher ues, e alysis chniq	er neeri matic lectro s, ha ues a	chem ng n of v odes a rd v nd bu	iistry, nateri vater and en vater, alk m	pl als a softe nergy ateria	nase nd v ners, level engin ıl/ thi	rule vater' phas s. eering n film	lev e, II s e g II n	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. lepositio of cho ïlm dep entratio d cell en	analy electr D on tec emica oositio n of mf.	vsis, conic Draw chniqu al an con tec solut	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. lepositio of cho ïlm dep entratio d cell en PO	analy electr Don tec emica oositio n of mf. a	vsis, conic Draw chniqu al an con tec solut	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. leposition of cho cilm dep entration d cell en PO CO1	analy electr D on tec emica oositio n of mf. a 1	vsis, conic Draw chniqu al an on tec solut b 1	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping:	nical y and o cations. leposition of cho cilm dep entration d cell en PO CO1 CO2	analy electr Don tec emica oositio n of mf. a 1 1	vsis, conic Draw chniqu al an on tec solut b 1 1	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 CO-PC Electro	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping: nics Engineering	nical y and o cations. leposition of cho cilm dep entration d cell en PO CO1 CO2	analy electr Don tec emica oositio n of mf. a 1 1	vsis, conic Draw chniqu al an on tec solut b 1 1	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 Electro	Explain chem electrochemistry industrial applied diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping: nics Engineering	nical y and o cations. leposition of cho cilm dep entration d cell en PO CO1 CO2	analy electr Don tec emica oositio n of mf. a 1 1	vsis, conic Draw chniqu al an on tec solut b 1 1	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 Electro	Explain chem electrochemistry industrial applie diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping: nics Engineering	nical y and o cations. leposition of cho cilm dep entration d cell en PO CO1 CO2	analy electr Don tec emica oositio n of mf. a 1 1	vsis, conic Draw chniqu al an on tec solut b 1 1	wat engi scher ues, e alysis chniq ions,	er neeri matic lectro s, ha ues a hard	chem ng n of v odes a rd v nd bu	iistry, nateri vater und en vater, ulk m of w	ph als a softe nergy ateria ater,	nase nd v ners, level engin ll/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi
CO2 CO3 Electro	Explain chem electrochemistry industrial applied diagrams, film c Classify types materials, thin f properties. Calculate conc conductance, an Mapping: nics Engineering	nical y and o cations. leposition of cho film dep entration d cell en PO CO1 CO2 CO3	analy electr D on tec emica oositio n of mf. a 1 1 1	vsis, conic Draw chniqu al an on tec solut b 1 1	wat engi scher les, e alysis chniq ions,	d	chem ng n of v odes a rd w nd bu ness	istry, nateri vater und en vater, ilk m of w f	g	hase nd v ners, level engin d/ thi elect	rule vater' phas s. eering n film rolyti	lev c, II s e g II n c III	vel	De Ur Ur	escrip nders	otor tandi tandi

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1. General principles of chemical Analysis - Chemical analysis, Its types,	07Hrs								
Advantages and Disadvantages of instrumental and non-instrumental methods, Different ways									
to express concentration of solution. Numerical problems. Standards and its types. Titrimetric									
analysis, Definition of terms associated with titrimetry. Classification of titrimetry, Gravimetry									
and its requirements, applications									

Module 2 Water Chemistry - Natural sources of water, Impurities in natural water. Water quality parameters Hardness- Definition, Causes, Types, Expressing hardness, units to measure hardness, Numerical problems on hardness calculation, ill effects of hard water in steam generation, Alkalinity, Chloride , Dissolved oxygen(DO), Biological Oxygen Demand (BOD) and Chemical Oxygen Demand (COD) its significance. Ion exchange method of water softening.

Module 3- Phase Rule: Gibbs phase rule, Explanation of the terms Phase, Component, Degree6Hrs.of freedom, Phase reactions, types of equilibrium, equilibrium conditions. One componentsystem-Water system, Sulphur system, Two component system- Lead Silver system,Application of Eutectic system, Merit and Demerits of Phase rule.6Hrs.

Module 4.Electrochemistry: Mechanism of Electrolysis , Electrical Units , Faraday's Laws7Hrs.of Electrolysis Conductance of Electrolytes-Specific Conductance, Equivalent Conductance,
Molar conductance, Measurement of Electrolytic conductance, Concept of electrode potential,
Nernst equation and standard electrode potential, Electrochemical series and galvanic series and
its significance with respect to use of materials in engineering applications.7Hrs.

Module 5 Electronic Engineering Materials: Material, Engineering Materials and types of
engineering materials, Bulk materials and Thin films materials, Thin film definition,
Requirements of ideal thin films, Thin film deposition techniques - Physical Vapor Deposition
(PVD), Chemical Vapor deposition (CVD) w.r.t. equipment, precursor.7Hrs.

Module 6 Properties of thin film:Properties of thin films – Magnetic properties, optical6Hrs.properties and electrical properties.Applications in engineering devices based on properties6

Module wise Measurable Students Learning Outcomes :

After the completion of the course the student should be able to:

1: Explain and select chemical method of analysis.

2: Decide suitability of available water towards various industrial applications.

3: Describe one and two component systems and terms associated with respect to heterogeneous systems.

4: Use concepts related to electrolytic conductance where applicable.

5: Choose proper substrate, precursor and method of deposition as per required characteristics.

6: Compare properties of thin film with bulk.

									Walcha	nd Co	ollege of	Eng		ng, Sang	511
[:4]	f the	Court	The Press			[T ANA	102						
i iue o	n the	Cour	se: El	igineei	ring M	latnem	natics –	LI 4IVI <i>E</i>	102		1	L	Т	Р	Cr
												3	1	-	4
Pre-R	equis	site Co	ourses:	Mathe	matics	course	e at Hig	ner Sec	condary J	Junio	College	2			
Fextb 1.	P. N	and .	J. N. W , Pune,		r, "A7	Fext Bo	ook of A	Applied	l Mathen	natics	", Vol I	and	II", V	'idyarth	i Griha
2.	B.S	. Grev	val , "F	ligher	Engine	ering I	Mathem	atics",	Khanna	a Publ	lication,	44tl	h Editi	ion , 20	17.
3.	S.C.	. Gupt	a, "Fun	damen	itals of	Mathe	ematical	Statis	tics and j	proba	bility", S	Sulta	n char	nd &Soi	ns,2014
Refere 1.	Erw			"Adva	nced E	Inginee	ering Ma	athema	tics", W	iley E	Eastern L	imit	ed Pul	olication	n, 2015
2.	Wyl 1999		R, "Adı	vanced	Engin	eering	Mather	natics'	', Tata M	IcGra	w Hill P	ublic	cation	, 8th Ed	ition,
1 0	n n		· ·		11	<i>.</i> •		tics", S							
C ours Famil C ours	e Ob iarize e Lea	jective the starning	es : tudents 5 Outco	with to omes:	echniq	ues in	<i>(Volum</i> multiva	<i>e-I)"</i> ,] riate in	Prentice tegratior	Hall I n and	Publicati	on, 3	3rd Ed	lition 20	
C ours Famil	e Ob iarize e Lea Aft	jective the starning	es : tudents 5 Outco	with to omes:	echniq	ues in	<i>(Volum</i> multiva	<i>e-I)"</i> ,] riate in	Prentice	Hall I n and	Publicati	on, 3 s 1's C	3rd Ed	lition 20	
Cours Famil Cours	e Ob iarize e Lea Aft abl	jective the starning ter the le to	es : tudents g Outco e comp	with to omes: letion	echniq of the	ues in t	(Volum multiva e the stu	e-I)",] riate in ident s	Prentice tegratior	Hall I n and re	Publicati statistics Bloom level	on, 3 5 1's C	3rd Ed	ve ve	
Cours Famil Cours CO	e Ob iarize e Lea Aft abl Ap stat Sol	jective the starning ter the le to ply of tistical	es : tudents g Outco e comp comput l proble	with to omes: letion ational ems.	echniq of the	ues in r course s to	(Volum multiva e the stu solve	<i>e-I)</i> ",] riate in ident s mathe	Prentice tegration should b	Hall I n and e and	Publicati statistics Bloom level	on, 3 s n's C D A	3rd Ed ogniti	ve ve otor	
Cours Famil Cours CO CO1 CO2	e Ob iarize e Lea Aft abl Sol cale	jective e the st arning ter the le to ply of tistical lve pr culus.	es : tudents g Outco e comp comput l proble	with to omes: letion ational ems. s in p	echniq of the tool	ues in r course s to lity, s	(Volum multiva e the stu solve tatistics	<i>e-I)</i> ",] riate in ident s mathe	Prentice tegration should b	Hall I n and e and	Publicati statistics Bloom level III	on, 3 s n's C D A	3rd Ed logniti Descrip	ve ve otor	
Cours Famil Cours CO CO1 CO2	e Ob iarize e Lea Aft abl Sol cale	jective e the st arning ter the le to ply of tistical lve pr culus.	es : tudents 5 Outco e comp comput l proble roblems g :(a) F	with to omes: letion ational ems. s in p Clectro	echniq of the tool probabi	ues in r course s to lity, s nginee	(Volum multiva e the str solve tatistics ering	e-I)", 1 riate in udent s mathe and	Prentice tegration should b ematical multivar	Hall I n and e and iable	Publicati statistics Bloom level III III	on, 3 s n's C D A	Brd Ed Cogniti Descrip Applyin	ve btor ng	
Cours Famil Cours CO CO1 CO2	e Ob iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the st arning ter the le to ply of tistical lve pr culus.	es : tudents g Outco e comp comput l proble roblems	with to omes: letion ational ems. s in p	echniq of the tool	ues in r course s to lity, s	(Volum multiva e the stu solve tatistics	<i>e-I)</i> ",] riate in ident s mathe	Prentice tegration should b	Hall I n and e and	Publicati statistics Bloom level III	on, 3 s n's C D A	Brd Ed Cogniti Descrip Applyin	ve ve otor	
Cours Famil Cours CO CO1 CO2	e Ob iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the st arning ter the le to ply of tistica lve pr culus. apping CO1	es : tudents g Outco e comp comput l proble roblems g :(a) F a 1	with to omes: letion ational ems. s in p Clectro	echniq of the tool robabi nics E c 1	ues in r course s to lity, s nginee	(Volum multiva e the str solve tatistics ering	e-I)", 1 riate in udent s mathe and	Prentice tegration should b ematical multivar	Hall I n and e and iable	Publicati statistics Bloom level III III	on, 3 s n's C D A	Brd Ed Cogniti Descrip Applyin	ve btor ng	
Cours Famil Cours CO CO1 CO2 CO-P CO-P CO-P CO-P CO-P CO-P CO-P CO-P	e Ob. iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the starning ter the le to ply of tistica lve produced culus. apping CO1 CO2 ts : ssessm onents	es : tudents g Outco e comp comput l proble coblems g :(a) F a 1 1 nent: of In S ation (l	with to omes: letion ational ems. s in p Clectro b clectro ESE) h	echniq of the tool probabi nics E c 1 1 2 1	ues in transformed to the second seco	(Volum multiva e the stu solve tatistics ering (ISE), (e-I)", 1 riate in ident s mathe and f	Prentice tegration should b ematical multivar	Hall I n and ne and iable	Publicati statistics Bloom level III III III xaminati stively.	on, 3 <u>s.</u> 1's C A A j ion (Brd Ed	lition 20 ve otor ng ng k	06.
Cours Famil Cours CO CO1 CO2 CO-P CO-P CO-P CO-P CO-P CO-P CO-P CO-P	e Ob. iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the starning ter the le to ply of tistica lve produced culus. apping CO1 CO2 ts : ssessm onents	es : tudents g Outco e comp comput l proble roblems g :(a) F a 1 1 1 nent: of In S ation (I Ass	with to omes: letion ational ems. s in p Clectro b emeste ESE) h essmer	echniq of the tool probabi nics E c 1 1 2 1	ues in transformed to the second seco	(Volum multiva e the stu solve tatistics ering (ISE), (e-I)", 1 riate in ident s mathe and f	Prentice tegration should b ematical multivar	Hall I n and ne and iable	Publicati statistics Bloom level III III III kaminati	on, 3 s i's C A A j ion (rks	Brd Ed	lition 20 ve otor ng ng k	06.
Cours Famil Cours CO CO1 CO2 CO-PO Assess Feach Fwo co	e Ob. iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the starning ter the le to ply of tistica lve produced culus. apping CO1 CO2 ts : ssessm onents	es : tudents g Outco e comp comput l proble roblems g :(a) H a 1 1 nent: of In S ation (I Ass I	with to omes: letion ational ems. s in p Clectro b emeste ESE) h essmer SE 1	echniq of the tool probabi nics E c 1 1 2 1	ues in transformed to the second seco	(Volum multiva e the stu solve tatistics ering (ISE), (e-I)", 1 riate in ident s mathe and f	Prentice tegration should b ematical multivar	Hall I n and ne and iable	Publicati statistics Bloom level III III III kaminati stively. Ma	on, 3 s i's C A A A J J J J	Brd Ed	lition 20 ve otor ng ng k	06.
Cours Famil Cours CO CO1 CO2 CO-PO Assess Feach Two co	e Ob. iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the starning ter the le to ply of tistica lve produced culus. apping CO1 CO2 ts : ssessm onents	es : tudents g Outco e comp comput l proble roblems g :(a) F a 1 1 nent: of In S ation (I Ass I	with to omes: letion ational ems. s in p Clectro b clectro b emeste ESE) h essmer SE 1 MSE	echniq of the tool probabi nics E c 1 1 2 1	ues in transformed to the second seco	(Volum multiva e the stu solve tatistics ering (ISE), (e-I)", 1 riate in ident s mathe and f	Prentice tegration should b ematical multivar	Hall I n and ne and iable	Publicati statistics Bloom level III III III ii xaminati ctively. Ma 1 3	on, : s i's C A A A J ion (rks 0 0	Brd Ed	lition 20 ve otor ng ng k	06.
Cours Famil Cours CO CO1 CO2 CO-Pe	e Ob. iarize e Lea Aft abl Ap stat Sol cal O Ma	jective e the starning ter the le to ply of tistica lve produced culus. apping CO1 CO2 ts : ssessm onents	es : tudents g Outco e comp comput l proble roblems g :(a) F a 1 1 nent: of In S ation (l Ass I I I I I	with to omes: letion ational ems. s in p Clectro b emeste ESE) h essmer SE 1	echniq of the tool probabi nics E c 1 1 2 1	ues in transformed to the second seco	(Volum multiva e the stu solve tatistics ering (ISE), (e-I)", 1 riate in ident s mathe and f	Prentice tegration should b ematical multivar	Hall I n and ne and iable	Publicati statistics Bloom level III III III kaminati stively. Ma	on, 3 s i's C A A A j ion (rks 0 0 0	Brd Ed	lition 20 ve otor ng ng k	06.

MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Beta-Gamma Functions:	5Hrs.
Definition of Beta, Gamma functions and properties of Beta Gamma functions.	
Module 2: Multivariable Calculus:	10Hrs.
Multiple Integrals: Double integrals, change of order of integration, change of variables	
(Cartesian to polar) Evaluation of triple integrals, Application of Multiple integrals such	
as Area enclosed by plane curves, Mass of lamina, Volume of solid.	
Module 3: Numerical Solution of Ordinary Differential Equations of first order	6Hrs.
and first degree:	
Numerical Solution by (i) Picard's Method (ii) Taylor's series method (iii) Euler's	
method (iv) Modified Euler's method (v) Runge- Kutta fourth order method.	
Module 4: Probability theory:	6 Hrs.
Introduction, Sample Space, Events, Axioms of probability, Conditional probability	
Baye's Theorem.	
Module 5: Statistics:	6 Hrs.
Correlation, Linear Regression, Curve-fitting: (a) straight Line (b) parabolic curve (c)	
exponential curve (d) logarithmic curve.	
Module 6: Probability Distribution:	7Hrs.
Module 0. Trobability Distribution.	

Module wise measurable students learning outcome:

After the completion of the course the student should be able to

Module 1: Beta-Gamma Functions:

Solve complicated integrals with the help of Beta-Gamma functions.

Module 2: Multivariable Calculus:

Explain and solve the integral of physical phenomena when it depends on several variables

Module 3: Numerical Solution of Ordinary Differential Equations of first order and first degree: Solve different numerical methods of ordinary differential equation of first order and first degree.

Module 4: Probability theory: Solve various problems in probability theory.

Module 5: Statistics:

Fit the curve using given data.

Module 6: Probability Distribution:

Solve various problems in probability distribution.

Tutorial:

During the tutorial we will ensure that the students have properly learnt the topics covered in the lectures. This shall include assignment, quiz, surprise test or declare test. The teacher may add another activity.

Title of the Course: Engineering Graphics 4ME102	L	Т	Р	Cr
	1	0	4	3

Pre-Requisite Courses:

Textbooks:

- 1. Bhatt N.D., Panchal V.M. and Ingle P.R., Engineering Drawing, Charotar Publishing House, 2014.
- 2. Shah, M.B. and Rana B.C., Engineering Drawing and Computer Graphics, Pearson Education, 2008.
- 3. Agrawal B. and Agrawal C. M., Engineering Graphics, TMH Publication, 2012.

References:

- 1. Narayana, K.L. and P Kannaiah, Text book on Engineering Drawing, Scitech Publishers, 2008.
- 2. Warren J. Luzzader, Fundamentals of Engineering Drawing, Prentice Hall of India, New Delhi, 2010
- 3. Fredderock E. Giesecke, Alva Mitchell others, Principles of Engineering Graphics, Maxwell McMillan Publishing, 2010.

Course Objectives :

- 1. Introduce students to the conventions, concepts and basic principles of Engineering Drawing.
- 2. Draw projections of geometrical objects and real life components.
- 3. Demonstrate graphics skill for communication of concepts, ideas and design of engineering products

Course CO	Learning				he co	urse f	he stu	dents	hould	l he al	ole to		Bloor	n's Cognitive		
0	² Hitti iii	c con	pien	in or (uise i	ne stu		noura	a.			level	Descriptor		
CO1	Explain	princ	iples o	of Eng	ineeri	ng and	d Com	puter	Graph	ics			2	Understanding		
CO2	projection of engineering objects												Applying			
CO3																
) Mappin	g:										I				
Electro	onics Engi	ineeri			1		1			1		1		7		
	10.1	a	b	c	d	e	f	g	h	i	j	k	1	-		
	201				1									-		
	202				1									-		
	CO3 ments :				1											
	nents : lester Eva	luatio	n (ISE	')												
Assess		iuatio	11 (151	9								N	Iarks			
1 100000	ased on dr	awing	, sheet	subm	ission	(Min	imum	six				10	25			
	ce and six					(1)111	11110111	511					20			
	ased on de					heet (Minim	num					25			
two)					U											
-																
ISE ba	ased on A	utocad	d pract	ical s	ubmis	sion (l	Minim	um					25			
Six su	bmission	sheets	s)	A		Dame	nonto f	m Flee	un nie -	Fnain						
ISE ba	ased on de	clared	d test o	of Au	tocad	practi	cal	or Elec	romes	Engine	ering		25	=		

Walchand College of Engineering,	Sangli
submission/ oral	
Assessment is based on 100% course content with 50 % weightage for manual drafting	and 50 %
weightage for CAD. Student should get minimum 40% marks for passing.	
Course Contents:	
Module 1: Introduction to Engineering Drawing	Hrs. T-2, P-4
Principles of Engineering Graphics and their significance, usage of Drawing instruments	
lettering, Conic sections including the Rectangular Hyperbola (General method only)	
Cycloid, Epicycloid, Hypocycloid and Involute; Scales - Plain, Diagonal and Vernier Scales;	
Problems from the above units should also be practiced on computer aided drafting software.	
Module 2: Orthographic Projections	Hrs. T-2, P-6
Principles of Orthographic Projections-Conventions - Projections of Points and lines inclined	
to both planes; Projections of planes inclined Planes - Auxiliary Planes;	
Problems from the above units should also be practiced on computer aided drafting software.	
Module 3: Projections of Regular Solids Sections and Sectional Views of Right Angular Solids	Hrs. T-2, P-12
Inclined to both the Planes- Auxiliary Views; Draw simple annotation, dimensioning and scale. Floor plans that include: windows, doors, and fixtures such as WC, bath, sink, shower etc.	1
Prism, Cylinder, Pyramid, Cone – Auxiliary Views; Development of surfaces of Right	
Regular Solids - Prism, Pyramid, Cylinder and Cone; Draw the sectional orthographic views	
of geometrical solids, objects from industry and dwellings (foundation to slab only)	
Problems from the above units should also be practiced on computer aided drafting software.	
Module 4: Isometric Projections	Hrs.
	T-2, P-6
Principles of Isometric projection – Isometric Scale, Isometric Views, Conventions; Isometric	
Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to	
Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions;	
Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software.	
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching 	
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning 	Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions 	Hrs. T-2, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of 	Hrs. T-2, P-12 Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line 	Hrs. T-2, P-12 Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper 	Hrs. T-2, P-12 Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of 	Hrs. T-2, P-12 Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; 	Hrs. T-2, P-12 Hrs.
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and 	Hrs. T-2, P-12 Hrs. T-3, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-parametric solid, surface, and wireframe models. Part editing 	Hrs. T-2, P-12 Hrs. T-3, P-12
 Views of lines, Planes, Simple and compound Solids; Conversion of Isometric Views to Orthographic Views and Vice-versa, Conventions; Problems from the above units should also be practiced on computer aided drafting software. Module 5: Introduction to Computer Aided Sketching Introduction, Drawing Instruments and their uses, BIS conventions, Lettering, Dimensioning and free hand practicing. Computer screen, layout of the software, standard tool bar/menus and description of most commonly used tool bars, navigational tools. Co-ordinate system and reference planes. of HP, VP, RPP & LPP. of 2D/3D environment. Selection of drawing size and scale. Commands and creation of Lines, Co-ordinate points, axes, poly-lines, square, rectangle, polygons, splines, circles, ellipse, text, move, copy, off-set, mirror, rotate, trim, extend, break, chamfer, fillet, curves, constraints viz. tangency, parallelism, inclination and perpendicularity. Dimensioning, line conventions, material conventions and lettering. Module 6: Annotations, layering & other functions Applying dimensions to objects, applying annotations to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use customized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing documents to paper using the print command; orthographic projection techniques; Drawing sectional views of composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and 	Hrs. T-2, P-12 Hrs. T-3, P-12

exercises. Dimensioning guidelines, tolerancing techniques; dimensioning and scale multi views of dwelling;	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
□ Explain engineering drawing and its place in society	
Demonstrate visual aspects of engineering design	
□ Explain, and apply engineering graphics projection of standard solid primitives	
□ Demonstrate visualization of 3-D solid modeling	
□ Demonstrate computer-aided geometric drafting	
□ Explain and apply working drawings	

Title of the Course: Introduction to Engineering Mechanics 4AM102				
	L	Т	Р	Cr
	2	0	0	2
Pre-Requisite Courses: Physics				

Textbooks:

- 1. Ramamrutham., S. "Textbook of Applied Mechanics", Dhanpat Rai Publishing Company Limited, 2008.
- 2. Bhavikatti., S. S. and Rajashekarappa., K. G. "Engineering Mechanics", New Age International Publishers, 2015, 5th Edition.

3. Khurmi. R. S., "Textbook of Applied Mechanics", Tata McGraw Hill Publishing Company, 2013, 20th Revised Edition.

References:

- 1. Beer, F. P. and Johnston, E. R. "Vector Mechanics for Engineers Vol. I and II", McGraw Hill Company Publication, 2011, 9th Edition.
- 2. Singer, F. L. "Engineering Mechanics Statics & Dynamics", B. S. Publications, 2011.
- 3. Timoshenko, S. and Young, D. H. "Engineering Mechanics", McGraw Hill Companies, 2008, 4th Edition.
- 4. Meriam, L. and L.G. Kraige, "Engineering Mechanics Dynamics", John Wiley & Sons, 2002, 6th Edition.

Course Objectives :

- 1. To impart knowledge of mechanics concepts applicable to civil and mechanical engineering.
- 2. To illustrate behavior of static bodies using mechanics concepts.
- 3. To provide knowledge of motions, forces and work energy principles and its engineering applications.

CO	After the comp	letion o	of the	cou	rse th	ne stu	dent	shou	ld be	able	to	Bl	oom'	gnitive	
										L	Level		scriptor		
CO1	Apply laws and	basic p	rinci	ples c	of me	chani	cs of	rigid	bodie	es.			II	Un	derstanding
CO2	Analyze system	of forc	es in	Stati	cs an	d Dyr	namic	cs.					IV	An	alyzing
CO3	Apply concept of	of mech	anics	s to so	olve e	engine	ering	g prot	olems	•			III	Ap	plying
		CO1	1	1				-	8		-	J		-	-
		РО	a	b	c	d	e	f	g	h	i	j	k	1	
		CO2	1	1											
		CO3	1	1											-
			•												

Assessments :							
Feacher Assessment:							
Two components of In Semester Evaluation (ISE), On		End					
Semester Examination (ESE) having 20%, 30% and 50							
	Marks						
	10						
	30						
	10 50						
ISE 1 and ISE 2 are based on assignment/declared tes MSE: Assessment is based on 50% of course content	-						
ESE: Assessment is based on 50% of course content w	•	rmally					
last three modules) covered after MSE.	vin 70-00% weightage for course content (it	Jinany					
Course Contents:							
Module 1: Introduction to mechanics		Hrs.					
Units, Particle, Elastic & Rigid Bodies, Scalar &	Vector Ouantities. Force, Resolution and						
composition of forces, Laws of Mechanics, Moment,		5					
Module 2: Equilibrium	•	Hrs.					
Concept of equilibrium, Conditions of equilibrium	m, free body diagram, Lami's theorem,						
Reactions of determinate beams		4					
Module 3: Moment of inertia							
Centre of gravity, Centroid, Moment of inertia, Radius of gyration, Parallel axes theorem,							
Perpendicular axes theorem, Moment of inertia of unsymmetrical sections							
Module 4: Kinematics of particles		Hrs.					
Rectilinear motion of a particle, equations of mo	tion motion under Gravity motion of a	1115.					
projectile, curvilinear motion of a particle, angular n	-	5					
and angular motion.	notion of a particle, relation between inical	3					
		Hrs.					
Module 5: Kinetics of particles Newton's law of motion, D'Alemberts principle, rec	tilinger motion motion on a rough inclined	HL2					
	-	_					
plane, motion of a lift, motion of connected bodies, c	curvilinear motion, circular motion, kinetics	5					
of rotation, torque, mass moment of inertia.							
Module 6: Kinetics		Hrs.					
Work energy, potential energy, kinetic energy, la							
impulse, momentum, collisions, impact, collision o	f bodies, coefficient of restitution, loss of	4					
kinetic energy due to impact.							
Module wise Measurable Students Learning Outco	mes :						
After the completion of the course the student shou							
1. Apply fundamental knowledge of engineering	mechanics for rigid bodies under system of fo	orces.					
2. Apply conditions of equilibrium to determine t	he support reactions of determinate beams.						
3. Analyse planer bodies to find sectional propert	ies such as centre of gravity and moment of i	nertia.					
4. Apply knowledge of kinematics of rigid body r	motion to solve engineering problems in dyna	amics					
5. Apply knowledge of kinetics of rigid body mot	tion to solve engineering problems in dynami	cs and					
recognition of the importance of safety in phas							
6. Analyze the impact of work power and energy							
•. That jee the impact of work power and chorej	on engineering problems.						

Title o	of the Course: Basic Civil Engineering 4CV101	L 2	T 0	P 0	Cr 2						
Pre-R	equisite Courses: NIL	Z	0	0	Z						
	•										
Textbo 1.	Gole L.G., "Introduction to Civil Engineering", Mahu Publisher Ho	ouse, 4tl	n Editio	on, 2005							
2.	Bhavikatti S.S., "Basic Civil Engineering", New Age Publications, 2010										
3.	Hirasakar G. K., "Basic Civil Engineering", Dhanpat Rai publications, 1st Edition, 2007										
Refere	ences:										
1.	Duggal S.K., "Surveying (Vol I)", Tata McGraw Hill, 4th edition 2	013									
2.	2. Bindra S.P., Arora S.P., "Building Construction", Dhanpat Rai publication, 5th edition, 2012										
3.	Garg S. K., "Irrigation Engineering", Dhanpat Rai publication, 24th	edition	n, 2012								
1.	e Objectives : To enable the students of non-Civil Engineering branch to acquire know for application oriented concepts and ideas.To share the knowledge related to environment, infrastructure and properties.	C		C	ering						
Cours	e Learning Outcomes:										
<u> </u>		Bloom	's Cog	nitive							
CO	After the completion of the course the student should be able to	Level	De	scripto	•						
CO1	Explain concepts in Civil Engineering related to infrastructure, construction, environment and surveying.	II	τ	Jndersta	nding						
CO2	Summarize applications of Civil Engineering in various fields.	Π	ι	Jndersta	nding						
CO3	Perceive the need of infrastructure development and property transaction	II	ι	Jndersta	nding						

CO-PO Mapping with regards to B.Tech Electronics Engineering Programme:												
РО	a	b	c	d	e	f	g	h	i	j	k	
CO1							1	2				
CO2							1	1	1		1	
CO3						2	2		1		1	

Assessment:

Γ

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Course Contents.	
Module 1 Introduction to Civil Engineering	Hrs.
Basics of engineering and civil engineering; broad disciplines of Civil engineering; Importance of Civil engineering, opportunities in civil engineering, infrastructure growth and real estate management in India Early constructions and developments over time; ancient monuments & modern marvels; works of eminent civil engineers Surveying-definition, classification and basic principles, types of scales, chain survey, linear and angular measurements, terms used in levelling, methods of reduction of levels, use of dumpy level and auto level, Introduction and use of digital planimeter,	6
Module 2 Fundamentals of Building Materials and Principles	
 Properties and uses of basic materials: cement, bricks, stone, timber, natural and artificial sand, steel, concrete, PCC, RCC, brick masonry. Buildings-selection of site, types and basic functions. Basics of soil mechanics, various types of foundations. Principles of building planning, introduction to building bye laws and role of bye laws in regulating the environment. Concept of built up area, carpet Area and F.S.I., concept of green building. Introduction to smart cities 	6
Module 3 Basics of Construction Management & Structural Engineering	
Temporary structures in construction; Construction methods for various types of Structures; Major construction equipment; automation & robotics in construction; Modern project management systems; importance of contracts management Structural Engineering; Types of buildings; tall structures; various types of bridges; other structural	5

Structural Engineering: Types of buildings; tall structures; various types of bridges; other structural systems; Substructure and superstructure, components & their functions; concept of strength, stability, factor of safety

Academic Documents for Electronics Engineering

Modul		
Tourn	e 4 Infrastructure	
Develog harbour Roads: concept causes	nents in transport infrastructure development in India for different modes of transport; pments and challenges in integrated transport development in India: road, rail, port and c and airport sector; PPP in transport sector; Intelligent Transport Systems. classification, cross section and components of road, Types of pavements, road maintenance, t of road safety audit, traffic signs, signals, road side and multistoried parking system, and of accidents purpose, selection of site, types of dams.	6
Modul	e 5 Environmental Engineering & Sustainability	
	and Wastewater treatment systems; municipal and hazardous solid waste management; ability in construction;	3
Modul	e 6 Property Transaction	
	ocuments, property purchase and sale procedure. property selection criteria and marketability erty transaction, property taxes; introduction to building finance	2
After t 1.	e wise Measurable Students Learning Outcomes : he completion of the course the student should be able to: Paraphrase and apply fundamental knowledge of civil Engineering and use of modern eying Instrument.	
	Explain basic principles of planning and bye Laws. Evaluate various properties of building erials.	
3.	Explain cconstruction Management and Structural Engineering	
4.	Perceive and Summarize the need of infrastructure development India.	
5	Explain the importance of water treatment plant and solid waste management.	
5.	Explain the importance of water treatment plant and solid waste management.	

Title of the Course: Biology For Engineers 4BS101	L	Т	Р	Cr
The of the Course. Diology For Engineers 405101	2	0	0	2
Pre Requisite: Nil				

•

Textbooks:

- 1. P. S. Verma and V. K. Agarwal, Concept of Cell Biology, S. Chand and Company Ltd, 2002.
- 2. R. D. Vidyarthi and P. N. Pandey, A Text book of Zoology, S. Chand and Company Ltd, 2004.
- 3. T. S. Ranganathan, Text book of Human Anatomy, S. Chand and Company Ltd, 2002.

References:

- 1. Peter H. Raven, George B. Johnson, Biology, McGraw hill, 11th edition, 2017.
- 2. Engelbert Buxbaum, Fundamentals of Protein Structure and Function, Springer, 2007.
- 3. Surinder Kumar, Essentials of Microbiology, Jaypee Brothers Medical Publishers (P) Ltd, 2016.
- 4. Laurence A. Cole, Biology of Life Biochemistry, Physiology and Philosophy, Elsevier, 2016.
- 5. V. Sreekrishna, Comprehensive Biotechnology I Cell Biology and Genetics, New Age, 2005.

Course Objectives:

- 1. Provide a foundation in basic biological principles.
- 2. Develop an understanding of the modern biological concepts and their applications to engineering and life.
- 3. Describe the stages of biological evolution on Earth and the interrelation ships among the living organims.

Course Learning Outcomes:

СО	After the completion of the course the student should be able to	Bloon	n's Cognitive
		level	Descriptor
CO	Identify the characteristics and basic needs of living organisms and	П	Understandi
1	explain the mechanisms of evolution in living organisms.	11	ng
CO	Outline the structure of the biomolecules and describe the structure and	п	Understandi
2	function of cells including the metabolic reactions that occur in cells.	II	ng
CO	Describe the chromosome theory, molecular genetics as well as identify	п	Understandi
3	microorganisms and their role in various environments.	Π	ng

CO-PO Mapping:

Electronics Engineering

	a	b	c	d	e	f	g	h	i	j	k	1
C01						1						
CO2												
CO3												

Assessments:

Teacher Assessment:

Two components of In-Semester Evaluation (ISE), One Mid-Semester Examination (MSE) and one End-Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and **ISE 2** are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules) **ESE**: Assessment is based on 100% course content with60-70% weightage for course content

(normally last three modules) covered after MSE.

Course Contents:

Module 1 : Introduction and Classification	Hrs
Introduction : History and Significance of Biology. Evolution: Origin of life; Biological evolution. Five kingdom classification; Need for classification, Salient features and classification of Monera, Protista, Fungi, Plantae and Animalia, Lichens, Viruses and Viroids.	03
Module 2 : Molecular Biology	Hrs
Cell theory and cell as the basic unit of life : Structure of Prokaryotic (Typical Bacterial Cell) and Eukaryotic cell (Plant cell and animal cell) Cell organelles : Structure and function of endoplasmic reticulum, Golgi bodies, lysosomes, vacuoles; mitochondria, ribosomes, plastids, micro bodies; Cytoskeleton, cilia, flagella, centrioles (ultra structure and function). Nucleus: nuclear membrane, chromatin, nucleolus.	05
Cell division: Cell cycle, mitosis, meiosis and their significance.	

Introduction : Chromosomes, DNA, RNA, Genes, Genetics, Transcription and Translation in prokaryotic and eukaryotic cell Inheritance : Mechanisms of inheritance, Unifactorial Inheritance, Multifactorial inheritance, Sex-linked Inheritance.	04
Module 4: Macromolecular Analysis and Protein Structure	Hrs
Biomolecules : Structure and function of proteins (primary secondary, tertiary and quaternary structure), carbohydrates, lipid, nucleic acids; Enzymes : Types, properties, enzyme action: - Lock and Key hypothesis, Induced fit hypothesis.	04
Module 5 :Bioenergetics and Metabolism	Hrs
 Bioenergetics: Thermodynamics –First law of thermodynamics, second law of thermodynamics, Gibbs free energy, endergonic & exergonic reactions, ATP: Structure, properties and energy currency of the cell. Introduction to Metabolism - Catabolism, anabolism, catabolic, anabolic and amphibolic pathways Carbohydrate Metabolism: Introduction, Aerobic and anaerobic pathways: Glycolysis and its regulation, Gluconeogenesis and its regulation. TCA cycle, amphibolic & anaplerotic reactions, production of ATP, Photosynthesis – 'light' and 'dark' reactions: C4-pathway. Lipid Metabolism: Beta – oxidations of saturated & unsaturated fatty acids. Ketone bodies, Biosynthesis of fatty acids – Acetyl-CoA carboxylase reaction, Fatty acid synthase complex, Regulation of fatty acid biosynthesis. Biosynthesis of cholesterol. Amino Acid Metabolism: Biodegradation of amino acids – deamination, transamination, decarboxylation, urea cycle including its regulation. Biosynthesis of amino acids, Disorders of amino acid metabolism. 	07
Module 6 : Microbiology	Hrs
Introduction, Concept of single celled organisms, Concept of species and strains, Identification and Classification of microorganisms, Microscopy, Ecological aspects of single celled organisms, Sterilization and media compositions.	. 05
Module Wise Measurable Students Learning Outcomes: Module 1 : Introduction and Classification Identify and describe levels of organization and related functions in plants and animals, their characteriation ships among the classification and the stages of biological evolution on Earth Interrelation ships among the living organims and development process in individuals and population Module 2 : Molecular Biology Describe the structure and function of eukaryotic and prokaryotic cells and explain the struct function of endoplasmic reticulum, Golgi bodies, lysosomes, vacuoles; mitochondria, ribosomes, micro bodies; Cytoskeleton, cilia, flagella, centrioles (ultrastructure and function). Nucleus: membrane, chromatin, nucleolus. including the metabolic reactions that occur in cells. And discultant is the interval of the structure in the	and thons. Ture and plastide nuclea

Academic Documents for Electronics Engineering

Module 3 : Genetics

Outline and explain the chromosome theory, molecular genetics and quantitative and evolutionary genetics. Discuss the function, replication and evolution of genomes. Describe Transcription and Translation in prokaryotic and eukaryotic cell Explain the process of inheritance.

Module 4: Macromolecular Analysis and Protein Structure

Identify the structure of the biomolecules found in all living organisms. Describe how RNA, DNA and proteins are synthesized and describe the types and properties of enzymes and enzyme action.

Module 5 : Bioenergetics and Metabolism

Explain the fundamental energetics of biochemical processes and the chemical logic of metabolic pathways. Recognize the basic mechanisms of pathway regulation. Discuss the processes of metabolic transformation at the molecular level.

Module 6 : Microbiology

Describe cellular, biochemical, and physiological aspects of microorganisms Explain cellular and biochemical processes involved in pathogenesis (human-pathogen interactions). Identify microorganisms and their role in various environments. Describe the cultural use of microorganisms in food production, medicine, fuel production, and waste treatment.

	f the Course	e: Mate	rial S	cienc	e	4B S	S102									
												1	L	Т	Р	C
													2	0	0	2
re-Re	equisite Cou	rses: 12	2 th Sto	d Basi	ic sci	ence	course	es								
extbo																
3.	William D. 7 th Edition,		er, "Fu	ındam	iental	ls of N	<i>lateri</i> d	als Sc	ience	and E	ngine	erin;	g", V	Viley I	ndia Pv	t. Lto
4.	V.Raghavar	n, " <i>Mate</i>	erials	Scien	ce an	d Eng	gineeri	ing", I	PHI Pi	ıblica	tion,	6 th E	Editic	on, 201	5.	
5.	U.C.Jindal,	"Mater	ial Sci	ience	and N	Metall	lurgy"	, Pear	son In	dia, 1	st Edi	tion,	2012	2.		
efere	ences:															
1.	Van Vlack,	lawrenc	ce H.,'	"Elem	nents o	of Ma	terial	Scien	ce and	l Engi	neeri	ing",	Pear	son In	dia, 6 th	
	Edition, 200)2.														
2.	Dr. Donald						lateric	als Sci	ience	& Eng	ineer	ring"	, Cer	ngage I	earning	3
	Publisher, S	I Editio	on, 3 ¹⁴	Editi	ion 20)13.										
ourse	e Objectives	:														
	e Objectives To explain t		hanic	al, Ma			l Ther	mal pi	roperti	ies of	Mate	rials.				
1.	To explain t	the Mec			agneti	ic and			•							
1.	•	the Mec			agneti	ic and			•					anced	materia	ls.
1. 2.	To explain t To introduc	the Mec e applic	ations	s of M	agneti Ietals	ic and , Poly	mers,	Cerar	nics, (Comp	osites	and	Adv			
1. 2.	To explain t	the Mec e applic	ations	s of M	agneti Ietals	ic and , Poly	mers,	Cerar	nics, (Comp	osites	and	Adv			
1. 2. 3. ourse	To explain to To introduc To impart the Learning	the Mec e applic ne aware Dutcom	eness	s of M about	agneti letals, role	ic and , Poly of Ma	mers,	Cerar s in H	nics, (uman	Comp Evalu	osites ation	and and	Adv Indu	strial H	Evaluati	
1. 2. 3. ourse	To explain to To introduc To impart the Learning (After the o	the Mec e applic ne aware Dutcom	eness	s of M about	agneti letals, role	ic and , Poly of Ma	mers,	Cerar s in H	nics, (uman	Comp Evalu	osites ation	and and	Adv Indu		Evaluati	
1. 2. 3. ourse	To explain to To introduc To impart the Learning	the Mec e applic ne aware Dutcom	eness	s of M about	agneti letals, role	ic and , Poly of Ma	mers,	Cerar s in H	nics, (uman	Comp Evalu	osites ation	and and	Adv Indu s Cog	strial H	Evaluati	
1. 2. 3. ourse CO	To explain to To introduc To impart the Learning After the able to	the Mec e applic ne aware Outcom complet	eness nes: tion o	s of M about f the o	agneti Ietals, role cours	ic and , Poly of Ma se the	mers, aterials stude	Cerar s in H	nics, (uman	Comp Evalu De	ation Blo	and and bom'; el	Adv Indu s Cog Dese	strial H gnitive criptor	Evaluati	
1. 2. 3. 0urse CO	To explain to To introduc To impart the Learning (After the o	the Mec e applic ne award Dutcom complet e variou	eness eness tion of us mec	s of M about f the o	agneti Ietals, role cours	ic and , Poly of Ma se the	mers, aterials stude	Cerar s in H	nics, (uman	Comp Evalu De	ation Blo	and and bom'; el	Adv Indu s Cog Dese	strial I	Evaluati	
1. 2. 3. 000750 CO1	To explain to To introduc To impart the Learning (After the able to Summarize engineerin Compare a	the Mec e applic ne award Outcom complet e variou g praction pplicati	eness eness tion of s mecces.	s of M about f the o	agneti Ietals, role cours	ic and , Poly of Ma se the	mers, aterials stude	Cerar s in H ent sho	nics, (uman ould k	Comp Evalu De	ation Blo	and and oom'i el I	Adv Indu s Cog Dese Unc	strial H gnitive criptor	Evaluati	
1. 2. 3. 000750 CO1 CO2	To explain to To introduce To impart the Learning (After the able to Summarized engineerin Compare a their prope	the Mec e applic ne award Outcom complet e variou g practi- pplicati erties.	eness nes: tion of s mec ces. ons of	s of M about f the o chanic f adva	agneti letals. role cours cal pro	ic and , Poly of Ma se the operti in ma	stude es of	Cerar s in H ent sh mater s by c	nics, (uman ould k ials us	Comp Evalu De	ation Blo lev I	and and oom' el I	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	
1. 2. 3. 000750 CO1 CO2	To explain to To introduce To impart the Learning (After the o able to Summarized engineerin Compare a their prope Discuss so	the Mec e applic ne award Outcom complet e variou g praction g praction g praction pplicati erties. cial issu	eness eness tion of tis mec ces. ons of	s of M about f the chanic f adva	agneti Ietals, role cours cal pro inced	ic and , Poly of Ma se the operti in ma	stude es of	Cerar s in H ent sh mater s by c	nics, (uman ould k ials us	Comp Evalu De	ation Blo lev	and and oom' el I	Adv Indu s Cog Desc Unc	gnitive criptor dersta	Evaluati	
1. 2. 3. 000756 CO CO CO CO CO CO CO CO CO CO CO CO CO	To explain to To introduc To impart the Learning (After the able to Summarize engineerin Compare a their prope Discuss so practices re	the Mec e applic ne award Outcom Complet e variou g praction g praction pplication cial issue elated to	eness eness tion of tis mec ces. ons of	s of M about f the chanic f adva	agneti Ietals, role cours cal pro inced	ic and , Poly of Ma se the operti in ma	stude es of	Cerar s in H ent sh mater s by c	nics, (uman ould k ials us	Comp Evalu De	ation Blo lev I	and and oom' el I	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	
1. 2. 3. 000756 CO CO CO CO CO CO CO CO CO CO CO CO CO	To explain to To introduce To impart the Learning O After the o able to Summarized engineerin Compare a their prope Discuss so	the Mec e applic ne award Outcom complet e variou g practi- pricati erties. cial issu elated to	eness eness tion of tis mec ces. ons of	s of M about f the chanic f adva	agneti Ietals, role cours cal pro inced	ic and , Poly of Ma se the operti in ma	stude es of	Cerar s in H ent sh mater s by c	nics, (uman ould k ials us	Comp Evalu De	ation Blo lev I	and and oom' el I	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	
1. 2. 3. 000756 CO CO CO CO CO CO CO CO CO CO CO CO CO	To explain to To introduce To impart the Learning (After the o able to Summarized engineerin Compare a their prope Discuss so practices ro Mapping	the Mec e applic ne award Outcom complet e variou g practi- pricati erties. cial issu elated to	eness eness tion of tis mec ces. ons of	s of M about f the chanic f adva	agneti Ietals, role cours cal pro inced ment	ic and , Poly of Ma se the operti in ma	stude es of	Cerar s in H ent sh mater s by c	nics, (uman ould k ials us	Comp Evalu De	ation Blo lev I	and and oom' el I	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	
1. 2. 3. 000756 CO CO CO CO CO CO CO CO CO CO CO CO CO	To explain to To introduce To impart the Learning (After the able to Summarized engineerin Compare a their prope Discuss so practices re D Mapping D Mapping	the Mec e applic ne award Outcom complet e variou g praction g praction g praction g praction complet e variou g praction g praction	eness eness tion of s mecces. ons of ies, en	s of M about f the o chanic f adva rviron erials.	agneti Ietals role cours cours al pro inced ment d 1	ic and , Poly of Ma se the operti in ma al issu	stude es of aterials ues an	Cerar s in H ent she mater s by c d recy	nics, (uman ould k ials us onside	Comp Evalu De Sed in ering	ation Blo lev I	and and oom's el	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	
1. 2. 3. CO CO1 CO2 CO3 CO3	To explain to To introduce To impart the Learning (After the o able to Summarized engineerin Compare a their prope Discuss so practices ro Mapping	the Mec e applic ne award Outcom complet e variou g praction g praction g praction g praction complet e variou g praction g praction	eness eness tion of s mecces. ons of ies, en	s of M about f the o chanic f adva rviron erials.	agneti Ietals, role cours cal pro inced ment	ic and , Poly of Ma se the operti in ma al issu	stude es of aterials ues an	Cerar s in H ent she mater s by c d recy	nics, (uman ould k ials us onside	Comp Evalu De Sed in ering	ation Blo lev I	and and oom's el	Adv Indu s Cog Desc Unc	gnitive criptor derstan	Evaluati	

cell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close- packed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Wodule 4: Thermal and Magnetic Properties of Materials Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials . Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Conomic considerations. Environmental and societal considerations. Recycling issues. . ife cycle analysis and its use in design. 3 Hrs.	ssessment:		
Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group iscussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) covered after MSE. Durse Contents: Indule 1: Introduction Idstorical perspective of Materials Science. Why study properties of materials? Tassification of materials. Miller indices. Crystallography and Structure of Metals , Unit [I]. Crystal systems. Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions. Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. Iodule 2: Mechanical Properties of Metals Iastic deformation. Interpretation of tensile stress-strain curves fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. Iodule 3: Applications of Polymers and Composites Iodule 4: Thermal and Magnetic Properties of Materials Ieat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Nimagnetism.	-		nd one End
ISE 1 10 MSE 30 ISE 2 10 ESE 50 SE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group iscussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISI ISE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with70-80% weightage for course content (normalist three modules) covered after MSE. Jurse Contents: Instorical perspective of Materials Science. Why study properties of materials? Tassification of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. Idoule 1: Mechanical Properties of Metals Lastic deformation. Interpretation of tensile stress-strain curves 'ielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. Thermal conductivity. Thermal stresses. Idoule 3: Applications of Polymers and Composites 4 Hrs. <t< td=""><td></td><td></td><td></td></t<>			
MSE 30 ISE 2 10 ESE 50 SE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group liscussion.]One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE dSE: Assessment is based on 50% of course content (Normally first three modules) CSE: Assessment is based on 100% course content with70-80% weightage for course content (norma ast three modules) covered after MSE. Dotate 1: Introduction 6 Hrs. Ristorical perspective of Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close- acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 1: Mechanical Properties of Metals 6 Hrs. Rastic deformation. Pactic deformation. Natic deformation. Interpretation of tensile stress-strain curves icleding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 4 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Namagnetism and paramagnetism.			
ISE 2 10 ESE 50 SE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group iscussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE Assessment is based on 50% of course content (Normally first three modules) SEE: Assessment is based on 50% of course content (Normally first three modules) 6 Hrs. Sistication of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Iastic deformation. Interpretation of tensile stress-strain curves fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and paramagnetism. Types, Applications. 4 Hrs. . Materials -Introduction, Classification, Types, Applications. 3 Hrs. . Materials -Introduction, Classification, Types, Applications. 3			
ESE 50 SE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group liscussion.[One assessment tool per ISE. The assessment tool used for ISI Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with70-80% weightage for course content (normal st three modules) covered after MSE. 6 Hrs. SE: Assessment is based on 100% course content with70-80% weightage for course content (normal st three modules) covered after MSE. 6 Hrs. Ourse Contents: 6 Hrs. Module 1: Introduction 6 Hrs. Historical perspective of Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Bastic deformation. 11 threpsetation of tensile stress-strain curves / ielding under multiaxial stress. Fracture, Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 9 Hrs. Ypes of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 9 Hrs. Natarals Future and Magnetic Properties of Materials 9 Hrs.			
SE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group liscussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with70-80% weightage for course content (norma ast three modules) covered after MSE. ourse Contents: 6 Hrs. Wodule 1: Introduction 6 Hrs. discussionation of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Blastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Vodule 3: Applications of Polymers and Composites 4 Hrs. Vister reinforced composites. Structural composites 4 Hrs. Wodule 4: Thermal and Magnetic Properties of Materials 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Natarials for sports- Introd			
 iscussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISF ASE: Assessment is based on 50% of course content (Normally first three modules) iSE: Assessment is based on 100% course content with70-80% weightage for course content (norma sat three modules) covered after MSE. burse Contents: Module 1: Introduction fistorical perspective of Materials Science. Why study properties of materials? Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. Module 2: Mechanical Properties of Metals Bastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. Module 3: Applications of Polymers and Composites Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. Thermal and Magnetic Properties of Materials Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and paramagnetism. Superconducting materials. Module 5: Advanced Materials Smart Materials-Introduction, Classification, Types, Applications. Meta materials-Introduction, Classification, Types, Applications. Meta materials- Introduction, Classification, Types, Applications. Meta materials- Introduction, Classification, Types, Applications. Meta materials- Introduction, Classification, Types, Applications. Meta materials- Introduct			
ASE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with70-80% weightage for course content (norma ast three modules) covered after MSE. Dourse Contents: 6 Hrs. Aodule 1: Introduction 6 Hrs. Istorical perspective of Materials Science. Why study properties of materials? 6 Hrs. Disstification of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. 6 Hrs. Aodule 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves itelding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and hacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism. Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and lysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. . Bio Materials- Introduction, Classification, Types, Applications. . Materials for sports- Introduction, Classi	e • • •		.
SE: Assessment is based on 100% course content with70-80% weightage for course content (norma ast three modules) covered after MSE. 6 Hrs. Dourse Contents: 6 Hrs. Module 1: Introduction 6 Hrs. listorical perspective of Materials Science. Why study properties of materials? 6 Hrs. lassification of materials. Miller indices. Crystallography and Structure of Metals , Unit ell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-acked planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, tole of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Nianagnetism and paramagnetism. Ferromagnetism. Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. Bio Materials - Introduction, Classification, Types,			ed for ISE 2
ast three modules) covered after MSE. 6 Hrs. ourse Contents: 6 Hrs. Module 1: Introduction 6 Hrs. Sitstorical perspective of Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit 6 Hrs. Sitstorical perspective of Materials Science, Why study properties of materials? 6 Hrs. Classification of materials. Miller indices for directions and planes, Close- backed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Interpretation of tensile stress-strain curves 6 Hrs. fielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Yopes of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 5 Materials-Introduction, Classification, Types, Applications. 4			
ourse Contents: 6 Hrs. Hodule 1: Introduction 6 Hrs. Historical perspective of Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit 6 Hrs. Science Application of materials. Miller indices for directions and planes, Close- packed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Diamagnetism and paramagnetism. Thermal conductivity. Thermal stresses. 9 Diamagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Usdule 5: Advanced Materials 1 I. Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. B. Materials Introduction, Classification, Types, Applications. 3 Hrs. B. Materials-Introduction, Classification, T		t with/0-80% weightage for course conte	nt (normali
Module 1: Introduction 6 Hrs. Historical perspective of Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit 6 Hrs. Science Materials Science. Why study properties of materials? 6 Hrs. Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit 6 Hrs. Science Materials Science. Why study properties of Metals of directions and planes. Close- packed planes and directions. Packing efficiency, Interstitial voids, Hume-Rothery rules. 6 Hrs. Science Materials deformation. Interpretation of tensile stress-strain curves 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Interpretation of tensile stress-strain curves 6 Hrs. Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Totamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs.	· · · · · · · · · · · · · · · · · · ·		
Historical perspective of Materials Science. Why study properties of materials? Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit tell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-backed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and macroscopic aspects of plastic deformation. 4 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Viber reinforced composites. Structural composites 4 Hrs. Viber reinforced composites. Structural composites 4 Hrs. Viber reinforced domesting materials. 4 Hrs. Vise of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Viber reinforced composites. Structural composites 4 Hrs. Viber reinforced Materials 4 Hrs. Isamar Materials-Introduction, Classification, Types, Applications. 4 Hrs. Smart Materials Introduction, Classification, Types, Applications. 4 Hrs. Module 5: Advance			(II-re
Classification of materials. Miller indices. Crystallography and Structure of Metals , Unit rell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close-backed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Heat capacity. Thermal and Magnetic Properties of Materials 4 Hrs. Leat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. I.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. B. Materials for sports- Introduction, Classification, Types, Applications. 4 Hrs. B. Meta materials- Introduction, Classification, Types, Applications. 4 Hrs. L. Meta materials for sports- Introduction, Classification, Types, Applications. 4 Hrs.		tudy properties of metarials?	o Hrs.
cell, Crystal systems, Bravais lattice, Miller indices for directions and planes, Close- packed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Wodule 4: Thermal and Magnetic Properties of Materials Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials . Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Conomic considerations. Environmental and societal considerations. Recycling issues. . ife cycle analysis and its use in design. 3 Hrs.			
 backed planes and directions, Packing efficiency, Interstitial voids, Hume-Rothery rules, Role of X-ray diffraction in determining crystal structures. 6 Hrs. Contemporation Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. 7 Hodule 3: Applications of Polymers and Composites 7 Hrs. 7 Hodule 4: Thermal and Magnetic Properties of Materials 8 Hrs. 9 Hodule 4: Thermal and Magnetic Properties of Materials 9 Hrs. 9 Hodule 5: Advanced Materials 9 Hrs. 9 Hodule 5: Advanced Materials 9 Hrs. 9 Materials-Introduction, Classification, Types, Applications. 9 Motarials-Introduction, Classification, Types, Applications. 9 Motarials-Introduction, Classification, Types, Applications. 9 Motarials-Introduction, Classific			
Role of X-ray diffraction in determining crystal structures. 6 Hrs. Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 6 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Biber reinforced composites. Structural composites 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. I.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. Bio Materials Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.		1 ·	
Module 2: Mechanical Properties of Metals 6 Hrs. Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves 6 Hrs. Static deformation. Plastic deformation. Interpretation of tensile stress-strain curves 6 Hrs. Wielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 4 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Wieldue 4: Thermal and Magnetic Properties of Materials 4 Hrs. Peat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. B. Materials Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Crigneering 3 Hrs. Genomic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.			
Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. Module 3: Applications of Polymers and Composites Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. Fiber reinforced composites. Structural composites Module 4: Thermal and Magnetic Properties of Materials Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism. Antiferromagnetism and errimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. Module 5: Advanced Materials Smart Materials-Introduction, Classification, Types, Applications. b. Materials for sports- Introduction, Classification, Types, Applications. b. Meta materials- Introduction, Classification, Types, Applications. b. Meta materials is for sports. Environmental and Social Issues in Material Science and Engineering Sconomic considerations. Environmental and societal considerations. Recycling issue			
Elastic deformation. Plastic deformation. Interpretation of tensile stress-strain curves Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. Module 3: Applications of Polymers and Composites Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. Fiber reinforced composites. Structural composites Module 4: Thermal and Magnetic Properties of Materials Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism. and paramagnetism. Ferromagnetism. Antiferromagnetism and Pysteresis, Superconducting materials. Module 5: Advanced Materials I. Smart Materials-Introduction, Classification, Types, Applications. B. Materials for sports- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Sconomic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.	Module 2: Mechanical Properties of Metals		6 Hrs.
Yielding under multiaxial stress. Fracture. Ductile and brittle fracture, Yield criteria and nacroscopic aspects of plastic deformation. 4 Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Fiber reinforced composites. Structural composites 4 Hrs. Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials-Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials - Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials - Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials for sports- Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials - Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta mater		retation of tensile stress-strain curves	
macroscopic aspects of plastic deformation. 4 Hrs. Module 3: Applications of Polymers and Composites 4 Hrs. Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Fiber reinforced composites. Structural composites 4 Hrs. Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials- Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 4 Hrs.			
Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Fiber reinforced composites. Structural composites 4 Module 4: Thermal and Magnetic Properties of Materials 4 Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. and Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and 4 Hysteresis, Superconducting materials. 4 Module 5: Advanced Materials 4 1.Smart Materials-Introduction, Classification, Types, Applications. 4 2. Bio Materials Introduction, Classification, Types, Applications. 4 3. Materials for sports- Introduction, Classification, Types, Applications. 4 4. Meta materials- Introduction, Classification, Types, Applications. 3 4. Meta materials- Introduction, Classification, Types, Applications. 4 4. Meta materials- Introduction, Classification, Types, Applications. 4 4. Meta materials- Introduction			
Types of polymers, Plastics, Special purpose plastics. Particle reinforced composites. 4 Hrs. Fiber reinforced composites. Structural composites 4 Hrs. Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. and Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials- Introduction, Classification, Types, Applications. 4 Hrs. 3. Materials for sports- Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.			
Fiber reinforced composites. Structural composites 4 Hrs. Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. and paramagnetism. Ferromagnetism. Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials - Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials- Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.	Module 3: Applications of Polymers and Comp	osites	4 Hrs.
Module 4: Thermal and Magnetic Properties of Materials 4 Hrs. Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. 4 Hrs. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials Introduction, Classification, Types, Applications. 4 Hrs. 3. Materials for sports- Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials- Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.			
Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. Module 5: Advanced Materials 1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.	Fiber reinforced composites. Structural composites	5	
Heat capacity. Thermal expansion. Thermal conductivity. Thermal stresses. Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and Ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. Module 5: Advanced Materials 1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.			
Diamagnetism and paramagnetism. Ferromagnetism.Antiferromagnetism and ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 3 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.			4 Hrs.
ferrimagnetism. Influence of temperature on magnetic behavior. Domains and Hysteresis, Superconducting materials. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.		•	
Hysteresis, Superconducting materials. 4 Hrs. Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials- Introduction, Classification, Types, Applications. 4 Hrs. 3. Materials for sports- Introduction, Classification, Types, Applications. 4 Hrs. 4. Meta materials- Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 4 Hrs.			
Module 5: Advanced Materials 4 Hrs. 1.Smart Materials-Introduction, Classification, Types, Applications. 4 Hrs. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4 Hrs. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering 3 Hrs. Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.		etic behavior. Domains and	
1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.	Hysteresis, Superconducting materials.		
1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. 3. Material Science and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. 3 Hrs.			
 1.Smart Materials-Introduction, Classification, Types, Applications. 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design. 	Module 5: Advanced Materials		4 Hrs.
 2. Bio Materials- Introduction, Classification, Types, Applications. 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design. 		bes, Applications.	
 3. Materials for sports- Introduction, Classification, Types, Applications. 4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design. 3 Hrs.			
4. Meta materials- Introduction, Classification, Types, Applications. Module 6: Economic, Environmental and Social Issues in Material Science and Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.			
Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.			
Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.	× •		
Engineering Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.	Module 6: Economic, Environmental and So	cial Issues in Material Science and	3 Hrs.
Economic considerations. Environmental and societal considerations. Recycling issues. Life cycle analysis and its use in design.			
Life cycle analysis and its use in design.	8 8	cietal considerations. Recycling issues.	
Iodule wise Measurable Students Learning Outcomes in Flectronics Engineering	Iodule wise Measurable Students Learning Out	COBREStionias Engineering	
fter the completion of the course the student should be able to 64	Academic Documents I	or Electronics Engineering	

- 1. Describe different classes of materials and its classification methods.
- 2. Follow the influence of different mechanical properties in materials selection process for design considerations.
- 3. Summarize applications of Composites, Ceramics and Polymers.
- 4. Summarize thermal and magnetic properties of materials.
- 5. Describe role of advanced materials in future technology development.
- 6. Follow newer environmental friendly technology for recycling of materials.

Title o	of the Course: Introduction To Geoscience 4BS103	L 2	T	P	Cr 2
Pre-R	equisite Courses:				
Textb 1. Sub 2013)	ooks: inoy Gangopadhyay, 'Engineering Geology', Oxford University P	ress; Pap/I	Psc editi	ion (Ma	urch 18
2. K. N	A. Bangar., "Principles of Engineering Geology", Standard Publisher edition 2016	s Distribu	tors 170	5-B Na	i Sarak
Darya	Chenna Kesavulu ,"Textbook of Engineering Geology", Macmillianganj, New Delhi. Edition 2013				ri Road
	bin Singh,"Engineering and General Geology", , S. K. Katariya and ences:	Sons, Del	h1.,2013		
Kelei	 A. Holmes, "Principles of Physical Gelogoy", ELBS Chapman Dec.2016. 	and Hall, I	London.	Edition	
	2. Dr. D. V. Reddy, "Engineering Geology", Vikas Publishing; Se	cond editi	on ,201'	7.	
	 M. S. Krishnan, Geology of India and Burma, CBS Publishers of December 2009 	& Distribu	ters ,6 th	Edition	l
	4. D. N. Wadia, "Geology of India', Forgotten Books Publisher, A	pril 2018			
	 Mead L. Jensen and Alan M. Bateman, "Economic Mineral Dep Revised 3rd Edition edition ,11 March 1981. 	posits", Jo	hn Wile	y & Soi	ns;
	6. P.C. Jain & M.S. Anantharaman, "Palaeontology", Vishal Publ	ishing co.,	2016		
	7. Umeshwar Prasad, "Economic Geology" CBS Publishers , 2nd	edition, 20)10.		
	8. A. I. Levorsen,"Geology of Petroleum", CBS Publisher, 2nd E	dition, 200)6		
	9. U. Ashwathnarayana,"Principles of Nuclear Geology", Routled	ge; 1 editi	on , 198	5	
	10. Read, H. H.," Rutley's Elements of Mineralogy" Springer Neth	erlands, 20	012		
	11. Tyrell, G. W., "Principles of Petrology" Aitbs Publishers And I	Distributor	s (2012))	
	12. M. Ramakrishnan and R. Vaidyanathan, "Geology of India Vol India, Bangalore, 2010.	I&II" Ge	ologica	l society	y of
Cours	e Objectives :				
1.	Introduce students the necessary knowledge and concepts in the fie the synchronism between Geology and other branches of science.	ld of geolo	ogy and	to recog	gnize
2.	Introduce the technique of recognizing and describing various geol	ogical feat	ures.		
3.	Enable students to illustrate and interpret geological phenomenon b field of engineering.	efore its c	onsidera	ation in	the
	Academic Documents for Electronics Engineerir	σ			

explain the geotectonic phenomenon.IICO2Summarize different geological phenomenon and also know IIUnderstandin minerals/rocks and the usages of different ores.	CO	Learning Outcomes: After the completion of the course the student should be able to												Bloom	ive	
C01 Recognize and describe the gross knowledge about the Earth and II Understandin explain the geotectonic phenomenon. C02 Summarize different geological phenomenon and also know II Understandin minerals/rocks and the usages of different ores. C03 Discuss the stratigraphy of geological formation and understand the II Understandin III Ithological conditions and its importance. III Understandin IIII O-PO Mapping: a b c d e f g h i j k I C01 1 I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII													level	Descri	ptor	
O2 Summarize different geological phenomenon and also know II Understandin O30 Discuss the stratigraphy of geological formation and understand the II II Understandin O30 Discuss the stratigraphy of geological formation and understand the II II Understandin O40 a b c d e f g h i j k 1 C01 a b c d e f g h i j k 1 C02 1 i <t< td=""><td>CO1</td><td>Recogni</td><td>ze an</td><td>d des</td><td>cribe</td><td>the g</td><td>ross</td><td>knowl</td><td>edge</td><td>about</td><td>the I</td><td>Earth</td><td></td><td></td><td></td><td>A</td></t<>	CO1	Recogni	ze an	d des	cribe	the g	ross	knowl	edge	about	the I	Earth				A
minerals/rocks and the usages of different ores. Understandin O3 Discuss the stratigraphy of geological formation and understand the libbolgical conditions and its importance. Understandin O-PO Mapping: ectronics Engineering Image: Condition is and its importance. Image: Condition is and its importance. O-PO Mapping: a b c d e f g h i j k 1 CO1 1 1 i																
Ithological conditions and its importance. D-PO Mapping: ectronics Engineering	CO2	minerals/rocks and the usages of different ores.										standing				
D-PO Mapping: ectronics Engineering CO1 1 CO2 1 CO3 1 CO3 1 CO3 1 Sessments : cacher Assessment: voc components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End mester Examination (ESE) having 20%, 30% and 50% weights respectively. sessesment Marks SE 1 10 SE 1 10 SE 2 10 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. MSE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally set three modules) covered after MSE. purse Contents: Todolde 1: Geology and Geotectonics: Geology, branches of geology and its relation with fast erst ciences. Origin of the Earth, Earth as a member of solar system. Gross features of the farth, Earth as a member of solar system. Gross features of the farth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. fodule 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, schist, neiss, marble and quartzite. 5 Hrs fodul	CO3								matio	n and	under	stand	the	II	Under	standing
ectronics Engineering a b c d e f g h i j k l CO1 1 1 1 1 j k 1 CO2 1 <th1< th=""> 1 1</th1<>		litholog	ical co	naitio	ns anc	1 its in	nporta	ince.								
ectronics Engineering a b c d e f g h i j k l CO1 1 1 1 1 j k 1 CO2 1 <th1< th=""> 1 1</th1<>	O-PO	Mappin	g:													
CO1 1 0 0 CO2 1 1 0 0 CO3 1 0 0 0 CO3 1 0 0 0 CO3 1 0 0 0 Sessments: seessments: 0 0 0 Sessessment Marks 0 0 0 SE 1 10 0 0 0 0 SE 2 10 0 0 0 0 0 SE Assessment is based on 00% of course content (Normally first three modules) 0 0 0 0 SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally first three modules) covere dafter MSE. 0 0 0 0 0 SE: Assessment is based on 100% course cortent with 70-80% migendage for course content (normally first three modules) covere dafter MSE. 0 0 0 0 0			0	ing												
CO2 1			a	b	c		e	f	g	h	i	j	k	l		
CO3 1																
sessments : aacher Assessment: vo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End mester Examination (ESE) having 20%, 30% and 50% weights respectively. ssessment Marks SE 1 10 15E 30 SE 2 10 SE 1 10 SE 2 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. 4SE: Assessment is based on 100% course content (Normally first three modules) .SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally first three modules) covered after MSE. Durse Contents: Iodule 1: Geology and Geotectonics: Iodule 1: Geology and Geotectonics: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the arth, Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Module 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, sortewice, arbor, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Iodule 3: Structural Geology and Palaeontology: Common cock forming minerals viz, quartz, feldspars, olivine, augite, hornblende, mica, caleite, ope of palaeo																
acher Assessment: vo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End mester Examination (ESE) having 20%, 30% and 50% weights respectively. ssessment Marks SE 1 10 MSE 30 SE 2 10 SE 4 10 SE 5 50 SE 1 10 SE 4 50 SE 3 50 SE 4 Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally first me modules) covered after MSE. Durse Contents: 10 Idoule 1: Geology and Geotectonics: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the arth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Idoule 1: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, calcite. thread contrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble a						1										
vo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End mester Examination (ESE) having 20%, 30% and 50% weights respectively. sssessment Marks SE 1 Marks SE 1 10 AT SE 30 SE 2 10 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. ASE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) course Contents: Iodule 1: <u>Geology and Geotectonics</u> : Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the arth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Iodule 2: <u>Mineralogy and Petrology</u> : Introduction to Mineralogy, definition of mineral, ommon rock forming minerals viz. quartz, feldspars, olivine, augite, homblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common bocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Iodule 3: <u>Structural Geology and Palaeontology</u> : Earthquakes and volcanoes. Introduction and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Iodule 4: <u>Economic Geology(Metals</u>): Introduction to economic geology. Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,																
mester Examination (ESE) having 20%, 30% and 50% weights respectively. sssessment Marks SE 1 10 dSE 30 SE 2 10 SE 4 50 SE 1 0 SE 2 50 SE 1 10 SE 2 50 SE 1 10 SE 4 50 SE 1 0.58 SE 3 50 SE 4 50 SE 4 Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally sits three modules) covered after MSE. Durse Contents: Todolle 1: Geology and Geotectonics: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the iarth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. fodule 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, or ky via figneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Module 3: Structural Geology and Palaeontolo				C		1 .	• /-			1.0	,	г	• .•	() (07		F 1
Assessment Marks SE 1 10 ISE 30 SE 2 10 SE 3 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. ISE Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally first three modules) covered after MSE. Durse Contents: Adoule 1: Geology and Geotectonics: Geology and Hearth, Earth as a member of solar system. Gross features of the farth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Adoule 2: Mineralogy and Petrology: Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common nock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Intoduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common nock sviz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Iodule 3: Structural Geology and Palaeontology: Earthquakes and volcances. Introduction o paleontology, Definition and cope of Palaeontology. Processes		.												n (MSE	(and one	e End
SE 1 10 MSE 30 SE 2 10 SE 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. MSE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally ist three modules) covered after MSE. Surse Contents: Module 1: Geology and Geotectonics: Geology, branches of geology and its relation with the sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Module 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, gommon rock forming minerals viz. quartz, feldspars, olivine, augite, homblende, mica, calcite. throduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction to geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeocology, evolution, stratigraphy.			nation	(ESE)) havir	ng 20%	6,309	10 and		<u> </u>	s resp	ective	ly.			
ISE 30 SE 2 10 SE 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. 150 SE 1 and ISE 2 are based on 50% of course content (Normally first three modules) SE: SE: Assessment is based on 100% course content (Normally first three modules) SE: SE: Assessment is based on 100% course content (Normally first three modules) SE: SE: Assessment is based on 100% course content (Normally first three modules) SE: Data the modules) covered after MSE. Durse Contents: Module 1: Geology and Geotectonics: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the farth, Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. 5 Hrs Module 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, ornmon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction of paleontology. Processes of fossilizationApplication of paleontological data in conomic geology, palaeoecology, evolut		ment								KS						
SE 2 10 SE 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. (Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content (Normally first three modules) covered after MSE. (Assessment is based on 100% course content with 70-80% weightage for course content (normally first three modules) covered after MSE. Ourse Contents: (Adule 1: Geology and Geotectonics: Geology, branches of geology and its relation with the rarch. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. 5 Hrs Module 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, antroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. 5 Hrs Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction to palaeontology. Processes of fossilization., Application of palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 Hrs Module 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs																
SE 50 SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. ASE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally first three modules) covered after MSE. Seconda 100% course content with 70-80% weightage for course content (normally first three modules) covered after MSE. Surse Contents: Module 1: Geology and Geotectonics: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the farth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. 5 Hrs Module 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, somon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. attroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common packs viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction to geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 Hrs Module 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue mineral																
SE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. ISE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally st three modules) covered after MSE. Dourse Contents: Ideal																
 ASE: Assessment is based on 50% of course content (Normally first three modules) SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally ist three modules) covered after MSE. Durse Contents: Idoule 1: Geology and Geotectonics: Geology, branches of geology and its relation with the sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Idoule 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, common rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Idoule 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction to petrology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Idoule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic mineral, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 																
 SE: Assessment is based on 100% course content with 70-80% weightage for course content (normally ast three modules) covered after MSE. Durse Contents: Module 1: <u>Geology and Geotectonics</u>: Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the farth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Module 2: <u>Mineralogy and Petrology</u>: Introduction to Mineralogy, definition of mineral, cores realized and quartzite. Module 3: <u>Structural Geology and Palaeontology</u>: Earthquakes and volcances. Introduction and cope of Palaeontology. Processes of fossilization.,Application of paleontology, Definition and conomic geology, palaeoecology, evolution, stratigraphy. Module 4: <u>Economic Geology (Metals</u>): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 																
 ast three modules) covered after MSE. burse Contents: Idoule 1: Geology and Geotectonics: Geology, branches of geology and its relation with the sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Idoule 2: Mineralogy and Petrology: Introduction to Mineralogy, definition of mineral, common rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Introduction to palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 										•					/	11
 Durse Contents: Iodule 1: <u>Geology and Geotectonics</u>: Geology, branches of geology and its relation with the sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the Earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Iodule 2: <u>Mineralogy and Petrology</u>: Introduction to Mineralogy, definition of mineral, cores forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Iodule 3: <u>Structural Geology and Palaeontology</u>: Earthquakes and volcanoes. Introduction to pelogical structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 							urse c	ontent	with	/0-809	% wei	ghtage	e for c	ourse c	ontent (n	ormally
Iodule 1: Geology and Geotectonics:Geology, branches of geology and its relation with ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the Earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains.5 HrsModule 2: Mineralogy and Petrology:Introduction to Mineralogy, definition of mineral, norock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. htroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite.5 HrsModule 3: Structural Geology and Palaeontology: pelogical structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.5 HrsModule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5 Hrs				overed	after.	MSE.										
 ther sciences. Origin of the Earth, Earth as a member of solar system. Gross features of the Earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Module 2: <u>Mineralogy and Petrology</u>: Introduction to Mineralogy, definition of mineral, oromon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Module 3: <u>Structural Geology and Palaeontology</u>: Earthquakes and volcanoes. Introduction and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Module 4: <u>Economic Geology(Metals</u>): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 					<u>a</u> (0					
 Earth. Brief idea about interior of the earth, core, mantle, crust. Concept and theory of Isostacy, ontinental drift and plate tectonics.orogeny and epirogeny, types of mountains. Module 2: <u>Mineralogy and Petrology</u>: Introduction to Mineralogy, definition of mineral, ommon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. Introduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common pocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. Module 3: <u>Structural Geology and Palaeontology</u>: Earthquakes and volcanoes. Introduction and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Module 4: <u>Economic Geology(Metals</u>): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 																5 Hrs.
Andule 2: Mineralogy and Petrology:Introduction to Mineralogy, definition of mineral, ommon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. ntroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite.5 HrsModule 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction performing geological structures viz. faults, folds, joints. Introduction to paleontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.5 HrsModule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5 Hrs			•								•					
Module 2: <u>Mineralogy and Petrology</u> : Introduction to Mineralogy, definition of mineral, ommon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. htroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common ocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 HrsModule 3: <u>Structural Geology and Palaeontology</u> : Earthquakes and volcanoes. Introduction to geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 HrsModule 4: <u>Economic Geology(Metals</u>): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs												-		ory of I	sostacy,	
ommon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. htroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common bocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite.5 HrsIndule 3: Structural Geology and Palaeontology ogeological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.5 HrsIndule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5 Hrs	contine	ental drif	t and p	blate te	ectonic	cs.oro	geny a	and ep	irogen	y, typ	es of f	nount	ains.			
ommon rock forming minerals viz. quartz, feldspars, olivine, augite, hornblende, mica, calcite. htroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common bocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite.5 HrsIndule 3: Structural Geology and Palaeontology ogeological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.5 HrsIndule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5 Hrs					1.0			. 1			1	1	<u> </u>	6	· 1	
Antroduction to petrology. Study of igneous, sedimentary and metamorphic rocks. Common bocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite. 5 Hrs Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction o geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 Hrs Module 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs																5 Hrs.
bocks viz. granite, gabbro, rhyolite, basalt, shales and sandstone, limestone and laterite, schist, neiss, marble and quartzite.5Indule 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction o geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization.,Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.5Indule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5				0		-					•					
neiss, marble and quartzite. 5 Hrs Indule 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction of geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 Hrs Indule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs			-		-	-				-		-				
Module 3: Structural Geology and Palaeontology: Earthquakes and volcanoes. Introduction 5 Hrs b) geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. 5 HrsModule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs		-	-		•	te, bas	sait, s	nales a	and sa	nastor	ie, lin	leston	e and	laterite	e, schist,	
 b geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 	<u>gneiss,</u>	marble a	ana qu	artzite												
 b geological structures viz. faults, folds, joints. Introduction to palaeontology, Definition and cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy. Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 	Madul	a 2. Ctm			lagr	and D		mtolo		utle anno	lan a			. Inter	duction	5 II
cope of Palaeontology. Processes of fossilization., Application of paleontological data in conomic geology, palaeoecology, evolution, stratigraphy.Indule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,5 Hrs										-						5 Hrs.
conomic geology, palaeoecology, evolution, stratigraphy. Iodule 4: Economic Geology(Metals): Introduction to economic geology, Definition of ore, re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,																
Introduction to economic geology, Definition of ore, reminerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses, 5 Hrs	-			.							10 10	palet	511010	gical	uala III	
re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,		me geol	ugy, l	aiacu	0105	, ev	oiutio	n, sui	angra	<i></i>						
re minerals and gangue minerals, grades of ores and non-metallic minerals, assay value nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,	Modul	o 1. Fac	nomi	Casl		[ato]~). Int-	oduct	on to	acore	mia	010~	, Daf	inition	of ore	5 U
nd tenor of ore. Broad outline of ideas regarding classification of mineral deposits. Uses,											-					5 Hrs.
COLOGICAL OCCULTENCES, OLIGHI AND GEOGRADINEAL DISTIDUTION OF THE OFFICIENT DEDOSITS																
iz. Iron, Lead, Zinc, Gold, Aluminum, Radioactive minerals,					-			-				ule 0		licial	ueposits	

Academic Documents for Electronics Engineering

Module 5: <u>Economic Geology(Non-metals</u>): Uses, geological occurrences, origin and geographical distribution of Non-metals (related to refractory, fertilizers, cement, chemical, gemstone and electronic industry) like- Asbestos, Barytes, Gypsum, Mica, Graphite, Talc, Magnesite, Kyanite, Sillimanite, Monazite, Pyrite and Diamond and Rare	
earth (RE) elements. Fossil fuel (oil and natural gas).	
Module 6 : <u>Introduction to Indian Stratigraphy</u> : Physiographic divisions of India and their characteristics, Rivers and mountains of India, Principles of stratigrphy, Geological time scale. Introduction to Vindhyan Supergroup, Gondwana Supergroup and Deccan Trap systems with respect to classification, geologic and geographic distribution, lithological characteristics, fossil content and economic importance.	5 Hrs.
^	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
After the completion of the course the student should be able to:	
1. perceive and describe the gross knowledge of the Earth and Geotectonics.	
2. describe the minerals and rocks with sense of mineralogy and petrology.	
3. summarize the phenomenon in physical geology and explain the concepts of palaeontology.	
4.describe and sense the knowledge of geology for economic purpose.	
5.describe and sense the knowledge of of non-metallic minerals for economic purpose.	

6.discuss the concepts of Indian Stratigraphy.

Title of the Course: Life Science 4BS104	L	Т	Р	Cr
	2	0	0	2

Pre requisite: NA

Textbooks:

- 1. T. S. Ranganathan, Text book of Human Anatomy, S. Chand and Company Ltd, 2002.
- 2. P. S. Verma and V. K. Agarwal, Concept of Cell Biology, S. Chand and Company Ltd, 2002.
- 3. R. D. Vidyarthi and P. N. Pandey, A Text book of Zoology, S. Chand and Company Ltd, 2004.

Reference Books:

- 1. Bruce Alberts and Alexander Johnson, Molecular Biology of the Cell Garland Science, Taylor & Francis Group, 6th Edition, 2015.
- 2. Peter H. Raven, George B. Johnson, Biology, McGraw hill, 11th edition, 2017.
- 3. Laurence A. Cole, Biology of Life Biochemistry, Physiology and Philosophy, Elsevier, 2016.
- 4. V. Sreekrishna, Comprehensive Biotechnology I Cell Biology and Genetics, New Age, 2005.

Course Objectives:

- 1. Introduce students to modern aspect of life science.
- 2. Develop an understanding if scientific methods with a broad background in the life sciences at all levels of biological organization (from molecular, cellular, and organismal biology, to populations, communities and ecosystems)
- 3. Provide a foundation of basic biological principles aned education in life science technologies.

Course Learning Outcomes:

	After the completion of the course the student should be able to	Bloom's Cognitive		
C) After the completion of the course the student should be able to	leve l	Descriptor	
C 1	• Outline and describe cytological, biochemical, physiological and genetic aspects of the cell,	II	Understanding	
C 2	• Explain the structure and function of organ systems in the human body and describe the concept, practice and significance of immunity.	II	Understanding	
C 3) Relate knowledge of Bio chemistry, Biotechnology and Bioinformatics with application areas in Engineering.	II	Understanding	

CO-PO Mapping:

Electronics Engineering

	a	b	c	d	e	f	g	h	i	j	k	l
CO1												
CO2												
CO3											1	

Assessments:

Teacher Assessment:

Two components of In-Semester Evaluation (ISE), One Mid-Semester Examination (MSE) and one End-Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and **ISE 2** are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Module 1 : Cell Biology	Hrs
Structure and function of prokaryotic (Typical Bacterial Cell) and eukaryotic cell (Plant cell and animal cell) and intracellular organelles, Mechanism of cell division including (mitosis and meiosis) and cell differentiation; Cell-cell interaction.	03
Module 2 : Bio Chemistry	Hrs
Structure of atoms, molecules and chemical bonds, Principles of physical chemistry, Thermodynamics, kinetics, dissociation and association constants, Nucleic acid structure, genetic code, replication, transcription and translation in prokaryotic and eukaryotic cell, Structure, function and metabolism of carbohydrates, lipids and proteins, Enzymes and coenzyme.	04
Module 3 : Human Physiology	Hrs
a. Digestive system - Digestion, absorption, energy balance	•
 b. Respiratory system: Comparison of respiration in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration. c. Neural system: Neurons, action potential, gross neuroanatomy of the brain and spinal cord, central and peripheral nervous system, neural control of muscle tone and posture. d. Excretory system: Comparative physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance. e. Cardiovascular System: Comparative anatomy of heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure, f. Endocrinology and reproduction - Endocrine glands, basic mechanism of hormone action, hormones and diseases; reproductive processes, gametogenesis, ovulation, neuroendocrine regulation 	09
Module 4 : Immunity	Hrs
Antigen and Antibody: Introduction, definition and types of Antigens, Structure and functions of different classes of immunoglobulins, Primary and secondary immune response, Lymphocytes and accessory cells, Humoral and cell mediated immunity, Mechanism of immune response and generation of immunological diversity; Application of immunological techniques.	. 04
Module 5 : Biotechnology And Its Applications	Hrs
Principles and process of Biotechnology: Genetic engineering (Recombinant DNA technology). Application of Biotechnology in health and agriculture: Production of secondary metabolites/produ Insulin, growth hormones: Indol acetic acid, interferons. Methods of gene transfer in plants, improvement. Introduction to trangenics: gene therapy, Genetically modified organisms Biosafety issues– Bio piracy.	04
Module 6 : Bioinformatics and its Applications	Hrs
Introduction and Definition of Bioinformatics, Molecular Bio informatics: Genomics, Proteomics and Drug Design. Organic and Community Bioinformatics: Bioinformatics of species diversity. Applications of Bioinformatics: Human health, Microbial genome application, Biotechnology, Agriculture, Comparative studies.	04

Academic Documents for Electronics Engineering

Module 1 : Cell Biology

Describe the intricate relationship between various cellular structures and their corresponding functions. Explain the cytological, biochemical, physiological and genetic aspects of the cell, including cellular processes common to all cells, to all eukaryotic, prokaryotic cells as well as processes in certain specialized cells. Relate normal cellular structures to their functions.

Module 2 : Bio Chemistry

Outline structure of atoms, molecules and chemical bonds. Describe principles of physical chemistry, thermodynamics and kinetics. Explain the structure, function and metabolism of carbohydrates, lipids and proteins, Enzymes and coenzyme.

Module 3 : Human Physiology

Outline and describe structure and function of major organ systems in the human body, the neural system and explain the transmission of signals in excitable cells.

Module 4 : Immunity

Identify major components of the immune system at organ, cellular and molecular levels and discuss normal functions of these components during immune responses. Elucidate the relationship between major cellular and molecular components of the immune system. Explain adverse functions of these cellular and molecular components during abnormal circumstances. Describe mechanisms of diseases associated with adverse functions of the immune system.

Module 5 : Biotechnology And Its Applications

Explain the theory and practice of recombinant DNA technology. Describe biocatalysis, pathway engineering, bioprocess control and downstream processing and Identify the applications of Biotechnology.

Module 6: Bioinformatics and its Applications

Outline the flow and regulation of biological information. Explain the techniques used to collect sequence and expression data. Identify appropriate biological data bases for specific analyses and describe the applications of Bioinformatics

							W	alchand	Col	lege of E	ngineer	ring, S	angli
Fitle of	f the Co	ourse:	Enginee	ring Cho	emistry	Labor	atory 4	CH151		L		P	Cr
Pre-Re	anisite	Cours	ses: : Ch	emistry	course	at seco	ndarv	and hio	her	0 seconda	0 rv leve	2	1
Refere	-	court		enniser y	course	ut see	<u>Jiiuui y</u>	unu mg	,	secondu	i y ieve	-	
			istry Lab									· • • • •	
			Denney, J 2008, 6 th		ies, M.J	.K Tho	mas, "(Juantitat	tive	Chemica	l analys	515'', V	ogels,
	• Object		2000, 0	Luition.									
			nt familia		•								
<u> </u>			on practic utcomes:		metric a	analysis	8.						
<u>CO</u> CO		<u> </u>	mpletior		ourse t	he stud	lent sh	ould be		Bloom'	s Cogn	itive	
	able to									level	Desc		
	A 1				. 40 -		a	ia -f		ш	A 1		
CO1			iples of v meter, r							III	Appl	ying	
	instrur			quantita		analysi		xperim					
	physic	al/Che	emical ch	aracteris	tics of r	nateria	1						
CO-PC) Mapp	ing :											
Electro	onics Er	nginee	ring										
		a	b	с	d	e	f	g	h	i	j	k	
	CO		~			1	-	8			J	1	
Assessi	ments :	In Ser	nester Ev	aluation	(ISE)								
		1	Assessme ISE	ent						Mark 100			
	1 .	<u> </u>			1 1		1 1	1 4				C	<u> </u>
On the experi		or each	experim	ent perio	ormed d	uring re	egular I	aborator	y ses	ssion, qu	iz and p	bertorr	nance of
^	Conte	nte.											
.0u1 sc	Conter	11.5.											
L		-	nents (Mi		,								Hrs
	1.		nation of	hardness	s of wat	er by E	DTA m	ethod (C	Comj	plexomet	ric	(each
		Titra	tion).										
	2.	Estin	nation of	alkalinit	y of wa	ter (Ne	utraliza	tion Titr	atior	1).			
	3.	Estin	nation of	Dissolve	d Oxvo	en in w	vater (Io	dometri	ic Ti	tration)			
										uuuon).			
	4.	Estin	nation of	Chloride	conten	t in wa	ter (Arg	gentome	try).				
	5.	Dem	onstratio	n of pH r	neter &	pH me	etric titr	ation.					
	6.	Dete	rminatior	of stren	gth of a	cid/bas	e condu	ictometr	ricall	y.			
				Academi	c Docun	nents for	Electro	nics Engi	neeri	ng			

Walchand College of Engineering, Sangli

7. Colorimetric estimation of Copper.

8. Estimation of copper from Bronze. (Iodometric Titration).

9. Estimation of Zn from Brass (Displacement Titration).

10. Determination of purity of Iron (Redox Titration).

11. Determination of viscosity of given liquid. By Ostwald viscometer.

12. Determination of corrosion rate by weight loss method

13. Gravimetric estimation of Ba from BaSO₄ as BaO.

	the C	Course	: Wor	kshop l	Practic	e 4M	E152				L	Т	Р	Cr
											0	0	02	01
Pre-Re	quisit	e Cou	rses:											
Fextbo	oks:													
													,10 th Ed.2	
	•		•		•		•		-	-	-	ol I [N	lanufacti	uring
		, Medi	ia Prom	oters a	nd Publ	ishers l	Pvt. Ltd.	, 10 ^m e	edition,	reprint	2001			
Refere		NI	(117	. 1 .1	Tal	. 1 T	7.1	" CD	0 D-11:	1	D:-4-1		D-11-1 F	ICDN
		-	an, <i>we</i> [016] 20	-	Tecnne	ology v	oiume I	, CB	5 Publis	sning &	Distrit	outors.	, Delhi. [12BIN
			-		chnolog	w" Vo	l. I and	Vol II	Tata N	AcGray	vHill H	ouse 7	2017	
Course				1115 10		, , ,		, 01, 11	, 1ata 1		, , , , , , , , , , , , , , , , , , , ,	.0460,2		
	•			o use dit	fferent	tools ar	nd eauin	ments	involve	d in the	e manu	facturi	ing proce	esses.
							chine to							
		-	process						I L					
		•	•		ry out tl	he vari	ous oper	ations	to mak	e a fini	shed pr	oduct.		
4. Tra	ain the	e stude	nts for i	making	PCB fc	or elect	ronic ap	plicati	ons.					
Course	e Lear	ning (Outcom	les:										
CO	Afto	r tha a	omplat	tion of t	the cou	rea tha	studon	t chou	ld ho o	hla t	Rloon	m's C	amitive	
СО	Afte	r the c	complet	tion of 1	the cou	rse the	e studen	t shou	ld be a	ble t	Bloo	m's Co	ognitive	
СО	Afte	r the c	complet	tion of 1	the cou	rse the	e studen	t shou	ld be a	ble t	Bloom		ognitive criptor	
			-								level	Des	criptor	ng
CO CO1			-				e studen					Des		ng
	Desc	ribe th	e meth	ods, ope	erations	and pr		of ma	nufactu	ring	level	Des Und	criptor	
C01	Desc	cribe th marize	e meth	ods, ope	erations	s and pr al syste	rocesses	of ma	nufactu	ring	level II	Des Und	criptor lerstandi	-
CO1 CO2	Desc Sum the b	cribe th marize basic w	e mether	ods, open nple me	erations chanicang tools	s and pr al syste s for ma	rocesses ms, mac anufactu	of ma chines, uring.	nufactu equipn	ring	level II II	Des Und Und	criptor lerstandi lerstandi	-
C01	Desc Sum the b Use	cribe th marize pasic w of cher	e methe the sin orking mical et	ods, opo nple me of cutti	erations chanicang tools	s and pr al syste s for ma	rocesses ms, mac	of ma chines, uring.	nufactu equipn	ring	level II	Des Und Und	criptor lerstandi	-
CO1 CO2	Desc Sum the b Use	cribe th marize pasic w of cher	e mether	ods, opo nple me of cutti	erations chanicang tools	s and pr al syste s for ma	rocesses ms, mac anufactu	of ma chines, uring.	nufactu equipn	ring	level II II	Des Und Und	criptor lerstandi lerstandi	-
CO1 CO2 CO3	Desc Sum the b Use elect Map	rribe th marize pasic w of cher ronic a	the mether orking mical et applicat	ods, opo nple me of cutti	erations chanicang tools	s and pr al syste s for ma	rocesses ms, mac anufactu	of ma chines, uring.	nufactu equipn	ring	level II II	Des Und Und	criptor lerstandi lerstandi	-
CO1 CO2 CO3	Desc Sum the b Use elect Map	rribe th marize pasic w of cher ronic a	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations schanica ng tools echniqu	s and pr al syste s for ma	rocesses ms, mac anufactu naking tl	of ma chines, uring.	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	
CO1 CO2 CO3	Desc Sum the b Use elect Map	rribe th marize pasic w of cher ronic a	the mether orking mical et applicat	ods, opo nple me of cutti	erations chanicang tools	s and pr al syste s for ma	rocesses ms, mac anufactu	of ma chines, uring.	nufactu equipn	ring	level II II	Des Und Und	criptor lerstandi lerstandi	
CO1 CO2 CO3 CO-PC	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations echanica ng tools echniqu d	and pr al syste s for ma the for n	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	
CO1 CO2 CO3 CO-PC Electro	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations chanicang tools echniqu d	and pr al syste s for ma the for n	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	
CO1 CO2 CO3 CO-PC	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations echanica ng tools echniqu d	and pr al syste s for ma the for n	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	
CO1 CO2 CO3 CO-PC Electro CO1 CO2	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations schanica ng tools echniqu d 1 1	and pr al syste s for ma the for n	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	-
CO1 CO2 CO3 CO-PC Electro	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations chanicang tools echniqu d	and pr al syste s for ma the for n	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for	ring ient's,	level II II III	Des Und Und	criptor lerstandi lerstandi	-
CO1 CO2 CO3 CO-PC Electro CO1 CO2	Desc Sum the b Use elect Map	eribe the marize pasic w of cher ronic a pping :	the sin orking mical et	ods, open nple me of cutti tching to ions.	erations chanicang tools echnique d 1 1 1	e e	rocesses ms, mac anufactu naking tl	of ma chines, rring. ne PCI	nufactu equipn 3 for h	i i	level II II III	Des Und Und	criptor lerstandi lerstandi	-

Walchand College of Engineering, Sangli

Assessments : Teacher Assessment:

100% ISE, Continuous assessment based on the experiments, demonstration performed in the lab and followed by oral examination at the end of semester.

Assessment	Marks
ISE	100

Course Contents:

- 1. Composite job based on carpentry, fitting, tin-smithy, welding etc. (16 Hrs.)
- 2. Composite job of PCB making based on negative film making, UV exposure, development and etching etc. (8 Hrs.)

Module wise Measurable Students Learning Outcomes : Laboratory Outcomes

- Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
- They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.
- By assembling different components, they will be able to produce small devices of their interest.
- By studying PCB making, students will able to make their own electronic circuits.

Fitle of	the Cou	ırse: Ci	vil and M	lechanics	Laborat	ory 4CV	151	т	т	D	Cr
								L		P 2	Cr 1
Pre-Re	auisite (Courses	: Basic Ci	vil Engine	eering and	l Enginee	ring Mech			2	1
Referei	-				8	8					
1. Dug	ggal S.K.	, "Surve	eying (Vol	I)", Tata	McGraw	Hill, 4th e	edition 20	13			
			d Rajashe ishers,5 th]		K. G. "En)15.	gineering	Mechani	cs", New	Age		
	ırmi. R. S Revised			Applied M	lechanics"	', Tata Mo	cGraw Hi	ll Publish	ing Con	ipany,	
	Objecti										
	-	•	skills to c ineering n		e experim	ients in su	irveying u	ising conv	ventiona	l and mod	lern
msu	uments	and eng	meening n	licenames	•						
2. Тор	provide k	cnowled	ge for cor	ducting e	xperiment	ts to verif	y the prin	ciples of	engineeı	ing mech	anics.
2. Тој	provide l	cnowled	ge for cor	ducting e	xperiment	ts to verif	y the prin	ciples of	engineer	ing mech	anics.
Course	Learnii	ng Outc	comes:					•			
	Learnii	ng Outc	comes:		xperiment			•		ing mech 's Cogniti	
Course CO	Learnii After t	ng Outc he comj	comes: pletion of	the cours	se the stud	dent shou	ıld be abl	e to	Bloom	's Cogniti	ve
Course	Learnin After t Demon	ng Outc he comj strate t	comes: pletion of he use of	the cours		dent shou	ıld be abl	e to	Bloom	's Cogniti	ve
Course CO CO1	Learnin After t Demon angle a	ng Outc he comp strate t nd level	comes: pletion of he use of s.	the cours	se the stud	dent shou	IId be abl	e to listance,	Bloom	² s Cogniti Descrij Applyi	ve ptor ng
Course CO CO1	Learnin After t Demon angle as Demon	ng Outc he comj strate t nd level strate t	comes: pletion of he use of s.	the cours instrumentation of	se the stud	dent shou	IId be abl	e to listance,	Bloom level III	's Cogniti	ve ptor ng
Course CO CO1 CO2	Learnin After t Demon angle as Demon	ng Outc he comp strate t nd level strate t cally and	comes: pletion of he use of s. he verific	the cours instrumentation of	se the stud	dent shou	IId be abl	e to listance,	Bloom level III	² s Cogniti Descrij Applyi	ve ptor ng
Course CO CO1 CO2 CO-PO	Learnin After t Demon angle a Demon analytic Mappin	ng Outc he comp strate t nd level strate t cally and ng :	comes: pletion of he use of s. he verific l graphica	the cours instrumentation of lly.	se the stud	dent shou e measure mechanica	Ild be ablement of a sexperin	e to listance, nentally,	Bloom level III III	² s Cogniti Descrij Applyi	ve ptor ng
Course CO CO1 CO2 CO-PO CO-PO	Learnin After t Demon angle a Demon analytic Mappin	ng Outc he comp strate t nd level strate t cally and ng :	comes: pletion of he use of s. he verific l graphica	the cours instrumentation of lly.	se the stud	dent shou e measure mechanica	ald be able ment of c s experin eering Pro-	e to listance, nentally,	Bloom level III III	² s Cogniti Descrij Applyi	ve ptor ng
Course CO CO1 CO2 CO-PO CO-PO	Learnin After the After the angle and Demon analytic Mappin	ng Outc he comj strate t nd level strate t cally and ng : g with 1	comes: pletion of he use of s. he verific d graphica regards to	the cours instrumentation of lly. B.Tech	se the stud nts for the laws of t Electronic	dent shou e measure mechanics cs Engine	Ild be ablement of a sexperin	e to listance, nentally, ogrammo	Bloom level III III	's Cogniti Descrij Applyi Applyi	ve otor ng ng
Course CO CO1 CO2 CO-PO CO-PO	Learnin After the After the angle and Demon analytic Mappin	ng Outc he comj strate t nd level strate t cally and ng : g with 1	comes: pletion of he use of s. he verific d graphica regards to	the cours instrumentation of lly. B.Tech	se the stud nts for the laws of t Electronic	dent shou e measure mechanics cs Engine	Ild be ablement of of sexpering Pro-	e to distance, nentally, ogrammo h	Bloom level III III	's Cogniti Descrij Applyi Applyi	ve ptor ng ng k
Course CO CO1 CO2 CO-PO CO-PO CO-PO CO1 CO2 Assessr	Learnin After t Demon angle an Demon analytic Mappin Mappin a a	ng Outc he comj strate t nd level strate t cally and ng : g with 1 b	comes: pletion of he use of s. he verific d graphica regards to	the cours instrumentation of lly. B.Tech	se the stud nts for the laws of t Electronic	dent shou e measure mechanics cs Engine	Id be able ment of controls expering eering Pro- 1	e to listance, nentally, ogrammo <u>h</u> 2	Bloom level III III e: i	's Cogniti Descrij Applyi Applyi	ve otor ng ng k 2
Course CO CO1 CO2 CO-PO CO-PO CO-PO CO1 CO2 Assessr Teache	Learnin After t Demon angle a Demon analytic Mappin Mappin a nents : r Assess	ng Outc he comp strate t nd level strate t cally and ng : g with p b b ment:	comes: pletion of he use of s. he verific d graphica regards to c	the cours instrumen ation of lly. B.Tech	se the stud nts for the laws of p Electronic	dent shou e measure mechanics cs Engine	ald be able ment of or s experime eering Pro- g 1 1	e to distance, nentally, ogrammo h 2 1	Bloom level III III e: i	's Cogniti Descrij Applyi Applyi	ve otor ng ng k 2
Course CO CO1 CO2 CO-PO CO-PO CO-PO CO1 CO2 Assessr Feache	Learnin After t Demon angle a Demon analytic Mappin Mappin a nents : r Assess	ng Outc he comp strate t nd level strate t cally and ng : g with p b b ment: luation	comes: pletion of he use of s. he verific d graphica regards to c (ISE), and	the cours instrumen ation of lly. B.Tech	se the stud nts for the laws of t Electronic	dent shou e measure mechanics cs Engine	ald be able ment of or s experime eering Pro- g 1 1	e to distance, nentally, ogramme <u>h</u> 2 1	Bloom level III III e: i 1 weights	's Cogniti Descrij Applyi Applyi	ve otor ng ng k 2
Course CO CO1 CO2 CO-PO CO-PO CO-PO CO1 CO2 Assessr Teache	Learnin After t Demon angle a Demon analytic Mappin Mappin a nents : r Assess	ng Outc he comp strate t nd level strate t cally and ng : g with p b b ment: luation	comes: pletion of he use of s. he verific d graphica regards to c	the cours instrumen ation of lly. B.Tech	se the stud nts for the laws of p Electronic	dent shou e measure mechanics cs Engine	ald be able ment of or s experime eering Pro- g 1 1	e to distance, nentally, ogrammo h 2 1	Bloom level III III e: i 1 weights ks	's Cogniti Descrij Applyi Applyi	ve otor ng ng k 2

Course Contents:

List of Exercises in Civil Engineering

- 1. Direct and Indirect Ranging (Line Ranger), Measurement of Horizontal Distances by using chain and Tape,
- 2. Chain Survey, Setting of offsets by using open cross staff, French cross staff, and Indian optical Square.
- 3. Chain and Compass Traversing.
- 4. Study of Digital Planimeter.
- 5. Study of Dumpy Level and determinationreduced levels.
- 6. Introduction to Modern Instruments.

List of Exercise in Engineering Mechanics:

- 1. Verification of Law of triangle of forces.
- 2. Verification of law of polygon of forces.
- 3. Determination of support reactions of simply supported beam.
- 4. Verification of the law of moments using Bell crank lever/Efficiency of Bell crank lever.
- 5. Graphical solution for concurrent and non-concurrent coplanar force system.

List of Drawings and Reports:

- 1. Preparation of Half Imperial Drawing Sheet showing types of lines, symbols of Doors-windows, building materials, North line etc. according to IS 962.
- 2. Preparation of Half Imperial Drawing Sheet showing line plan of a single storey Building.

Module wise Measurable Students Learning Outcomes :

Walchand College of Engineering, Sangli

Walchand College of Engineering, Sangli

Academic Rules and Regulations (V1.6) [UG] (After 5th Academic Council Meeting)

Academic Documents for Electronics Engineering

Preface

Walchand College of Engineering, (WCE), Sangli is one of the oldest and renowned Engineering colleges in India. The college was established with an objective to provide quality technical education, research and training. WCE is recognized by its contribution to technical education, and involvement of its alumni in designing, planning and execution of engineering projects of national importance. It has established a firm foundation for technical education and research with a high-quality faculty and ethically sound disciplined alumni. The teaching-learning process is student centric and governed by the concept of outcome based education.

This booklet gives comprehensive information on the existing rules and regulations for B. Tech. programmes of all branches. All undergraduate programmes will be governed by these rules and regulations. The various departments are given a direction to excel in academics through these rules and regulations approved by the academic council from time to time, keeping in view the ever growing challenges and new developments. The stakeholders particularly the students, and parents/guardians, are advised to be fully familiar with the academic system of the college. Students should know the rules and regulations governing academic requirements, evaluation system, and grading system. These rules and regulations related to academics evolved over the period of time, after the college was awarded autonomy in 2007 by UGC. These rules are also changed from time to time as per the directives of UGC, AICTE and also by studying the rules of other reputed autonomous institutes. It is expected that this booklet will bring the transparency in the functioning of the college related with academics amongst students, faculty members, administrator, parents and other stakeholders. WCE, Sangli has student oriented academic system, every possible opportunity is provided to progress academically, and overall development of the students is ensured.

Date: 11th July 2016 Release of V 1.6

Dean Academics

Director

INDEX

1.	DEFINITIONS	83
2.	INTRODUCTION	84
3.	ORGANIZATION STRUCTURE AND ACADEMIC DEPARTMENTS	85
4.	ADMISSION	
5.	ACADEMIC CALENDAR	89
6.	ATTENDANCE	
7.	CURRICULUM	90
8.	REGISTRATION	94
9.	COURSE EVALUATION	94
10.	THE GRADING SYSTEM	96
11.	CALCULATION OF PERFORMANCE INDICES	102
12.	SEMESTER GRADE REPORT	104
13.	AWARD OF DEGREE	104
14.	AWARD OF MEDALS	104
15.	COMMITTEES AND FUNCTIONARIES	105
16.	DISCIPLINE AND CONDUCT	110
17.	CONCLUSIONS	110

1. DEFINITIONS

- 1. "College" means Walchand College of Engg., Sangli (WCE).
- 2. "BoG" means Board of Governors (Administrative Council).
- 3. "University" means Shivaji University, Kolhapur.
- 4. "Academic Council (AC)" means apex academic body governing the academic programmes and policies in WCE.
- 5. "Grievance Redressal and Discipline Committee (GRDC)" means committee appointed by Director to deal with cases of indiscipline.
- 6. "Complaint Redressal Committee (CRC)" means committee appointed by Director to deal with cases of unfair means/malpractice/s in examination.
- 7. "Board of Studies (BoS)" means departmental academic body common for UG and PG programmes.
- 8. "Semester" means period in which academic activities are carried out.
- 9. "Summer Term" means a period during summer vacation for approximately 3-4 weeks duration, during which remedial classes, industrial training, and soft skill training are conducted.
- 10. "Course" means theory/laboratory/seminar/project/mini project.
- 11. "Course credit" means weightage assigned to a course.
- 12. "Grade" means double letter assigned to indicate the performance of student in a course.
- 13. "Course teacher" means faculty member assigned to teach a course.
- 14. "Semester Performance Index (SPI)" means the weighted average of grade point of a student in a semester.
- 15. "Cumulative Performance Index (CPI)" means the weighted average of grade points for all the semesters completed by a student.
- 16. "Allowed to Keep Term (ATKT)" means allowed for admission after satisfying minimum credits criterion.
- 17. "Board of Examination (BoE)" means apex examination body implementing rules and regulations framed by AC.
- 18. "Grade Moderation Committee "(GMC)" means committee appointed by Controller of Examinations to moderate and finalize the grades assigned by course teachers.
- 19. "Academic Standing Committee (ASC)" means apex body next to AC to take decisions under emergent situations subjected to ratification by AC.
- 20. "Academic RRs" means rules and regulations governing academic system of the college.
- 21. "Departmental Advisory Board" (DAB) means departmental advisory body common for UG and PG programmes.
- 22. "Departmental Academic and Programme Evaluation Committee (DAPEC)" means departmental academic and advisory body next to BoS and DAB.

2. INTRODUCTION

- 2.1. All six undergraduate Engineering programmes (Civil, Mechanical, Electrical, Electronics, Computer science and Engg., and Information Technology) shall be governed by the rules and regulations provided in this version of academic RRs. The curriculum of each programme provides i) broad based knowledge; ii) quality content of courses; iii) academic flexibility; iv) scope for multi-disciplinary learning activities; v) opportunity for industry oriented projects. The curriculum designed shall be in line with the out-come based education. Apart from programme requirements, students shall compulsorily undergo foundation courses on sciences, humanities, and engineering; courses on management and economics. The stringent evaluation norms shall be followed to maintain quality of engineering education. The examination system shall be transparent and governed by rules, regulations and time-bound activities.
- 2.2. The medium of instruction throughout the programme shall be in English.
- 2.3. The semester system shall be adopted for academic activities in the college. Normally, all odd semesters shall start in third week of July except for first semester of B.Tech. and shall end in first week of November. All even semesters shall start in January and shall end in last week of April. The start of first semester for B. Tech. and M. Tech. shall be governed by admission schedule declared by Government of Maharashtra. Academic calendar shall be prepared and displayed before the start of every academic year.
- 2.4. The rules and regulations mentioned in this document shall be common to all undergraduate programmes (B.Tech.) offered by the college.
- 2.5. The provisions made in this document shall govern the policies and procedures, curriculum, course delivery, evaluation system and conduct of the examinations.
- 2.6. The rules and regulations here under shall be subjected to amendment made by the Academic Council (AC) from time to time, based on the recommendations of the BoS. All such amendments shall be applicable to all further batches including those already undergoing the programme.
- 2.7. The rules and regulations formulated in this document shall be subjected to revisions/refinement/updates/modifications through approval by the AC, from time to time, and shall be binding on all concerned stake holders, including the students, faculty, staff, departments, and institute authorities.

3. ORGANIZATION STRUCTURE AND ACADEMIC DEPARTMENTS

- 3.1. The academic administration of the college consists of committees and functionaries. The committees shall be AC, ASC, BoE, BoS, DAB and DAPEC, and functionaries shall be Director, Deputy Director, Dean Academics, Controller of examinations, Heads of Department, Programme academic coordinator, Programme evaluation coordinator, and First year programme coordinator.
- 3.2. The academic programmes of the college shall be governed by Rules and Regulations approved by the AC from time to time. The AC is a statutory and supreme body that governs all academic matters of the college, and the decisions of Chairman (AC) (Director of the college) shall be final in regard to all academic issues. All academic activities shall be scheduled through an approved academic calendar notified in the beginning of each academic year. ASC shall continuously assess the academic activities and makes appropriate revisions/modifications/improvements as and when required under emergent situations.
- 3.3. Academic departments and programmes offered

The college offers undergraduate programmes in engineering. The academic departments and the respective programme offered are given in Table 3.1.

S. No.	Academic Department	Programme Offered	Programme Code	Department/Branch Code
1	Civil Engineering	Bachelor of Technology in Civil Engineering [B.Tech. (Civil)]	BTE	CV
2	Mechanical Engineering	Bachelor of Technology in Mechanical Engineering [B.Tech. (Mechanical)]	BTE	ME
3	Electrical Engineering	Bachelor of Technology in Electrical Engineering [B.Tech. (Electrical)]	BTE	EL
4	Electronics Engineering	Bachelor of Technology in Electronics Engineering [B.Tech. (Electronics)]	BTE	EN
5	Computer Science and Engineering	Bachelor of Technology in Computer Science and Engineering (B.Tech. (Computer Science and Engineering)	BTE	CS
6	Information Technology	Bachelor of Technology in Information	BTE	IT

Table 3.1: Academic Departments and Offered Programmes

Academic Documents for Electronics Engineering

		Wald	chand College of	Engineering, Sangli
		Technology		
		[B.Tech. (Information Technology)]		
7	Humanities	-	-	HS
8	Mathematics	-	-	МА
9	Chemistry	-	-	СН
10	Physics	-	-	PH
11	Applied Mechanics	-	-	АМ

The normal duration of these academic programmes is eight semesters. An extension to this period may be given subjected to approval by AC.

4. ADMISSION

4.1. Regular and Lateral Entry

Regular entry refers to admission of students for first, second (excluding lateral entry), third, and final year of the programme in odd semesters.

Lateral entry refers to admission of students for second year directly through Diploma qualification.

4.2. The admission process and eligibility to various undergraduate programmes for regular entry (first year) and lateral entry (second year) are governed by the norms and procedures of Government of Maharashtra.

The candidate shall be provisionally admitted subject to fulfilment of eligibility criteria prescribed by government/University from time to time.

4.3. Each student shall be allotted Programme Registration Number (PRN) at the time of first admission/registration and that will be a permanent identification number. The number shall be

YYYY	PPP	BB	SS	NNN
Year	Programme	Department/Branch	Specialization/ Streams	Roll Number

SS is applicable to M. Tech. programme only, for B. Tech. programmes SS shall be 00.

This number shall never change and the allotted number shall not be offered to any other student even after cancellation of admission. The number shall be valid till the student completes the programme or cancels the admission or is removed from the roll.

- 4.4. The students seeking admission (regular entry) to second, third and final year should have earned all the credits of the pre-previous year and at least 75% credits of the previous year. For example, for admission to 5th semester (i.e. 3rd year of programme), a student should have earned all credits of the first year and 75% credits of the second year. Similarly for admission to the 7th semester (i.e. 4th year of programme), a student should have earned all the credits of the second year and 75% credits of the third year. However, if calculation of 75% credits results in to a mixed number (integer + proper fraction) then the integer part of that number shall be considered for taking decision related with this clause.
- 4.5. Entry from University Pattern to Autonomous Pattern

Students admitted to WCE in pre-autonomous status and desirous of seeking readmission shall be eligible for admission in autonomous status only in odd (3rd, 5th, and 7th) semesters. Such students should have passed all the courses of previous semesters or fulfil the prevailing ATKT norms of Shivaji University, Kolhapur. The students admitted through ATKT norms shall clear backlog courses by appearing for the respective examinations of Shivaji University, Kolhapur. Further they shall undergo additional academic requirements (bridge courses) if any as specified by the BoS of the respective department to be at par with WCE autonomous curriculum. Students who have obtained condone in any of the subjects/courses of university curriculum by Shivaji University, Kolhapur shall be considered to have cleared that subject/course.

4.6. Change of programme/branch

Students shall be eligible to apply for change of branch after completing the first two semesters. The following rules/guidelines shall be used for considering their application for change:

- i. The process of change of branch shall be carried out purely on merit basis subject to the rules of admissions prevailing at the time of such change.
- ii. Students with fail grade (FF) in any course and/or having backlogs shall not be eligible to apply.
- iii. The request for change of branch by a student from branch A to branch B shall be considered if number of students of branch B does not exceed the sanctioned capacity of branch B.
- iv. All such transfers shall be effected only once at the beginning of third semester. No application for change of branch during subsequent semesters shall be entertained.
- v. Students allotted with a branch of their choice should accept it and no further request for change shall be entertained.
- vi. There shall be no change in PRN number for students availing facility of branch change.
- 4.7. Temporary Withdrawal

A student shall be permitted to withdraw temporarily from the college for the reasons beyond his/her control. The applicable rules are:

Academic Documents for Electronics Engineering

- i. The withdrawal shall be considered for a complete semester or in multiples of semester.
- ii. The student shall apply to Dean Academics for such a withdrawal stating the reasons for such a withdrawal, along with supporting documents, consent of his/her parent/guardian and clearance/no due certificate from all the concerned departments.
- iii. Dean Academics shall peruse the case and recommend for the approval from AC/ASC.
- iv. A student availing of temporary withdrawal from the College under the above provision shall be required to pay such fees and/or charges as may be fixed by the college until such time as his/her name appears on the student's roll list. However, it may be noted that the fees/charges once paid shall not be refunded.
- v. Normally, a student will be entitled to avail the temporary withdrawal facility only once during the programme. However, request for any further withdrawal for the concerned student shall have to be approved by the AC of the college.
- 4.8. Termination from the Programme

A student shall be terminated from the programme in the following cases:

- i. Involved in ragging and not obeying discipline stipulated by college;
- ii. Successive failures in first Year: Normally a student who fails to obtain eligibility for admission to third semester within three successive academic years shall be declared as Not Fit for Technical Education [NFTE]. Such students shall be permitted for only one year to continue the education in the college provided the permission is accorded by AC. Director shall be authorized to terminate such student.
- iii. Not completing programme in prescribed period: Students shall have to complete B. Tech. programme in maximum period of 6 years (12 semesters) for regular entry and 5 years (10 semesters) for lateral entry from the date of first admission. However, genuine cases with proper justification may be referred to AC for extending programme completion period. Such student will be declared as Failed to Complete Technical Education [FCTE].

5. ACADEMIC CALENDAR

- 5.1. The academic activities of the college shall be governed by academic calendar prepared by Dean Academics and approved by the AC/ASC. It shall be notified at the beginning of each academic year. Academic calendar shall incorporate schedule of admission, course registration, course delivery, examination/evaluation, course feedback, course/graduate exit survey, co-curricular activities, extra-curricular activities, holidays, compensation for academic loss, meetings (AC, ASC, IQAC, BoE, Alumni), academic audit, and vacation.
- 5.2. The curriculum shall be typically delivered in two semesters in an academic year. Each semester shall be of 20 weeks (100 days) duration, including evaluation, grade moderation and result declaration. Generally, 13-14 weeks (72-77 days) for course content delivery and 4-6 weeks (20–30 days) for examination/evaluation shall be assigned in each semester. The academic session in each semester shall provide at least 75 teaching days, with 40 hours of teaching per week. The first and second semesters of an academic year normally shall begin from mid-July and first week of January respectively.
- 5.3. The academic calendar should be strictly adhered to, and all other activities including cocurricular and extra-curricular activities should be scheduled so as not to interfere with the curricular activities as stipulated in the academic calendar.
- 5.4. The non-conduct of academics on any particular teaching day for what so ever reason shall be made up by having the class/lab/teaching sessions conducted on a suitable Saturday by following the particular class time table of that teaching day which was so lost.

6. ATTENDANCE

- 6.1 All students should attend the classes and expected to be regular (100% attendance) for all the courses. The attendance records of students should be maintained in WCE moodle by the course teacher. The students should check their attendance in WCE moodle regularly and should contact respective course teacher for any discrepancy/grievance.
- 6.2 A maximum of 25% exemption in the attendance may be permitted for the approved leave of absence from class teacher/HoD for participating in co-curricular/extra-curricular activities/medical emergencies/reasons beyond the control of student. Students with more than 75% attendance shall not be imposed with any grade penalty.
- 6.3 The students with less than 75% attendance in theory course/s shall be liable for grade penalty as below:
 - i. Students having attendance greater than or equal to 65% but less than 75% shall be allowed to appear for ESE in that course with maximum grade of BC.
 - ii. Students having attendance greater than or equal to 50% but less than 65% shall be allowed to appear for ESE in that course with maximum grade of CC.
 - iii. Students having attendance less than 50% shall be awarded with XX1 grade in that course.

- 6.4 Students reported having "non-satisfactory performance" in a laboratory/seminar/mini project/project by the course teacher shall obtain XX1 grade. Non-satisfactory performance shall be reported in case of poor attendance or not satisfying/fulfilling the requirements for these courses.
- 6.5 Students obtaining XX1 grade in a course/s shall not be eligible to appear for ESE in that semester and also makeup examination in that academic year for these course/s. The performance of such students in ISE and MSE for this course/s shall be cancelled.
- 6.6 Students obtaining XX1 grade shall re-register for the course/s in subsequent year.
- 6.7 Students obtaining "XX1" grade in more than three courses in a regular semester shall be detained for that semester and shall not be allowed to appear for ESE in that semester and also make up examination in that academic year for any of the courses. The performance of the student in ISE and MSE for all courses shall be cancelled. Such students shall have to re-register for all courses of that semester in next academic year and undergo all evaluations along with regular students.

7. CURRICULUM

- 7.1. There shall be a prescribed course structure for each of the academic programmes and in general terms it shall be known as the curriculum of courses of study. The curriculum prescribes all the courses of study semester-wise with credits, assigned teaching/contact hours, evaluation scheme and minimum requirements for the award of degree. The curriculum revisions/reforms/revamping shall be a continuous process governed by outcome based education, choice based credit system and AICTE guidelines.
- 7.2. The components of curriculum with the weightages assigned are given in Table 7.1. The weightage given for these components are in line with those suggested by AICTE.

S. No.	Component of curriculum	Weightage assigned (% in terms credit)
1	Humanities, Social science and Management	6
2	Basic sciences including mathematics	15
3	Engineering science	15
4	Professional core	34
5	Professional elective	15
6	Open elective	5
7	Project work, Seminar, Internship in industry etc.	10

Table 7.1: Components of Curriculum

- 7.3. The curriculum shall have credit and audit courses. The structure of curriculum for a programme and course syllabi shall be approved by AC on recommendation of respective BoS.
- 7.4. Normally number of courses in a semester shall not be more than six for theory and four for laboratory courses.
- 7.5. Open electives offered by any parent department shall be the courses listed in the curriculum structure under the open elective category. These shall be offered to students of any other department (excluding parent department) in 5th and 6th semester and any other department (including the parent department) in 7th semester. Normally, professional and open electives shall be conducted if minimum of fifteen students opt for that elective course.
- 7.6. Major project work shall be in 8th semester. Project work in the final year facilitates students in exhibiting their technical knowledge and professional skills to address a solution to societal/industrial problems. It also encourages students to work in teams and adopt project management skills. The preparatory work for the project shall be carried out in 7th semester under pre-project work. The students shall have an option to carry out the project either within campus or in industry/autonomous institutes/reputed organizations. Normally, major project work shall be carried out by not more than five students in a group. The formation of project groups shall be based on policy of respective departments. The students shall be encouraged to opt for Sponsored Project At Industry/Institute (SPAI). The projects under SPAI/any project outside the campus require approval from concerned department.
- 7.7. Process and guidelines for SPAI shall be:
 - i. Students may opt for SPAI to be carried out in 8th semester.
 - ii. Students opting for SPAI should decide, identify and interact with relevant industry/institute in 7th semester itself. However, as per the specific needs of a particular department, the departmental academic and programme evaluation committee shall decide appropriately. Students shall take necessary help from their parent department/Training and Placement Officer (TPO) to establish contact with industries/institutes.
 - iii. Students shall submit the application attached with relevant details viz. correspondence with industry, area and nature of project to the department before the end of 7th semester.
 - iv. Director/Dean Academics shall issue permission letter to the students on the recommendation of HoD. Students shall be allowed to work in the industry/institute for maximum of 13 weeks during the project work in 8th semester.
 - v. An internal guide from the parent department and mentor from industry/organization/institute where project is to be undertaken shall be allocated to student. Both guides should discuss and finalize the scope of project work and monitor the progress together.
 - vi. Internal guide should visit the industry at least twice in a semester to see the progress of his/her student. Faculty will be supported with travelling and dearness allowance to visit industry/institute.

Academic Documents for Electronics Engineering

- vii. Students should maintain a diary, regularly write progress and get the approval from both internal and external guides at least twice in a month either by physically reporting or through email communication.
- viii. Progress report and certification of the project work undertaken shall be submitted by the student to the respective guide. The mode of evaluation shall be same as adopted for students carrying out projects in-house.
- 7.8. A course code shall be NBBLMJ [e.g. 3CV313; 2OE301; 3IC401]

where, N: revision number, BB: Code of branch for core courses and departmental professional electives/Code OE for open elective/Code IC for institute mandatory course, L: Year/Level of course, and MJ: Course number [01 to 10 (semester I) and 21 to 30 (semester II) for theory core courses; 11 to 20 (semester I) and 31 to 40 (semester II) for theory professional electives; 41 to 50 (semester I and II) for seminar and mini-projects; 51 to 70 (semester I) and 71 to 90 (semester II) for laboratory courses; 91 to 99 (semester I and II) for project; 01-07 (semester I), 08-14 (semester II) for open electives offered by AM; 15-21 (semester I), 22-28 (semester II) for open electives offered by CV; 29-35 (semester II) for open electives offered by ME; 43-49 (semester I), 50-56 (semester II) for open electives offered by EL; 57-63 (semester I), 64-70 (semester II) for open electives offered by EN; 71-77 (semester I), 78-84 (semester II) for open electives offered by IT]

- 7.9. A typical description of course syllabus shall consist of course title, course code, teaching hours per week for lecture/tutorial/practical, credit, pre-requisites, text books, reference books, objectives, outcomes with relevant Bloom's taxonomy levels, mapping of course outcome with programme outcome, assessment scheme, content, and module-wise outcomes (for theory course).
- 7.10. The details of curriculum structure and course details shall be published in college intranet (ftp//:10.10.16.16) and website (www.walchandsangli.ac.in).
- 7.11. Summer term shall also be conducted for academically weak students during the academic year for theory courses. Remedial classes and student-teacher interactive sessions shall be conducted during summer term. The duration of summer term shall be typically 3-4 weeks. The registration for the courses in summer term shall be mainly to students who have obtained FF grade in a course in the current academic year. Students with XX1 grade shall also be allowed for registration to summer term. However, students with XX1 grade shall not be allowed to appear for makeup examination in that semester as mentioned in section 6.5. Attendance penalty given in section 6.3 shall be applicable for makeup examination also.

Students with FF/XX1 grade may register for course/s in a summer term by paying prescribed fee for each course. A particular course/s shall be conducted if the number of registered students for a course/s is more than 10. The registered students should attend the classes regularly. Attendance rules shall be applicable to summer term also.

7.12. Credit System:

The primary purpose of the credit system is continuous evaluation of a student's performance which is measured by the number of credits the student has earned. Typically, credit measures the quantum of work involved in a course. The cumulative

Academic Documents for Electronics Engineering

performance index (CPI) is calculated based on the course credits and grades obtained by the student. A minimum number of earned credits and a minimum CPI should be acquired in order to qualify for the degree.

7.13. A typical credit structure for various courses with various combinations of theory/ tutorial and laboratory/project/ seminar/ mini-project hours is given in Table 7.2.

Hours pe	r week per stu	dent for	Credits assigned
Theory	Tutorial/	Laboratory/	
	Seminar	Project	
0	0	2	1
0	1	0	1
1	0	0	1
0	0	4	2
1	1	0	2
1	0	2	2
3	0	0	3
2	0	2	3
2	1	0	3
3	1	0	4
3	0	2	4
4	0	0	4
2	0	4	4

Table 7.2: Assigned credits for various types of courses

A student can earn credits for a particular course by fulfilling the minimum academic requirements of attendance and evaluation. No credits shall be awarded if a student satisfies the minimum attendance requirements but fails to meet minimum evaluation requirements.

7.14 The total number of credits required for completing a programme typically is in the range of 175-180 for regular entry and 148-155 for lateral entry. The exact number of credits required is mentioned in the curriculum structure for the respective programme. The total number of credits in a semester in which a student shall register is generally 23-25. Normally, the maximum number of credits per semester shall not exceed 30.

8. REGISTRATION

- 8.1. The students admitted through regular and lateral entry shall be automatically registered for the courses of that year. Such students shall not have to register separately for the courses.
- 8.2. A regular admitted student and willing to apply for CPI improvement/having FF/XX1/XX2 grade in a course/s shall re-register for the courses in which the student is seeking grade improvement/passing grade. Such students have to complete the course re-registration procedure alongwith regular students.
- 8.3. A student, not admitted as regular student, shall have to re-register for the courses in which he/she has obtained FF/XX1/XX2 grade. Such students have to complete the course re-registration procedure as per the schedule in academic calendar. A student obtaining "XX1" grade in less than four courses in a regular semester shall be allowed to re-register for such course/s in next academic year.
- 8.4. Course re-registration procedure shall include filling up course registration form prescribed by Dean Academics office, verification by examination cell, recommendation by programme academic coordinator and HoD of respective department, payment of prescribed fee and final approval by Dean academics. Student/s re-registered for course/s shall interact with concerned course teacher for any academic help. Student/s shall complete all the academic and evaluation requirements in consultation with course teacher.
- 8.5. Re-registration, according to rules, shall be carried out as per the schedule given in academic calendar. Late registration may be permitted only for valid reasons and on payment of late registration fees. In any case, registration should be completed before the prescribed last date for registration.
- 8.6. In-absentia registration may be allowed only in rare cases at the discretion of the Dean Academics and with prior permission.
- 8.7. Course re-registration shall be done for the course/s of both semesters at the start of academic year as per the schedule in academic calendar.

9. COURSE EVALUATION

9.1 The evaluation of theory courses shall be on the basis of two In-Semester Evaluations (ISE 1 and ISE 2), one Mid-Semester Exam (MSE), and one End Semester Examination (ESE). The weightage for each of these evaluations is given in Table 9.1.

Evaluation	Weig	ghtage
Evaluation	Credit course	Audit course
ISE-I	10%	35%
ISE-II	10%	35%
MSE	30%	30%
ESE	50%	Nil

Table 9.1:	Weightage	of Evaluation
-------------------	-----------	---------------

- 9.2 In-Semester Evaluation (ISE) for a theory course shall be carried out using assessment tools such as assignment, oral, seminar, test (surprise/declared/quiz), and group discussion. The course teacher shall use at least one assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2. The assessment tool/s for ISE shall be decided and announced by the course teacher at the beginning of the course. The record of evaluation shall be maintained by course teacher and shall submit it during academic audit.
- 9.3 The ISE 2 component for theory course shall not be shown to students and all other components shall be shown to students.
- 9.4 MSE for every theory course (credit and audit) shall be conducted centrally as per the schedule indicated in the academic calendar. MSE shall be of 30 marks and 1.5 hour duration. MSE shall usually be based on modules 1, 2 and 3. There shall be no re-examination for MSE.
- 9.5 ESE (written/online) for every theory credit course shall be conducted centrally. It shall be of 50 marks and of duration 2 hours, or as mentioned in the examination scheme approved by BoS of the respective programme. The examination shall be based on entire syllabus of the respective course. The weightage shall be 20-30% for the syllabus covered for MSE and 70-80% for the remaining syllabus after MSE. The question paper of ESE may have options up to 20% for all theory credit courses. A student absent for ESE of a course shall obtain "FF" grade. Such a student shall be allowed to appear for make-up examination. There shall be no re-examination for ESE.
- 9.6 Evaluated answer books of MSE and ESE theory courses shall be shown to students. It shall not be mandatory to show evaluated answer books to the students not present at the given time slot by the course teacher.
- 9.7 If any examinee is not in a position to write on account of temporary physical disability or injury due to accident and applies for a request for a writer with medical certificate from the Civil Surgeon to that effect, then a writer shall be allowed/ assigned by CoE to such examinee. Normally, such a writer shall neither be a student or a degree holder of any technical programme having similar competency. The examinee shall, however, apply in a prescribed proforma to CoE asking for permission to allow for such a writer. CoE shall then verify the medical certificate and give a permission letter to the examinee for using the writer. CoE shall then take the undertaking from the writer in a prescribed proforma. Such examinee shall produce the permission letter from CoE for using writer to the invigilator. Writer shall be allowed extra time as per section 9.8.
- 9.8 In case of student admitted with differently abled category/similar case/writer, who can write but at much slower speed as compared to a normal student, he/she may be allowed an extra time of 15 minutes for 30/50 marks paper and 30 minutes for 100 marks paper to write the examination for all the courses, provided he/she seeks permission from CoE for extra writing time on account of his/her disability by producing medical certificate from Civil Surgeon to this effect.
- 9.9 The paper setting, assessment and conduct of ISE 1, ISE 2 and MSE for audit course shall be as per rules of credit course. Answers books of MSE for audit course shall be shown to students.
- 9.9 The evaluation for laboratory courses shall be on the basis of either ISE or ISE and ESE each having 50% weightage. ISE shall be continuous evaluation carried out throughout

the semester and based on performance of student in laboratory, experimental write-up, presentation, oral, and test (surprise/declared/quiz). The course teacher shall use at least two assessment tools as mentioned above for ISE. ESE shall be based on either oral or performance and oral as per the examination scheme. ISE marks for laboratory course shall be shown to students and ESE marks shall not be shown to students. External and internal examiners shall conduct ESE.

- 9.10 The evaluation of courses, such as seminar, mini-projects where ISE is the only component, shall be continuous in the form of presentation, test (surprise/declared/quiz), assignment, oral and quality of report write-up. ISE marks shall be displayed.
- 9.11 The evaluation for project shall be on the basis of ISE and ESE each having 50% weightage. ISE shall be continuous evaluation carried out throughout the semester. A project evaluation committee composed of two faculty members related to subject area of project work and guide shall be constituted. The distribution of weightage for ISE shall be 25% each by two faculty members and 50% by guide. Each student shall give at least two progress seminars before the committee as per the schedule in academic calendar. A report on project work shall be submitted by students at the time of second progress seminar. ESE in the form of presentation followed by oral shall be conducted by an external examiner and internal examiner/guide. The above mode of evaluations and attendance for ISE and ESE as and when declared shall be mandatory for all students inclusive of students carrying out their project work in industry (outside the campus)/SPAI.
- 9.12 A common rubric shall be developed to assess seminar, mini-project and major project courses for each programme by departmental academic and programme evaluation committee. The rubric for the laboratory course shall be developed by the concerned course coordinator. A course coordinator is the teacher who conducts the relevant theory course or as decided by the departmental academic and programme evaluation committee.

10. THE GRADING SYSTEM

10.1 Students shall be assigned a grade based on performance in all components of evaluation/examination scheme of a course as per the structure. The grade indicates an assessment of the student's performance and shall be associated with equivalent number called a 'grade point'. The performance of the student as per the grade point on a 0-10 scale shall further fall into a letter grading system as shown in Table 10.1.

Letter Grade	Grade point	Description
AA	10	Outstanding
AB	9	Excellent
BB	8	Very good
BC	7	Good
CC	6	Average
CD	5	Below average
DD	4	Marginal
FF	0	Fail due to poor performance
XX1	0	Fail due to attendance shortage
XX2	0	Fail due to disciplinary action
PP (only for	0	Passed
non-credit		
audit courses)		
NP (only for	0	Not passed
non-credit		
courses)		

 Table 10.1: Grade points

An 'AA' grade stands for outstanding achievement relative to the class. The 'CC' grade stands for average performance and it refers to 'average' as per course teacher's expectations in a holistic sense and is not based on the class average. The 'DD' grade stands for marginal performance and is the minimum passing grade. The 'FF' grade denotes poor performance. A student who obtains FF grade in any course shall either appear for make-up examination or re-register for the course/s, till a passing grade is obtained.

The 'XX1' grade denotes failure of student due to shortage of minimum attendance (less than 50% of the total hours engaged for that course) and not satisfactory performance in laboratory course.

The 'XX2' grade denotes failure of student due to disciplinary action.

A student who obtains 'XX1/XX2' grade in any course has to necessarily re-register for the course in the subsequent semesters until a passing grade is obtained. Such students shall not be allowed to appear for makeup examination.

- 10.2 Relative grading shall be applicable to courses where the number of students registered is greater than or equal to 15.
- 10.3 The concerned faculty shall use ISE 1, ISE 2, MSE and ESE marks to decide the total marks. The marks of each mode of evaluation shall be up-to one decimal place and shall not be rounded. The total of ISE 1, ISE 2, MSE and ESE will be computed and rounded to the nearest higher integer.
- 10.4 A student will be given maximum of two grace marks per course to obtain passing grade in maximum of two courses provided he/she has passed in all other courses for that semester. If a student has failed in more than two courses, no grace marks will be applicable in any course.
- 10.5 The grace marks shall be applicable only to regular students and shall not be applicable to any re-registered student in a course.
- 10.6 FF grade shall be assigned to a student in a theory course in the following cases;
 - i. Sum of marks obtained by the student in ISE 1, ISE 2, MSE, ESE, and grace (if any) is less than 40.
 - ii. Marks obtained in ESE are less than 20.
- 10.7 FF grade shall be assigned in a laboratory course to a student who shall get less than 40% marks in ESE. XX1 grade shall be assigned in a laboratory course to a student obtaining less than 40% marks in ISE.
- 10.8 In the further grading process, the failed students shall be excluded.
- 10.9 Then, the mean (μ) and standard deviation (σ) of total marks of passed students shall be computed. From these, the relative grading thresholds shall be decided with the use of Tables 10.2 and 10.3 for theory and lab./ proj./ mini-proj /seminar respectively.

Theory Credit Course		
Grade	≥Min Threshold	< Max Threshold
FF	0	40
DD	40	Max(43, Min[L(μ-1.745*σ), 46])
CD	Max (43, Min [L (μ- 1.745* σ), 46])	Max (47, Min [L (μ- 1.175 *σ), 52])
CC	Max (47, Min [L (μ- 1.175 *σ), 52])	Max (56, Min [L (μ- 0.613 *σ), 63])
BC	Max (56, Min [L (μ- 0.613 *σ), 63])	Max (64, Min [L (μ-0.05 *σ), 73])
BB	Max (64, Min [L (μ- 0.05 *σ), 73])	Max (70, Min [L (μ+ 0.5836* σ), 82])
AB	Max (70, Min [L (μ+ 0.5836* σ), 82])	Max (75, Min [L (μ+ 1.225* σ), 90])
AA	Max (75, Min [L (μ+ 1.225* σ), 90])	100

Table 10.2: Relative grading thresholds for theory credit courses

Walchand College of Engineering, Sangli

Lab Course		
Grade	≥Min Threshold	< Max Threshold
FF	0	40
DD	40	Max (43, Min [L (μ- 2.336* σ), 46])
CD	Max (43, Min [L (μ- 2.336* σ), 46])	Max (47, Min [L (μ- 1.88* σ), 52])
CC	Max (47, Min [L (μ-1.88* σ), 52])	Max (56, Min [L (μ- 1.475* σ), 63])
BC	Max (56, Min [L (μ- 1.475* σ), 63])	Max (64, Min [L (μ- 0.84* σ), 73])
BB	Max (64, Min [L (μ- 0.84* σ), 73])	Max (70, Min [L (μ-0.1* σ), 82])
AB	Max (70, Min [L (μ-0.1* σ), 82])	Max (75, Min [L (μ+ 0.807* σ), 90])
AA	Max (75, Min [L (μ+ 0.807* σ), 90])	100

Table 10.3: Thresholds for Lab./ Proj./ Mini-Proj /Seminar

- 10.10 After the relative grade thresholds are calculated, the faculty shall check the histogram of the grades and adjust the thresholds to get nearly bell shaped histogram.
- 10.11 After this the faculty shall get the grade thresholds, approved from GMC. After approval, the faculty shall lock the grade thresholds.
- 10.12 The faculty then shall review the boundary cases for each grade and may assign max +1 grace (ISE) mark to those boundary cases. This shall not change the grade boundaries.
- 10.13 The grades shall be calculated as per the Tables 10.2 and 10.3 and assigned to each student.
- 10.14 The faculty shall prepare the grade sheet, verify it, sign on it, get the signature of the GMC and handover the grade sheet to the HoD.
- 10.15 HoD shall receive grade sheets of all courses of the department from respective faculty, verify them, and approve it and display the class wise provisional result on the departmental notice board.
- 10.16 Absolute grading is applicable to courses where the number of students registered for a course is less than 15. Allocation of grace marks shall be same as mentioned in 10.4.

The thresholds for absolute grading are given in Tables 10.4 and 10.5.

Grade	Min Threshold	Max Threshold
FF	≥ 0	< 40
DD	\geq 40	< 45
CD	\geq 45	< 50
CC	\geq 50	< 60
BC	≥ 60	< 70
BB	≥ 70	< 80
AB	≥ 80	< 90
AA	≥ 90	≤100

Table 10.4: Absolute grading thresholds for credit course

Table 10.5: Absolute grading Thresholds for audit courses

Academic Documents for Electronics Engineering

99

Grade	Min Threshold	Max Threshold
NP	≥ 0	< 40
PP	≥ 40	≤100

CPI shall be calculated as per absolute grading system for the students switched over from university pattern to autonomous pattern.

10.17 Makeup Examination

- i. There shall be a makeup examination for all courses (theory and laboratory) once in a year. The makeup examination for an academic year shall be conducted before the commencement of an odd semester of the next academic year.
- ii. The students failed in an odd semester and/or even semester in theory/laboratory credit course in an academic year shall be allowed to appear for a makeup examination for the same academic year. A student failed in an audit course shall have to re-register for the course/equivalent course, whenever it is offered in subsequent semester/s.
- iii. Also the students, who have secured DD or CD grade in a course in an odd semester or even semester in an academic year and applied for CPI improvement, can appear for such makeup examination for the same academic year. Students with XX1/XX2 grade in a course shall not be allowed to appear for makeup examination of that course in that year.
- iv. If a student applies for appearing for such makeup examination for a theory course, the MSE, ISE 1 and ISE 2 marks of the course shall be null and void. Also grade obtained in the course during regular odd or even semester examination shall be null and void.
- v. The makeup examination for a theory course shall be of 100 marks and shall be based on all modules in the syllabus with equal weightage to each module. The question paper shall not have any options (no internal options also).
- vi. ISE component of student performance in regular semester for a laboratory course shall be retained and makeup examination shall be conducted for ESE component either with oral/performance and oral as per examination scheme of that course.
- vii. For makeup examination absolute grading shall be used and Table 10.4 shall be applied for assigning the grades.
- viii. The evaluated answer books of makeup examination shall be shown to students.
- ix. Grace marks shall not be awarded in makeup examination.
- x. If the student fails to clear the course, even in make-up examination, he/she shall have to re-register for the course whenever it is offered and undergo all the modes of evaluations afresh.

- xi. There shall not be any other re-examination for makeup examination for what so ever reason.
- 10.18 Revaluation

A provision of addressing grievance by a student in evaluation of his/her answer book for a course/s in ESE and makeup examination is made in terms of revaluation. If student is not satisfied with the evaluation of his/her answer books in ESE and makeup examination, he/she may apply for revaluation by paying prescribed fee after the declaration of result. If the marks awarded in the paper before and after revaluation vary by 10% or more of the maximum marks assigned to that paper, then marks after revaluation shall be accepted for the revision of result. However, irrespective of what is stated above, the marks obtained after revaluation shall be accepted if the candidate gets the benefit of passing the examination. In any case revaluation fee shall not be refunded.

- 10.19 The grade "PP" (Passed)/ "NP" (Not Passed) shall be awarded for audit courses depending upon the performance of a student evaluated by the faculty in-charge. No grade points shall be associated with these grades and performance in these courses shall be not taken into account in the calculation of the performance indices (SPI, CPI). However, the award of the degree shall be subject to obtaining a "PP" grade in all such courses.
- 10.20 Transfer of credits

In order to provide opportunity to students for studying in different learning environment, normally third year students can be sent to other reputed autonomous institutes for one semester under credit transfer. Students can avail credit transfer from other autonomous colleges for one semester provided the curriculum of both the colleges have same minimum three core courses in that semester. The remaining courses in that semester of that institute can be taken as professional electives. Grades obtained by such credit students from that institute will be suitably transferred to the grade card of WCE after approval from CoE, Dean Academics and Director. Such credit transfer is mutually possible from both institutes.

10.21 CPI improvement

i. A student in third and final year, and student who has passed final year B. Tech. shall be permitted to apply for CPI improvement provided his/her CPI is less than 6.50 (for students admitted before 2014-15)/6.75 (for students admitted after 2014-15) by the end of second/third/final year. Such students may apply for CPI improvement by registering for the course/s, of current academic year or immediately preceding academic year, in which the student has obtained DD/CD grade.

[e.g. 1. A student in final year may apply for the course/s of final and third year. The student shall be permitted to appear for makeup examination in final year /re-register for the course/s of third year for CPI improvement.

2. A student in third year may apply for the course/s of third and second year. The student shall be permitted to appear for makeup examination in third year /re-register for the course/s of second year for CPI improvement.]

ii. Re-registration should be done as per schedule in academic calendar.

- iii. A student who has passed final B. Tech. shall apply for CPI improvement within 15 days after declaration of makeup examination result. He/she shall reregister for the course/s of final and third year in which the student wants to apply for grade improvement. Such students shall return all the concerned original grade cards to CoE.
- iv. If the grade obtained by the student at the improvement examination is improved, it shall be considered as the final grade. For such students new grade card shall be issued with a remark "grade after improvement" for that course/s in which grade is improved.
- v. No student shall be permitted to improve grades in courses like laboratory/seminar/mini-project/project.
- vi. A student shall be permitted to apply for CPI improvement by re-registering for maximum of five courses in an academic year.

11. CALCULATION OF PERFORMANCE INDICES

- 11.1 The overall performance of a student shall be indicated by indices: FYPI First Year Performance Index (FYPI), Semester Performance Index (SPI) and Cumulative Performance Index (CPI).
- 11.2 The performance of a student in a semester shall be indicated by a number called SPI.
- 11.3 SPI shall be the weighted average of the grade points obtained in all the courses registered by the student during a semester.
- 11.4 Calculation of SPI.

$$SPI = \frac{\sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{n} C_i}$$

where, C_i = number of credits earned in i^{th} course of semester,

i = 1...n represent number of courses in which the student has registered in that semester,

 G_i = grade point earned in ith course.

- 11.5 SPI and CPI are calculated only after make-up examination.
- 11.6 First Year Performance Index (FYPI):

$$FYPI = \frac{\sum_{i}^{n_f} C_i G_i}{\sum_{i}^{n_f} C_i}$$

where, C_i = number of credits earned in ith course of first year,

 $i = 1...n_f$ represent number of courses in which the student has registered in first year,

102

 G_i = grade point earned in ith course.

- 11.7 FYPI shall reflect all the courses undergone by a student in the first year including the courses in which he/she has failed. FYPI may get modified in the subsequent semesters whenever a student clears his/her first year backlog courses.
- 11.8 FYPI shall be calculated after the make-up examination on the basis of the grade obtained by that student in a make-up examination. FYPI shall be calculated for the students admitted prior to 2014-15. FYPI shall not be calculated for the students admitted for academic year 2014-15 and onwards.
- 11.9 Cumulative Performance Index (CPI):

CPI is the weighted average of the grade points obtained in all the courses registered by a student from the beginning of the third semester (for the students admitted prior to 2014-15) and first semester (for the students admitted for academic year 2014-15 and onwards) of the programme.

$$CPI = \frac{\sum_{j=1}^{m} C_{j}G_{j}}{\sum_{j=1}^{m} C_{j}}$$

where, j = 1,...m represent the number of courses registered by the student upto the semester upto which CPI is to be calculated.

- 11.10 FYPI, SPI and CPI will be rounded up to second decimal.
- 11.11 Conversion of CPI into equivalent percentage

The final CPI is converted into equivalent percentage for students admitted prior to 2014-15 and from 2014-15 is given in Table 11.1.

CPI of students admitted		Equivalent
Prior to 2014-15	2014-15 onwards	Percentage
6.00	6.25	55
6.50	6.75	60
7.00	7.25	65
7.50	7.75	70
8.00	8.25	75
8.50	8.75	80
9.00	9.25	85
9.50	9.75	90

Table 11.1: CPI conversion to Percentage

11.12 Students admitted prior to 2014-15 and passed with CPI above 6.50 will be awarded first class else pass class. Student admitted after 2014-15 and passed with CPI above 6.75 will be awarded first class else pass class.

12. GRADE REPORT

- 12.1 A grade report in the form of grade card shall be issued to students at the end of academic year after the declaration of makeup examination results.
- 12.2 The grade card shall include the following;
 - i. The list of courses registered for an academic year along with credits.
 - ii. The letter grade obtained in each course.
 - iii. The total number of credits earned by a student.
 - iv. SPI, FYPI (if applicable) and CPI.
 - v. Examination details.
- 12.3 Grading System, calculation of performance indices and conversion of CPI to equivalent percentage shall be provided on the back page of grade card.
- 12.4 Result and class obtained shall be indicated only in the grade card of final year.

13. AWARD OF DEGREE

- 13.1 A student shall be eligible for the award of B. Tech. Degree from the College and the University provided the student has:
 - i. Registered and passed all the prescribed courses and earned minimum credit requirement for the degree.
 - ii. Obtained $CPI \ge 5.0$.
 - iii. Paid all the institute dues and satisfied all the requirements prescribed.
 - iv. No case of indiscipline pending against him/her.
 - v. Obtained eligibility certificate from University.
- 13.2 AC shall recommend the list of students to Shivaji University for award of B. Tech. degree.

14. AWARD OF MEDALS

- 14.1 Awards shall be given to the students for excellent performance in academics, sports/extra-curricular/co-curricular activities, and overall performance.
- 14.2 Gold, silver and bronze medals shall be awarded to students with excellent academic performance based on CPI in each programme.
- 14.3 Student shall be awarded with academically best performing student amongst all the progrommes based on CPI.
- 14.4 An overall best student award shall be given for a student considering all-round performance in academics, extra- and co-curricular activities.

14.5 The award of scholarships/free-ships and other benefits shall be in accordance with rules of Government of Maharashtra and Government of India.

15 COMMITTEES AND FUNCTIONARIES

15.1 The tenure of all committees shall be two years. The frequency of meeting shall depend on nature of the committee. One-third members of the committee shall constitute the quorum. The tenure of functionaries (coordinators) mentioned in this document shall be three years.

15.2 Academic council:

The Academic Council will be solely responsible for all academic matters, such as, framing of academic policy, approval of courses, regulations and syllabi, etc. The Council will involve faculty at all levels and also experts from outside, including representatives of the university and the government. The decisions taken by the Academic Council will not be subject to any further ratification by the Academic Council or other statutory bodies of the university. The composition and functions of the academic council are given below:

Composition:

- i. Director of the college (Chairman).
- ii. All Heads of department in the college.
- iii. Four teachers of the college representing different categories of teaching staff by rotation on the basis of seniority of service in the college.
- iv. Not less than four experts from outside the college representing such areas as industry, education, engineering etc., to be nominated by the Board of Governors (BoG)/Administrative council.
- v. Three nominees of the university.
- vi. Dean academics (member secretary).

Functions and Powers:

- a. Scrutinise and approve the proposals with or without modification of the Boards of Studies with regard to courses of study, academic regulations, curricula, syllabi and modifications thereof, instructional and evaluation arrangements, methods, procedures relevant thereto etc., provided that where the Academic Council differs on any proposal, it will have the right to return the matter for reconsideration to the Board of Studies concerned or reject it, after giving reasons to do so.
- b. Make regulations regarding the admission of students to different programmes of study in the college subjected to Government rules and regulations.
- c. Advice measures for improving the quality of teaching, study and research, innovative evaluation and teaching-learning methods.
- d. Make regulations for sports, extra-curricular activities, and proper maintenance and functioning of the playgrounds and hostels.
- e. Recommend to BoG proposals for institution of new programmes of study.

- f. Recommend to BoG for institution of scholarships, studentships, fellowships, prizes and medals, and to frame regulations for the award of the same.
- g. Advice the BoG on suggestions(s) pertaining to academic affairs made by it.
- h. Perform such other functions and such other duties as may be necessary and as may be assigned by BoG pertaining to academics.

15.3 Academic Standing Committee (ASC)

Composition:

The composition is same as that of AC except external members. ASC shall perform the functions under emergent situations subjected to ratification by the AC.

15.4 Board of Studies

The Board of Studies (BoS) is the basic constituent of the academic system of an autonomous college. Its functions will include framing the syllabi for various courses, reviewing and updating syllabi from time to time, introducing new courses of study, determining details of continuous assessment, recommending panels of examiners under the semester system, etc. The composition and functions of the Board of Studies are given below:

Composition:

- i. Chairman: Head of the concerned department
- ii. Internal members: The entire faculty of each specialisation.
- iii. Academic council nominee: Two experts in the subject from outside the college nominated by the Academic Council.
- iv. University nominee: One expert nominated by the vice-chancellor from a panel of six recommended by Director.
- v. Industry representative: One representative from industry/corporate sector/allied area relating to placement.
- vi. One postgraduate meritorious alumnus to be nominated by Director.
- vii. Co-opt members: Chairman, Board of Studies, may with the approval of the Director shall co-opt: Experts from outside the college whenever special courses of studies are to be formulated
- viii. Member secretary: Programme Academic Coordinator

In addition to BoS for departments of various disciplines, there shall be a BoS for Basic sciences, Mathematics and humanities.

Composition of general BoS:

- i. Chairman: First year programme coordinator
- ii. Internal members: The entire faculty of each specialisation.
- iii. Academic council nominee: Two experts in the subject from outside the college nominated by the Academic Council.
- iv. University nominee: One expert nominated by the vice-chancellor from a panel of six recommended by Director.
- v. Industry representative: One representative from industry/corporate sector/allied area relating to placement.
- vi. Co-opt members: Chairman, BoS, may with the approval of the Director shall co-opt: Experts from outside the college whenever special courses of studies are to be formulated.
- vii. Member secretary: Nominated by first year Programme coordinator.

The term of the nominated members shall be two years. Director shall draw the schedule for meeting of the Board of Studies for different departments. The meeting may be scheduled as and when necessary, but at least once a year.

The Board of Studies of a department in the college shall:

- a. Review and revision of curriculum keeping in view the VMOs of the college and department, interest of the stakeholders, and national requirement for consideration.
- b. Ensure academic standard and excellence of the courses offered by the department.
- c. Recommend the curriculum for approval of the Academic Council.
- d. Coordinate research, teaching, extension and other academic activities in the department/college.

15.5 Departmental Advisory Board (DAB)

DAB is another basic constituent of the academic system of an autonomous college. The composition and functions of the DAB are given below: Composition:

- i. Chairman: Head of the concerned department
- ii. Internal members: Two senior faculty members of department.
- iii. Industry representative: One representative from industry/corporate sector/allied area relating to placement.
- iv. One academician outside college.
- v. One meritorious alumnus.
- vi. One parent.
- vii. One student.
- viii. Member secretary: Programme Evaluation Coordinator

The term of the nominated members shall be two years. Director shall draw the schedule for meeting of the DAB for different departments. The meeting may be scheduled as and when necessary, but at least once a year.

The DAB of a department in the college shall:

- a. Formulate a process to review post-implementation effects of curriculum.
- b. Suggest measures to ensure academic standard and excellence of the courses offered by the department.
- c. Suggest methodologies for innovative teaching and evaluation techniques; enhancement of industry-institute interaction.
- d. Identify and recommend the need of new programme.
- e. Review target set for attainment of course outcomes and programme outcomes.
- f. Guide and provide support to department for enhancing interaction with outside world.
- g. Plan strategically to enhance the academic quality of department.
- h. Address concerns of stakeholders expressed through feed back.
- i. Defining and redefining the Programme Educational Objectives (PEOs) and Programme Outcomes (POs) based on the recommendations by departmental academic committee.
- j. Study the achievement of PEOs and POs reported by department academic committee and suggest measures for improvement.

15.6 Board of Examinations (BoE)

Composition:

- i. Director (Chairman)
- ii. Dean Academics
- iii. Controller of Examination (COE): Member Secretary
- iv. University Nominee (COE of Shivaji University (SU) or his nominee not below the rank of Deputy Registrar)
- v. One expert possessing ten years of industrial/field experience nominated by the Chairman.
- vi. DPC Chairpersons (Representing DPC)
- vii. Coordinators (Examination, Assessment, Results and Tabulation)

Functions and Powers:

- a. The BoE shall
 - i. Ensure proper performance of the various duties in conducting examinations viz. paper setting, time table preparation, assessment and declaration of results.
 - ii. Recommend examination reforms and shall implement them after approval of academic council.
 - iii. Prepare the detailed time table of examinations as per the schedule approved by academic council.
 - iv. Arrange for strict vigilance during the conduct of examination so as to avoid use of unfair means by the students, faculty, and invigilators.
- b. Chairman, BoE shall constitute Complaint Redressal Committee (CRC) consisting of three members as and when required to deal with the complaints related to the conduct of examinations.
- c. The recommendations of the CRC shall be approved by Chairman, BOE to take appropriate disciplinary actions in the concerned matter. The disciplinary actions shall be endorsed by the BOE.
- d. The BOE shall perform such duties and responsibilities that are assigned by Academic Council of the institute from time to time.

15.7 Departmental Academic and Programme Evaluation Committee

Composition:

- i. Head of Dept. (Chairman)
- ii. Five faculty members (at least one from each specialisation) nominated by HoD.
- iii. Member Secretary: Programme Academic Coordinator (UG)/Programme Evaluation Coordinator (UG).

Functions and Powers:

- a. Review, revise and prepare curriculum structure following institutional policy, suggest improvements in syllabus of a course/s prepared by course teacher/s, and forward the curriculum to BoS for further recommendation.
- b. Check appropriateness of course objectives, course outcomes, and mapping of COs with POs and suggest necessary improvements/modifications.
- c. Monitor the academic progress throughout the semester, conduct of classes, and take appropriate corrective measures to improve quality of curriculum delivery.
- d. Review academic performance of students.
- e. Counsel the concerned course teachers for improvement based on student feedback, academic and question paper audit reports.

- f. Set target/s for attainment of course outcomes and programme outcomes.
- g. Formulate strategy to collect feedback from stake holders, analyze the collected feedback and forward the analysis to DAB.
- h. Contribute to maintain academic standard, improve quality of the courses offered by the department and enhancement of industry-institute interaction.
- i. Suggest open and professional electives considering societal needs.
- j. Recommend methodologies for innovative teaching and evaluation techniques to BoS.
- k. Coordinate research, teaching, extension and other academic activities in the department/college.
- 1. Carry out preparatory work for defining/redefining the Programme Educational Objectives (PEOs) and Programme Outcomes (POs) periodically.
- m. Monitor evaluation of course attainments leading to achievement of programme outcomes and report the results of assessment to BoS.

15.8 Programme Academic Coordinator

There shall be Programme Academic Coordinator for UG programme. The functions and duties are:

- a. Coordination of all academic activities of the programme viz. curriculum revision, framing of syllabus, time table, BoS meeting as member secretary, reregistration of course/s, display and submission of attendance status.
- b. Coordination for programme related examination activities (submission of ISE marks and question papers), Preparation of schedule of ESE for laboratory in coordination with examination cell.
- c. Monitoring academic activities and conduct of classes.
- d. Extend necessary help to departmental academic and programme evaluation committee.
- e. Recording and forwarding all academic and examination related documents to Dean academics/CoE.
- f. Work in association with Dean Academics and Controller of Examinations.

15.9 Programme Evaluation Coordinator

There shall be Programme Evaluation Coordinator for UG programme. The functions and duties PEC are:

- a. Coordination to conduct internal academic audit, question paper audit, and departmental advisory board meetings as a member secretary.
- b. Conduct course and graduate exit survey, make arrangements for feedback from stakeholders (industry/employer/alumni) and feedback analysis.
- c. Monitoring assessment of course outcomes.
- d. Computation/assessment/evaluation/achievement of PEOs and POs as per NBA requirements.
- e. Compilation of information required for Annual Quality Assurance Report (AQAR) of the Internal Quality Assurance Cell (IQAC) and forwarding it to Dean QA.
- f. Extend necessary help to departmental academic and programme evaluation committee.
- g. Work in association with Dean QA.

PACUG and PECUG will coordinate NBA documentation activity.

15.10 First Year Programme Coordinator (FYPC)

There shall be FYPC and functions and duties are:

- a) Coordination of all academic and examination (submission of ISE marks and question papers)activities of first year programme (excluding basic engineering courses) viz. curriculum revision, framing of syllabus, time table, BoS meeting as Chairman, re-registration of course/s, display and submission of attendance status.
- b) Coordination to conduct internal academic and question paper audit.
- c) Provide assessment of course outcomes to concerned departments and relevant information required for NBA documentation.
- d) Monitoring academic activities and conduct of first year classes.
- e) Work in association with Dean Academics.

15.11 Faculty advisor /Mentor

The faculty Advisor/Mentor will be appointed by the HoD of the parent department, who will be assigned a group (20 -25) of students of the concerned parent department, and will be valid throughout their duration of study. A group shall consist of 5-7 students from each class.

The functions and duties of FA are:

- a. Help the students in planning their courses and related activities during their study period.
- b. Monitor, guide, advice and counsel the students on *all* academic matters.
- c. Interact with the students at least twice in a semester and maintain the records/minutes of meeting.

15.12 Course teacher

The functions and duties of course teacher are:

- a. Conduct classes as per the time table issued by the HoD and maintain all academic records (Attendance on moodle, Evaluation, Attainment) for that course.
- b. Prepare course delivery and evaluation plan for student performance and distribute to all the students within the first week of each semester.
- c. Display students' performance in attendance and evaluation as stipulated in the academic RRs.
- d. Report to the HOD on a periodic (*monthly*) basis, the potential cases of very poor academic performance as well as those of low attendance.
- e. Submit ISE marks to PACUG as per the schedule in academic calendar.
- f. Document all academic records in the course book in a format specified by Dean QA and submit it for academic audit.

16. DISCIPLINE AND CONDUCT

- 16.1 Any act of misconduct committed by a student inside or outside the campus shall be an act of violation of discipline of the college. Violations of the discipline shall include:
 - a. Disruption of teaching, examination, administrative work, curricular or extracurricular activity, and any act likely to cause such disruption.
 - b. Damaging or defacing the property inside or outside the college campus.
 - c. Engaging in any attempt at wrongful confinement of teachers, offices, employees and students of the college.
 - d. Use of abusive and derogatory slogans or intimidatory language or incitement of hatred and violence.

Academic Documents for Electronics Engineering

- e. Ragging in any form ("Ragging" means causing, inducing, compelling or forcing a student, whether by way of a practical joke or otherwise, to do any act which detracts from human dignity or violates his person or exposes him to ridicule or to forbear from doing any lawful act, by intimidating, wrongfully restraining, wrongfully confining or injuring him or by using criminal force to him or by holding out to him any threat of such intimidation, wrongful restraint, wrongful confinement, injury or the use of criminal offence. Supreme Court of India has defined ragging as a criminal offence.)
- f. Eve teasing or disrespectful behaviour to women or girls students.
- g. An assault upon, or intimidation of, or insulting behaviour towards a teacher, officer, employee or student or any other person.
- h. Getting enrolled in more than one programme course of study simultaneously.
- i. Committing forgery, tampering with documents or records, identity cards, furnishing false certificate or false information.
- j. Organising instant agitation/meetings without prior permission in the campus.
- k. Viewing/downloading obscene information/data, images and executable files, sending obscene mails/messages via facebook / tweeter/other social sites using college servers.
- 1. Sharing the login and passwords & other details of IT facilities provided to other students/outsiders.
- m. Refusing to provide an identity card when demanded by any college authority.
- n. Consuming or possessing alcoholic drinks, dangerous drugs or other intoxicants in the college campus.
- o. Possessing or using any weapons and fire arms in the college campus.
- p. Unauthorized occupation of hostel, Accommodating guests or other persons in hostels without permission.
- q. Malpractice in examination.
- r. indulging in anti-national activities contrary to the provisions of acts and laws enforced by Government.
- s. Any other act which may be considered by the Director or the Discipline Committee to be an act of violation of discipline.
- 16.2 Any act of indiscipline of a student reported to Director/Concerned authority shall be referred to Grievance Redressal and Disciplinary Committee of the college. The Committee shall enquire into the charges and recommend suitable punishment if the charges are substantiated. The penalties/punishment/actions may include:
 - a. Written warning and information to the parents/guardian.
 - b. Imposition of fine ranging from Rs. 500/- upto Rs. 5000/-.
 - c. Suspension from the College/Hostel/Mess/Library/ or availing of any other facility.
 - d. Suspension or cancellation of scholarships/fellowship or any financial assistance from any source.
 - e. Recover of loss caused to college property.
 - f. Debarring from participation in sports/NSS/student club.
 - g. Disqualifying from holding any representative position in the Class/College/Hostel/Mess/Sports/Clubs and in similar other bodies.
 - h. Disqualifying from appearing in placement and receiving any awards.
 - i. Expulsion from the Hostel/Mess/Library/Club/College for a specified period by forfeiting fees.
 - j. Debarring from an examination.
 - k. Action as per Maharashtra anti-ragging act 1999.

Academic Documents for Electronics Engineering

- 16.3 If a student is found guilty of malpractice in examinations then he/she shall be punished as per the recommendations of the Complaint Redressal Committee (CRC) constituted by BoE. The CRC shall inquire and decide the punishment by following the Guidelines for imposing punishment on examinee/s/others involved in unfair means. However depending on the situation, committee may quantify the severity of the punishment which may include:
 - a. Cancellation of the performance of the student in the course/s in which he/she was involved in malpractice.
 - b. Cancellation of the performance in that examination for all the courses.
 - c. Expulsion/termination from the college if repeatedly involved.
 - d. Stoppage of scholarships/stipend.
 - e. Issuing warning.
 - f. Debarring from the examinations for a specified period.
- 16.4 Student/s involved in act of indiscipline/malpractice in examination shall be issued notice asking him/her asked to be present before the respective committee (GRDC/CRC) on the day at specified time and venue with his/her parents/guardian. He/she shall give written reply/oral explanation to the charges levelled against him/her for consideration. If the implicated student/s fails to appear before the committee, then decision shall be taken in absentia, on the basis of available evidence/documents, which shall be binding on the concerned student.
- 16.5 Every admitted student shall be issued photo identification (ID) card which must be retained by the student while he/she is registered at WCE. The student must have valid ID card with him/her while in the institute.

17. CONCLUSIONS

The academic policies/regulations regarding conduct of undergraduate programme in WCE are published in this document. The academic council reserves the right to modify these policies/regulations as and when required from the point of view of achieving academic excellence.

The decision of Director (Chairman, Academic council) shall be final and binding on all concerned i) for the cases not covered through this document; ii) in case of any dispute, difference of opinion in interpretation of this regulation; and iii) emergent cases.

Director

Changes/Amendments in Academic Rules and Regulations [UG]

(After 6th and 7th Academic Council Meeting)

Inclusions/Incorporations in academic rules and regulations (V1.6) of UG and PG

(As per the decisions in 7th Academic Council meeting)

6.3

iv) The participation by a student at state/national level and bringing credit to institute is to be considered for exemption/excuse from attendance during the period of the concerned activity. The exemption/excuse is to be considered by assigning the same grade to exemption/excuse as that of present (Normally one grade) in moodle setting for attendance record.

9.14 The achievement by a student at state/national level and bringing credit to institute is to be considered for exemption from MSE. The performance in ESE by such student will be enhanced by 1.6 factor to compensate for exemption of MSE. However, such student should get minimum of 40% marks in ESE. In case ESE is missed, such student should appear for make-up examination. No remarks will be indicated in grade card.

10.22 (UG) and 10.24 (PG)

The rules for giving extra 3% marks (E3M) for Specially Abled students (SAS)

- a. The E3M for SAS shall be given only for the first attempt.
- b. The E3M shall not be applicable to SAS appearing for makeup examinations. However, if such a student, due to valid reasons, does not appear for any of the evaluation in all the courses during the regular semester and if he is permitted to appear in all the courses of the concerned semester during the makeup examination of that year, in such a case E3M shall be a valid claim to the concerned SAS.
- c. The total of maximum marks of the semester, for which the SAS is appearing, shall be computed based on the current academic structure in force and excluding the backlog (re-registered) courses.
- d. The courses, in which SAS has failed, shall be arranged in descending order based on the scored marks (The course with least marks required for passing will be first and so on).
- e. Accordingly, the 3% marks shall be computed and distributed among the courses of above two groups so as to give marks required for passing subject to the condition that, the total extra marks shall not exceed 3% of the concerned semester total.
- f. While giving extra marks, first the required marks shall be given to enable the student to pass ESE and then (if needed), the required marks for passing the course shall be given. However he/she shall be pass with passing grade "DD".
- g. To be eligible for these benefits, SAS must have appeared all components of evaluations for the course.
- h. The course/s, for which SAS has availed this benefit, shall be indicated with (£ pound symbol) and mention of the GR will be made on the grade card.

Amendments in UG and PG RRs

	CPI improvement		
RR	Present	Amended	
UG 10.21 iii.	A student who has passed final B. Tech. shall apply for CPI improvement within 15 days after declaration of makeup examination result. He/she shall re- register for the course/s of final and third year in which the student wants to apply for grade improvement. Such students shall return all the concerned original grade cards to CoE.	A student who has passed final B. Tech. may apply for CPI improvement. He/she shall re-register for the course/s of final and third year in which the student wants to apply for grade improvement. Such students shall return all the concerned original grade cards to CoE.	
PG 10.23 iii.	A student who has passed M. Tech. shall apply for CPI improvement within 15 days after declaration of makeup examination result. He/she shall re-register for the course/s of first year in which the student wants to apply for grade improvement. Such students shall return all the concerned original grade cards to CoE.	A student who has passed M. Tech. may apply for CPI improvement. He/she shall re-register for the course/s of first year in which the student wants to apply for grade improvement. Such students shall return all the concerned original grade cards to CoE.	
	Passing Criteria/Gra	ce Marks	
UG PG 10.4	A student will be given maximum of two grace marks per course to obtain passing grade in maximum of two courses provided he/she has passed in all other courses for that semester. If a student has failed in more than two courses, no grace marks will be applicable in any course.	A student shall be given maximum of two grace marks [(for ESE or (ISE1 +MSE+ISE2)] per course to obtain passing grade in maximum of two courses provided he/she has passed in all other courses for that semester. If a student has failed in more than two courses, no grace marks will be applicable in any course.	
UG PG 10.6	FF grade shall be assigned to a student in a theory course in the following cases; i. Sum of marks obtained by the student in ISE-1, ISE-2, MSE, ESE, and grace (if any) is less than 40. ii. Marks obtained in ESE are less than 20.	FF grade shall be assigned to a student in a theory course in the following cases; i. Sum of marks obtained by the student in ISE 1, ISE 2, MSE, ESE, and grace (if any) is less than 40. ii. Marks obtained in ESE are less than 20 (with grace if any).	