Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

First Year M. Tech. (Computer Science and Engineering) Sem – I to II

AY 2020-21

Professional Core (Theory) Courses

Title of the Course: Research Methodology for Computer Science	L	Т	Р	Cr
(4IC501)	2	0	0	2
Pre-Requisite Courses: Nil				
Textbooks:				
 Kothari C. R., "Research Methodology", New Age international, Chopra Dipak and Sondhi Neena, "Research Methodology : Con 		d cases	" Vikas	2
Publishing House, New Delhi, 2008.	copis un	a cuses	, vinas	,
3. Kumar Ranjit, "Research Methodology: A Step by Step Guide for	r Begini	ners". S	age Put	olisher
Second Edition,2011.	0	,	U	
4. Sokolowski John A, Banks C.M," Modeling and Simulation Fu	ındamen	tals", A	A John V	Wiley
Publication,2010.		,		5
References:				
1. Philip E. and Pugh Derek, "How to get a Ph. D. – A handbook for supervisors", Open University Press, 2005.	or studer	nts and	their	
2. Melville Stuart and Wayne Goddard, "Research Methodology: A Engineering Students", Juta Publisher, Second Edition ,2001.	An Introc	luction	for Scie	ence &
3. G. Ramamurthy, "Research Methodology", , Oxford University	Press, Se	cond E	diton , 2	2005.
4. Roig .M, "Avoiding plagiarism, self-plagiarism, and other questi guide to ethical writing", 2006.				
5. Vaughan, "Statistical methods for the information professional: to understanding, using and interpreting statistics", Information edition,2004.				
Course Objectives :				
	terrate and	earch n	rohlems	,
1 To describe concents of research and its methodologies and cons	IFIN FAC			
 To describe concepts of research and its methodologies and cons To make students familiar with research in a more appropriate m 		1		

Course Learning Outcomes:

CO	After completion of	the course studen	t should	l be ab	le to	Bloon	n's Cog	gnitive	
						level	Des	scriptor	
CO1	illustrate the research	problem				3	Ap	plying,	
CO2	assess research proce research	dures/simulation t	techniqu	es to ir	nprove	5	Eva	aluating	
CO3	produce research repo	orts in standard for	mats			6	Cre	ating	
CO-P() Mapping :	1	2	3	4	5	6	7	
	CO	1 3			2			-	
	CO	2		3	2	2	2	1	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Introduction to Research	Hrs.
Types of research, Stages of research, Approaches, Qualities desirable, Design thinking,	
Research Mind, Research Attitude, openness for discussion and criticism. Creations of	4
Mind and Intellectual Property. Creativity, Innovation and problem solving. Good habits	4
and Best practices for a good research output	
Module 2: Research Procedures	Hrs.
Planning the research, Study of existing literature, survey of top journals, top	
conferences, top experts, top websites, top tools and techniques, top problems, top	
applications and top x. Problem statement and scope of work. Carrying out research,	4
experimental plans, test data, parameters, measurements to be done, programs to be	
written, literature to be seen - focused, literature analysis and critiques.	
Module 3: Research Methods	Hrs.
Research Ideas and implementation methodology, experimental setup, standard and non-	
standard data sets, performance metrics, comparison of performance, evaluation of	
results. Benchmark Data sets, Performance Metrics: Precision, Recall, F-measure, etc.	5
Data Processing: Facility with UNIX commands, awk, sed, Shell Scripting, GNUPLOT,	
MATLAB/ SCILAB / R.	
Module 4: Analysis Techniques	Hrs.
Quantitative Techniques Sampling fundamentals, Testing of hypothesis using various	
tests like Multivariate analysis, Use of standard statistical software, Data processing,	
Preliminary data analysis and interpretation, Uni-variate and bi-variate analysis of data.	5
Statistical Analysis: Testing for statistical significance using P-value. Statistical	

hypothesis tests like T-test, testing of hypotheses, techniques such as ANOVA, Chi	
square test etc., Nonparametric tests. Correlation and regression analysis. Statistical	
software such as R/ Scilab/ Scala and languages with powerful data handling capabilities	
such as Python/Java.	
	Hrs.
Module 5: Modeling and Simulation	Hrs.
Simulation Basics, Handling Stepped and Event-based Time in Simulations, Discrete	
versus Continuous Modeling, Numerical Techniques, Sources and Propagation of Error,	4
Probability and Statistics for Simulations and Analysis, Introduction to Queues and	-
Random Noise, Random Variants Generation, Sensitivity Analysis	
Module 6: : Research Communications	Hrs.
To publish or not publish. Types of Publications - conference paper and presentations,	
Journal Paper, High impact and reputed journals, and Patents. Publishing your work, how	
to read a paper, how to write a paper. Research without any reference, where to publish	
your work, whether to patent or to publish, criteria for patent filing. Impact of Research,	4
contributions, prototypes, tools; plug ins, and Writing a thesis. Research Ethics:	
Plagiarism issues, Social implications LINUX software for Document Preparation and	
presentation: Drawing packages, LATEX and BEAMER.	
Module wise Measurable Students Learning Outcomes :	
Module wise Measurable Students Learning Outcomes.	
After the completion of the course the student should be able to:	
Module 1: illustrate the process of research.	
Module 2: formulation of a research problem in respective study domains.	
Module 3: describe the important steps in conducting research.	
Module 4: implement data analytics techniques for research validation.	
Module 5: summarize the concepts of modeling and Simulation.	
Module 6: produce research paper in standard format.	

Title of	f the Course: Mather	natical	found	ations	of Co	mpute	r Scien	ce	L	Т	Р	Cr
(4CO5	01)								3	0	0	3
Pre-Re	equisite Courses: Dis	screte N	lathem	atics								
Textbo	ooks:											
		• • • •	1.0				0		~			
	1. Trivedi K., Probal Applications. Wil	-	nd Stat	istics w	vith Re		ty, Quet	ung, and	Comp	uter Sc	ience	
Refere	nces:											
	 John Vince, Found Mitzenmacher M Probabilistic Anal Tucker Alan, App 	. and U lysis, C	pfal E ambrid	., Prob lge Uni	ability iversity	and C Press	omputir			l Algor	ithms ar	ıd
Course	e Objectives :											
1.	To introduce the math	nematic	al func	lamenta	als for	compu	iter scie	nce and e	ngine	ering.		
	To study various sam		nd clas	sificati	on pro	blems.						
Course	e Learning Outcomes	5:										
CO	After the completion of the course the student should be able to Bloom's Cognitive											
									Lev	vel	Descript	or
CO1	explain the basic not	ions of	discre	te and	continu	lous p	robabilit	ty.	3		Applying	g
CO2	analyze the methods	s of stat	istical	inferer	nce, an	d the 1	ole that	samplin	g 4		Analyzir	ng
	distributions play in											
CO3	perform correct an		ningfu	l stati	stical	analys	is of s	simple t	6	(Creating	
	moderate complexity	у.										
CO-PC) Mapping :											
		PO	1	2	3	4	5	6				
		CO1			3							
		CO2	1			2						
		CO3	2		3	2	1					
Assessi	ments :											
Teache	er Assessment:											
	omponents of In Seme er Examination (ESE)			· · ·	·				tion (N	MSE) a	nd one I	End
						r 1						

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

overfitting etc.

Module 1: Probability	Hrs.
Probability mass, density, and cumulative distribution functions, Parametric families of	
distributions, Expected value, variance, conditional expectation, Applications of the univariate	6
and multivariate Central Limit Theorem, Probabilistic inequalities, Markov chains	
Module 2: Sampling	Hrs.
Random samples, sampling distributions of estimators, Methods of Moments and Maximum	6
Likelihood	0
Module 3: Statistical inference	Hrs.
Statistical inference, Introduction to multivariate statistical models: regression and classification	7
problems, principal components analysis, The problem of overfitting model assessment.	/
Module 4: Graph Theory	Hrs.
Graph Theory: Isomorphism, Planar graphs, graph coloring, Hamiltonian circuits and Euler	
cycles. Permutations and Combinations with and without repetition. Specialized techniques to	8
solve combinatorial enumeration problems	
Module 5: Computer science and engineering applications	Hrs.
Computer science and engineering applications: Data mining, Network protocols, analysis of	
Web traffic, Computer security, Software engineering, Computer architecture, Operating	8
systems, Distributed systems, Bioinformatics, Machine learning.	
Module 6: Recent Trends	Hrs.
Recent Trends in various distribution functions in mathematical field of computer science for	6
varying fields like bioinformatics, soft computing, and computer vision.	U
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
There the completion of the course the student should be able to.	
Module 1: Explain various concepts in probability.	
Module 2:	
Explain different techniques of sampling.Perform statistical analysis on data.	
Module 3: Study different statistical inference concept in solving problems like PCA problem of	

Module 4: Understand and solve problems in Graph Theory.

Module 5: Perform statistical analysis on different computer science and engineering applications.

Module 6: Study recent trends in mathematical foundations of Computer Science.

Title o	of the Course: Advanced Data Structures (4CO502)	L	Т	Р	Cr
		3	0	0	3
Pre-Re	equisite Courses: UG level course in Data Structures	ľ	ľ		
Textbo	ooks:				
	 Cormen Thomas H., Leiserson Charles E., Rivest Ronald L "Introduction to Algorithms," PHI, Third Edition, 2009 Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Ove Geometry - Algorithms and Applications", Springer, Third 2 Erik Demaine, Lecture Notes on MIT Courseware 	ermars , '	"Comput		
Refere	ences:				
	 O'Rourke Joseph, "Computational Geometry in C", Cambridg Diestel Reinhard, "Graph Theory", Springer-Verlag, 2000 Brass Peter, "Advanced Data Structures", Cambridge University 	_	-	55	
Cours	e Objectives :				
1.	To impart knowledge of advanced data structures such as tempora	al data st	ructures	and	
2. 3.	To impart knowledge of advanced data structures such as tempora geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using th problems. e Learning Outcomes: After the completion of the course the student should be	s, graphs tem for s	, hashing	and strin al world	-
2. 3. Course	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using th problems. e Learning Outcomes:	s, graphs tem for s Bloom	, hashing olving re 's Cognit	and strin al world	-
2. 3. Course	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using th problems. e Learning Outcomes: After the completion of the course the student should be	s, graphs tem for s Bloom	, hashing olving re	and strin al world	-
2. 3. Course	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of	s, graphs tem for s Bloom Level	, hashing olving re 's Cognit Descri	and strin al world	
2. 3. Course	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures	s, graphs tem for s Bloom Level	, hashing olving re 's Cognit Descri	and strin al world ive ptor standing	
2. 3. Course CO	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures for solving real world problems.	s, graphs tem for s Bloom Level 2	, hashing olving re 's Cognit Descri	and strin al world ive ptor standing ing zing,	
2. 3. Course CO CO CO CO 2 CO 3	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures for solving real world problems.	s, graphs em for s Bloom Level 2 3	, hashing olving re 's Cognit Descri Unders Applyi Analyz	and strin al world ive ptor standing ing zing,	
2. 3. Course CO CO CO CO 2 CO 3	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures for solving real world problems. analyze algorithms, compare data structures and evaluate the performance of the advanced data structures O Mapping :	s, graphs em for s Bloom Level 2 3	, hashing olving re 's Cognit Descri Unders Applyi Analyz	and strin al world ive ptor standing ing zing,	
2. 3. Course CO CO CO CO 2 CO 3	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using th problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures for solving real world problems. analyze algorithms, compare data structures and evaluate the performance of the advanced data structures O Mapping :	s, graphs em for s Bloom Level 2 3	, hashing olving re 's Cognit Descri Unders Applyi Analyz	and strin al world ive ptor standing ing zing,	
2. 3. Course CO CO CO CO 2 CO 3	geometric data structures. To make students familiar with advanced concepts related to trees matching. To contribute in choosing appropriate data structures and using the problems. e Learning Outcomes: After the completion of the course the student should be able to interpret and summarize the purpose and operation of advanced data structures apply and demonstrate knowledge of advanced data structures for solving real world problems. analyze algorithms, compare data structures and evaluate the performance of the advanced data structures O Mapping :	s, graphs em for s Bloom Level 2 3	, hashing olving re 's Cognit Descri Unders Applyi Analyz	and strin al world ive ptor standing ing zing,	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normall

last three modules) covered after MSE.

Course Contents:

Module 1: Temporal and Geometric data structures	Hrs.
 Temporal data structures - Persistent data structures - Model and definitions, Partial persistence, Full persistence, Retroactive data structures – Retroactivity, Full retroactivity, Non-oblivious Retroactivity Geometric data structures - One Dimensional Range Searching, Two Dimensional Range Searching, Constructing a Priority Search Tree, Searching a Priority Search Tree, Priority Range Trees, Quadtrees, k-D Trees. 	8
Module 2: Advanced Trees	Hrs.
Binary Search Trees, AVL trees, Red-black trees, Splay Trees, Tango Trees	6
Module 3: Selected Graph Problems	Hrs.
Vertex coloring, edge coloring, Network flows: Max flow – Mincut theorem, Ford-fulkerson Method, Push-relabel method, Random Graph based analysis.	6
Module 4: Hashing	Hrs.
Hash Function, Basic Chaining, FKS Perfect Hashing, Linear Probing, Cuckoo Hashing Skip Lists: Need for Randomizing Data Structures and Algorithms, Search and Update Operations on Skip Lists, Probabilistic Analysis of Skip Lists, Deterministic Skip Lists	8
Module 5: String matching	Hrs.
String Operations, Brute-Force Pattern Matching, The Boyer-Moore Algorithm, The Knuth- Morris-Pratt Algorithm, Predecessor Problem, Tries, Trie node structure and its applications, Suffix trees and suffix arrays.	6
Module 6: Miscellaneous	Hrs.
Dynamic trees - Link-cut Trees, Operations on link-cut trees, Dynamic Connectivity, Euler- Tour Trees, Other Dynamic Graph Problems	6

Module wise Measurable Students Learning Outcomes :

Students will be able to

Module 1: describe, explain and use temporal data structures such as persistent data structures and retroactive data structures, geometric data structures

Module 2: apply knowledge of advanced trees for various applications including efficient searching.

Module 3: explain and implement various advanced graph algorithms.

Module 4: explain and apply static as well as dynamic hashing techniques.

Module 5: demonstrate, apply and analyze various text processing techniques.

Module 6: demonstrate and use dynamic trees and graphs for addressing dynamic problems

Professional Core (Lab) Courses

Title o	f the Course: Computing Lab 1 (4CO552)	L		Р	Cr
		0	0	4	2
	equisite Courses: Discrete Mathematics, UG level course in Data	Structur	es Lab		
Fextbo	boks:				
1. 2.	Applications. Wiley.		-		on to
3.	Algorithms," PHI, Third Edition, 2009 Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overn		ŕ		
	Algorithms and Applications", Springer, Third Edition, 2008	nars, C	omputatio		incu y
4. Refere					
-					
1.	John Vince, Foundation Mathematics for Computer Science, Sp.	ringer.			
2.	Mitzenmacher M. and Upfal E., Probability and Computing: R	andomiz	ed Algorit	hms and	1
	Probabilistic Analysis, Cambridge University Press.				
3.	Tucker Alan, Applied Combinatorics, Wiley				
4.		Universi	ty Press		
5.	Diestel Reinhard, "Graph Theory", Springer-Verlag, 2000				
6.	Brass Peter, "Advanced Data Structures", Cambridge Universi	-	D 4 =		
7.	, 6 6	-	Python: P	rogramr	nıng
	Interview Guide", Create Space Independent Publishing Platform	n			
Cours	e Objectives :				
Cours	conjectives.				
1.	To demonstrate fundamentals of Mathematical foundations of Co	mputer S	science.		
2.	To have hands-on of Probability, Random variables in computer	Mathema	tics.		
3.	To acquaint students with variety of advanced data structures				
4.	To make students practice using advanced methods of designing a	and analy	sing algor	rithms u	ising
	advanced data structures.				
5.	To emphasize applying knowledge of advanced data structures w	hile perfo	orming ha	nds-on f	for
	solving real world problems in an appropriate manner.				
Course	e Learning Outcomes:				
~~~		51 -	<u> </u>		-
CO	After the completion of the course the student should be	Bloom'	s Cognitiv	ve	
	able to	Level	Descript	tor	
CO1	Study various algorithms and implementation options to solve	3	Applyin	g	-
	a problem using advanced data structures		11.7	~	
CO2	Solve and compare solution to complex problems using	4, 5	Analyzi	ng,	-
	appropriate data structures and evaluate the performance of the	, -	Evaluati	-	
	advanced data structures or demonstrate the mathematical and			0	

logical basis applied to it.

#### **CO-PO Mapping :**

PO	1	2	3	4	5	6
CO1	2		1			2
CO2		1	2	3		

#### Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1 Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25	
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal		Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation		Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

#### **Course Contents:**

#### Laboratory Assignments :

It would consist of representative practical / simulation assignments related to all core subjects studied in the current semester. The partial list of assignments might include:

- assignments on implementation of Probability concept and Markov chains
- assignments on implementation of Sampling and various techniques
- assignments on implementation of Statistical inference and multivariate statistical models
- assignments on implementation of Graph Theory
- assignments on evaluation of recent trends in mathematics and Computer science and engineering applications.
- Implement different operations on tree based data structures
- Implement different operations on graph structures
- Implement different operations on tries.
- Implement different operations on dynamic data structures
- Implement different operations on persistent data structures
- Implement different operations on interval based data structures
- Implement different operations on tree based data structures

## Professional Elective (Theory) Courses

Title of	the Course: Professional Elective 1	- Ima	ge P	roce	essii	ng		L	Т	Р	Cr
(4CO51	11)							3	0	0	3
Pre-Re	quisite Courses: Mathematics – Line	ar alge	bra ,	Pro	bab	ility	Theory				
	oks: Gonzalez R. C., Woods R. E., "Digita Jain A. K., "Fundamentals of Digital II	-			-			d Editio	n. 2002	2	
Referen					<u> </u>						
2.	Sonka Milan, Vaclav Hlavac, Boyle, " Learning, Third edition, 2013 S. Jayaraman, S. Esakkirajan, T. Veerk edition, 2010	•		-			-	-			•
Course	Objectives :										
2. ¹ 3. ¹	To provide knowledge about fundament To illustrate concepts of image transformorphological operations, color image To apply the image processing algorith	rms, in proces	nage ssing	enł g, co	nanc mpi	eme ressi	ent, image ion.		tation,		
Course	Learning Outcomes:										
CO	After the completion of the course t	the stu	dent	t sh	ould	l he	able to	Blo	om's (	Cognitiv	ve.
		ine stu	uem					Level		Descript	
CO1	explain fundamental concepts of digit mathematical transforms, image enha morphology, compression						1,	2	_	erstandi	
CO2	apply image processing algorithms to a compare the results	solve r	eal l	ife p	orob	lem	s and	3,4		lying , lyzing	
CO3	design and compare different image	process	sing	algo	orith	ms		6	Crea	ating	
CO-PO	Mapping :										
	PO	1 2	3	4	5	6	]				
	C01	1 2	5	3	5	U					
	CO2	2		1	2						
	CO3		1		3						
		II					1				
Assessr	nent:										
Two co	mponents of In Semester Evaluation (I	( <u>SE),</u> C	ne N	Лid	Sem	neste	er Examin	ation (M	(SE) an	id one E	nd

Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

**Course Contents:** 

Module 1: Digital Image Fundamentals	Hrs.
Introduction: Concept, Fundamental Steps and Components of Image Processing	
System	6
Digital Image Fundamentals: Image Acquisition, A simple image model, Sampling and	v
Quantization, Imaging Geometry, Different types of digital images	
Module 2: Image Transforms	Hrs.
2D systems and Necessary Mathematical preliminaries, 2D Orthogonal and Unitary	
Transforms, 1-D DFT, KL-Transforms, Cosine, Hadamard Transforms, Introduction to	8
Wavelet transforms	
Module 3: Image Enhancement	Hrs.
Point Processing, Basic Gray Level Transformations, Histogram Processing, Spatial	(
domain Filtering, Frequency domain filtering	6
Module 4: Image Segmentation and Analysis	Hrs.
Edge Detection – using first and second order derivatives, LoG, Canny edge detector,	
Boundary Extraction - Connectivity, Heuristic Graph Search, Hough Transform, Active	0
Contour, Watershed Transform, Region-based Segmentation - region growing, region	8
splitting and merging, Feature Extraction	
Module 5: Image Compression	Hrs.
Fundamentals, Compression model, Lossless Vs Lossy Compression, Fundamentals of	
Information Theory, Run-length coding, Huffman coding, Dictionary-based compression,	6
Predictive coding, Transform-based coding, Image Compression Standards	
Module 6: Morphological Image Processing	Hrs.
Introduction, Dilation and Erosion, Opening and Closing, The Hit-or-miss transformation,	
Basic Morphological Algorithms, Boundary Extraction, Region Filling, Extraction of	6
connected components, Thinning, Thickening	5

#### Module wise Measurable Students Learning Outcomes :

#### After the completion of the course the student should be able to:

Module 1: explain the fundamental concepts of Image Processing and its applications.

Module 2: illustrate image processing transforms for image enhancement and filtering.

Module 3: explain and demonstrate various techniques to improve the quality of an image.

#### Module 4:

- implement various methods to divide an image into parts or groups of pixels
- describe and use segmentation for image analysis.

Module 5: demonstrate the need of image compression techniques.

Module 6: illustrate morphological operations for image processing.

Title of the Course: Professional Elective 1 - Internet of Things	L	Т	Р	Cr
(4CO512)	3	0	0	3
Due Dequisite Countrat		•		

#### **Pre-Requisite Courses:**

#### Textbooks:

- Mandler B., Barja J., Campista Mitre, M.E., Cagá_ová, D. Chaouchi, H. Zeadally, S. Badra, M. Giordano, S. Fazio, M. Somov, A. Vieriu, R.-L., "Internet of Things. IoT Infrastructures", Springer International Publishing, Second International Summit, IoT 360° 2015, Rome, Italy, October 27-29, 2015. Revised Selected Papers, Part I
- 2. Kyung, C.-M., Yasuura, H. Liu, Y. Lin, Y.-L., "Smart Sensors and Systems", Springer International Publishing, 2017.

#### **References:**

1. Hersent Olivier, Boswarthick David , Elloumi Omar , "The Internet of Things: Key Applications and Protocols", Wiley-Blackwell, Second Edition ,2012

#### **Course Objectives :**

- 1. To discuss various topics related to wireless sensor networks significant towards emerging internetof-things (IoT).
- 2. To impart knowledge of hardware, operating systems, distributed systems, networking, security and databases required for IoT technology.
- **3.** To illustrate wireless sensor network (WSN) /Internet of Things (IoT) specific issues such as localization, time synchronization, and topology control.

CO	After the completion of the o	course the s	studen	t should	l be ab	ole to	<b>Bloom's Cognitive</b>			
							level	Descriptor		
CO1	describe requirements fr communication systems, proto		ging iddlew	Smart vare.	app	lications,	2	Understanding		
CO2	compare and analyze commu IoT	inication ar	nd net	work pro	otocols	s used in	4	Analyzing		
CO3		assess and evaluate mechanisms and algorithms for time synchronization, security and localization in WSNs and IoT								
СО-РО	) Mapping :									
	РО	1	2	3	4	5	6			
	<b>CO1</b>	1		1		3				
	CO2				3	1	2			
	CO3	1			2		2			
lssessi	ments :	·	·		•					
					2		2			

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

**Course Contents:** 

Module 1: Introduction and Applications:	Hrs.
smart transportation, smart cities, smart Living, smart energy, smart health, and smart learning.	
Examples of research areas include for instance: Self-Adaptive Systems, Cyber Physical	(
Systems, Systems of Systems, Software Architectures and Connectors, Software	6
Interoperability, Big Data and Big Data Mining, Privacy and Security.	
Module 2: IoT Reference Architecture	Hrs.
Introduction, Functional View, Information View, Deployment and Operational View, Other	
Relevant architectural views.	7
Real-World Design Constraints- Introduction, Technical Design constraints hardware,	/
Data representation and visualization, Interaction and remote control.	
Module 3: Industrial Automation	Hrs.
Service-oriented architecture-based device integration, SOCRADES: realizing the enterprise	
integrated Web of Things, IMC-AESOP: from the Web of Things to the Cloud of Things.	
Commercial Building Automation- Introduction, Case study: phase one-commercial	7
building automation today, Case study: phase two- commercial building automation in the	
future.	
Module 4:hardware Platform for IoT	Hrs.
Hardware Platforms and Energy Consumption, Operating Systems, Time Synchronization,	
Positioning and Localization, Medium Access Control, Topology and Coverage Control,	8
Routing: Transport Protocols, Network Security, Middleware, Databases.	
Module 5: IOT Physical Devices & Endpoints	Hrs.
What is an IOT Device, Exemplary Device Board, Linux on Raspberry, Interface and	7
Programming & IOT Device.	/
Module 6: Recent trends in IoT with case studies:	Hrs.
Recent trends in sensor network and IOT architecture, Automation in Industrial aspect of IOT.	5

#### Module wise Measurable Students Learning Outcomes :

#### After the completion of the course the student should be able to:

Module 1: explain the basic concepts related to smart applications.

- **Module 2:** identify different IoT architectures and specify real design constraints.
- Module 3: applying various case studies to understand industrial automation.
- Module 4: describe different synchronization techniques, protocols middleware etc..
- Module 5: demonstrate applications of data science using different techniques in visualization.

Module 6: outline recent trends in sensor network and IoT architecture

Title of	f the Course: Profes	sional	Electiv	e 2 - D	ata Sci	ence (4	CO51	5)	L	Т	Р	Cr
				-				- )	3	0	0	3
Pre-Re	equisite Courses: Data	abase C	Concept	ts								
Textbo	oks:											
	1. Adhikari Ani and			. Comp	utation	al and l	Inferen	tial Thir	ıking,	The I	Foundati	ons of
	Data Science, UC		2	and lia	n Dai	Data M	linina (	Tomoont	and	Taabr		Aaraan
	2. Jiawei Han, Mich Kaufmann, Third			and Jia	n Pel.	Data IV	inning (	Joncept	s and	Techi	inques. I	viorgan
Refere			-									
	1. O'Neil Cathy and	Schutt	Rache	l. Doin	g Data	Science	e, Strai	ght Talk	Fron	n The	Frontlin	e.
	O'Reilly.			1	1 T T11	T CC	M.	·	<u>ر</u> .	D		N 1
	2. Leskovek Jure, Ra Cambridge Unive	•		ind and	i Ulima	in Jettro	ey. Mii	ning of I	viassi	ve Da	tasets. v.	2.1,
Course	e Objectives :	15119 1 1	C35.									
course												
1.	To provide the knowl	edge ar	nd expe	ertise to	becom	ie a pro	ficient	data sci	entist			
	To critically evaluate										nicating.	
Course	e Learning Outcomes	:										
	Γ											
CO	After the completio	n of th	e cours	se the s	student	shoul	d be ab	ole to	B	loom'	s Cognit	ive
									le	vel	Descri	ptor
CO1	Implement data	collecti	on a	nd m	anagen	nent u	using	differen	nt 3		Apply	ing
	technologies.											
CO2	Explain how data is	collecte	ed, mar	naged a	nd stor	ed for d	lata sci	ence.	4		Analyz	zing
CO3	Study the key cond	cepts in	n data	scienc	e, incl	uding	their r	eal-worl	d 4		Analyz	zing
	applications and tool	kits us	ed by d	lata scie	entists.							
CO-PC	) Mapping :											
		DO	1			4	_					
		PO	1	2	3	4	5	6				
		CO1	3	1	1			3				
		CO2			2	2						

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End

2

1

1

CO3

1

Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

#### **Course Contents:**

Module 1: Introduction to core concepts and technologies	Hrs.
Introduction, Terminology, data science process, data science toolkit, Types of data, Example	6
applications	
Module 2: Data collection and management	Hrs.
Introduction, Sources of data, Data collection and APIs, Exploring and fixing data, Data storage	(
and management, Using multiple data sources.	6
Module 3: Data Preprocessing	Hrs.
Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization.	8
Module 4: Data analysis	Hrs.
Introduction, Terminology and concepts, Introduction to statistics, Central tendencies and	
distributions, Variance, Distribution properties and arithmetic, Samples/CLT, Correlation,	8
Linear Regression, Least Squares, Residuals, Regression Inference.	
Module 5: Data visualization	Hrs.
Introduction, Types of data visualization, Data for visualization: Data types, Data encodings,	(
Retinal variables, Mapping variables to encodings, visual encodings.	6
Module 6: Recent trends	Hrs.
Recent trends in various data collection and analysis techniques, various visualization	
techniques, Case Study, application development methods used in data science.	6

#### After the completion of the course the student should be able to:

Module 1: Study the fundamentals of Data Science.

Module 2: Illustrate different sources of data and storage management techniques of data.

Module 3: Illustrate data preprocessing techniques

Module 4: Analyze data by using different statistical techniques.

Module 5: Implement data visualization techniques on different data sets.

Module 6: Explain recent trends in data science and identify methods used in data science.

Title of	f the Course: Professional Elective 2 - Advanced Network		L	Т	Р	Cr		
Techno	blogies (4CO516)		3	0	0	3		
Pre-Re	equisite Courses: Computer Networks			1		<u>I</u>		
Textbo	oks:							
	<ol> <li>Sunilkumar S., Mahabaleshwar Manvi, Kakkasageri S., "Wi Concepts and Protocols", Wiley Second edition, 2016.</li> <li>Schiller J, "Mobile Communications", Addison Wesley, 200</li> <li>Stallings W, "Wireless Communications and Networks", Pea</li> <li>Nadeau Thomas D., "SDN: Software Defined Networks, An Programmability Technologies", Ken Gray Publisher: O'Rei</li> <li>Goransson Paul and Black Chuck, "Software Defined Networks Approach", Morgan Kaufmann, June 2014.</li> </ol>	0. arson Educ Authoritat Ily Media,	ation, ive Re Augus	Schill eview st 2013	er, 200 of Netv 3.			
Refere	nces:							
<b>Course</b> 1. 2.	<ol> <li>Stojmenic Ivan, "Handbook of Wireless Networks and Mobile Sons Inc 2002.</li> <li>Yi Bing Lin and Imrich Chlamtac, "Wireless and Mobile Ne and Sons Inc 2000.</li> <li>Pandya Raj, "Mobile and Personal Communications Systems</li> <li>Dargie W. and Poellabauer C., "Fundamentals of Wireless S Practice", Wiley 2010.</li> <li>Kazem Sohraby, Minoli Daniel and Znati Taieb, "wireless s Protocols, and Applications", Wiley Interscience, 2007.</li> <li>Hara Takahiro, Zadorozhny Vladimir I, and Buchmann Eril Technologies for the Information Explosion Era", Springer, 2</li> <li>Objectives :</li> <li>To explain key concepts of wireless networks, standards, techno To appraise architectures, functions and performance of wireless To examine SDN/NFV motivation and its benefits in data center</li> </ol>	twork Arcl s and Servi ensor Netv ensor netw k , "Wirele 2010. logies and s sensor ne	nitectu ces", vorks vorks - ss Ser their I	PHI 20 -Theo Techr nsor N	John W 008. ry and nology, etwork	ïley		
Course	e Learning Outcomes:							
CO	After completion of the course student should be able to		Cognitive					
		level		criptor				
CO1	explain ,compare characteristics of wireless networks, and describe wireless sensor network and SDN/NFV technologies.	2	Und	erstan	ding			
CO2	apply acquired knowledge to recognize the performance of wireless sensor and SDN/NFV networks.	3	App	lying				
ace			· ·					

First Year M. Tech. (Computer Science and Engineering) Curriculum for 2020-21

4

Analyzing

analyze wireless sensor network with case study and

SDN/NFV techniques in Data center.

CO3

#### **CO-PO Mapping :**

РО	1	2	3	4	5	6
CO1			2	3		
CO2			2	1		2
CO3	2				3	2

#### Assessments :

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

#### **Course Contents:**

Module 1: Introduction to Wireless Networks	Hrs.
Network Architecture, Network Components, Design Issues, Network Protocols,	
Technologies and Applications of BAN, PAN, LAN, MAN. Wireless Wide Area	7
Networks: Introduction to Cellular and Satellite Networks, Interworking of WLAN and	7
WWAN, WWAN Applications	
Module 2: Introduction to Mobile Ad hoc, Wireless Sensor, Wireless Mesh and	Hrs.
Vehicular Networks	
Introduction to Network, It's Motivations, Applications, Performance metrics, History	
and Design factors, Network Architecture: Traditional layered stack, Cross-layer	7
designs, Different used Network Architectures.	
Module 3: Research Issues in Wireless Networks	Hrs.
Sensor Motes, and Hardware parameters configuration, Channel Allocation, Error	
Control and Coding, Congestion Control, Routing, Addressing, Network Access Control,	
Mobility Control, Flow Control, Security and Privacy, QoS Management, Power	
Management, Cross-Layer Control, Network Modeling, Traffic Modeling, Network	6
Measurements.	U
Simulation - Introduction to one Network Simulator for wireless sensor network	
(NS2/NS3/Cooja /OMNET++/ Exata Cyber etc.)	

Module 4: Evolution of Software Defined Networking (SDN)	Hrs.
Separation of Control Plane and Data Plane: Concepts, Advantages and Disadvantages,	
OpenFlow protocol. <b>Control Plane:</b> Introduction of <b>existing</b> SDN Controllers including Floodlight and Open Daylight projects. <b>Data Plane:</b> Software-based and Hardware-	8
based; Programmable Network Hardware. Programming SDNs: Northbound Application	0
Programming Interface, (Assignments related to languages and tools)	
Module 5: Network Virtualization	Hrs.
Concepts, Applications, Existing Network Virtualization Framework (VMWare and	
others),(assignments related to Mininet based examples)	
	6
Network Functions Virtualization (NFV) and SDN: Network architecture, NFV	
Infrastructure, NFV Management and Orchestration (MANO), NFV and SDN	
Module 6: : Data Center Networks	Hrs.
Data Center Networks: Packet, Optical and Wireless Architectures, Network Topologies.	
Use Cases of SDNs: Data Centers, Backbone Networks, Home Networks, Traffic Engineering.	6
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: describe wireless technologies.	
Module 2: distinguish between Adhoc N/W,WSN and Vehicular N/W	
Module 3: categorize various research Issues in Wireless Networks	
Module 4: interpret the concepts of Software Defined Networking	
Module 5: explain Network Virtualization technique	
Module 6: analyze the use of Data Center Networks	

## **Professional Elective (Lab) Courses**

Title of	the Co	ourse: Cor	nputing Lab	2 (4C0	0553)				L		Т	Р	Cr
									0		0	4	2
Pre-Req	luisite	Courses:											
Textboo	ok:												
Text	Books	s mentioned	d in the corres	spondin	g theo	ry cours	ses.						
Referen	ces:												
Pafa	rongo	Pooks mon	tionad in the	oorroon	onding	theory	oourso	q					
			tioned in the	corresp	onume	g theory	course	5.					
Course	Objec	uves :											
			knowledge of										
			n experience			s							
		ing Outcol			•								
CO	After	the comple	etion of the c	ourse f	he stu	dent sh	ould b	ρ	Bloom'	s Co	onitive	<b>`</b>	
	After the completion of the course the student should be able to						-			-			
									Level	De	scripto	or	
<b>CO1</b>	To api	olv the kno	wledge gaine	d for sc	lving	differen	t proble	ems	3	Ar	plying	ŗ	
			valuate the so				-		5	Evaluating			
II						-						-	
<u>CO DO</u>	N <i>4</i>	•											
СО-РО	wiapp	ing :											
			РО	1	2	3	4	5	6				
			CO1	2		1			2				
			CO2		1	2	3		2				
<b>.</b>													
Lab Ass			a of lob	and are t	T A 1 T		121		<b>SE</b>				
		-	ts of lab asses te head of pas		LAI, I	LAZ, LI	43 and	Laue	5E.				
Assess			sed on	_	nducted	d bv	Cond	uction	and Mar	ks Su	bmissi	on	Marks
			ctivities,				During Week 1 to Week 4						
LA1		attendar	nce, journal	Lab Course Faculty			Submission at the end of Week 5						
T A	LA2 attendar		ctivities,	Lab Course Faculty			During Week 5 to Week 8 25						
			nce, journal				Submission at the end of Week 9						
ΙA	LA3		ctivities,	Lab Course Faculty			During Week 10 to Week 14 25						
attend			nce, journal	Submission at the end of v								23	
Lah I	ab ESE Lab Performance and			Lab Course faculty			-					25	
	LOL	related do	cumentation				Submission at the end of Week 18						23

Week1indicatesstartingweekofSemester.Lab activities/Lab performance shall include performing experiments, mini-project, presentations,<br/>drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

#### **Course Contents:**

#### Laboratory Assignments :

Lab sessions are to be utilized for problem solving/designing/implementation, to ensure that students have properly learnt the topics covered in the theory course. The partial list is as follows (the list may be updated during actual implementation) :

For course: Image Processing

- Implement and apply different types of image transforms
- Work around with different types of digital images
- Implement and / or apply different image enhancement techniques
- Implement and / or apply different image segmentation techniques and analyse them
- Implement different morphological image operations
- Apply different image compression techniques

#### OR

For course: Internet of Things

- Development of Smart Applications.
- Implementation of monitoring applications
- Design of Web of things.
- Use of cloud in IoT.
- Design Automation for real time application.
- Applying different case studies.

#### AND

For course: Data Science

- assignments on implementation of data science toolkit
- assignments on implementation of data collection & management 2-3 assignments on implementation of structural design patterns
- assignments on implementation of basic statistic methods and basic machine learning algorithms like Linear regression, SVM, Naïve Bayes
- assignments on implementation of types of data visualization including mapping variables to encodings, visual encodings using Bokeh (Python)
- assignments on evaluation of application development methods used in data science

#### OR

For course: Advanced Networking Technologies

- Analyzing wireless communication protocols.
- Design of AD-hoc, MANET and Sensor netwok.
- Design of routing and congestion algorithm.
- Use of SND and NFV.
- Design Network virtualization.
- Understanding SDN in data center as a case study.

## **Open Electives Courses**

### **Mandatory Life Skill Courses**

# Value Added Professional Courses

### **EVEN Semester**

### **EVEN Semester**

# Professional Core (Theory) Courses

itle of	f the Course: Advanced Algorithms (4CO521)	L	Т	Р	C
		3	0	0	3
re-Re	equisite Courses: UG level course in Algorithm Design and Analy	sis	1		
extbo	ooks:				
	Cormen Thomas H., Leiserson Charles E., Rivest Ronald L., Ste Algorithms," PHI, Third Edition, 2009 Aho, Hopcroft, Ullman, "The Design and Analysis of Computer A Pub. Co., 1974.				
Refere	ences:				
	Kleinberg and Tardos, "Algorithm Design", Pearson Education Lin Robert Sedgewick, "Algorithms in C++", Addison-Wesley Profess		Third Edit	tion	
Course	e Objectives :				
	e Objectives : To introduce students to the advanced methods of designing and an	nalysing		ns.	
1. 2.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe	ecific pro	algorithr		
1. 2.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r	ecific pro	algorithr		e
1. 2. 3.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r area of algorithmic design.	ecific pro	algorithr		e
1. 2. 3.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r	ecific pro	algorithr		e
1. 2. 3.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r area of algorithmic design. <b>e Learning Outcomes:</b>	ecific pro	algorithr	nts in th	e
1. 2. 3.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r area of algorithmic design. e Learning Outcomes: After the completion of the course the student should be able to	ecific pro	algorithr oblem. velopmer	nts in the	e
1. 2. 3. Course	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r area of algorithmic design. e Learning Outcomes: After the completion of the course the student should be able to	ecific pro ecent de Bloom's	algorithr oblem. velopmer s Cogniti Descrip	nts in the ve otor	e
1. 2. 3.	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spectro To impart knowledge of different classes of problems along with r area of algorithmic design. e Learning Outcomes: After the completion of the course the student should be able to apply algorithms for task at hand using different strategies	ecific pro ecent de Bloom's level	algorithr oblem. velopmer	ve vtor	e
1. 2. 3. Course CO	To introduce students to the advanced methods of designing and an To allow students choose appropriate algorithm and use it for a spe To impart knowledge of different classes of problems along with r area of algorithmic design. <b>E Learning Outcomes:</b> After the completion of the course the student should be able to apply algorithms for task at hand using different strategies analyze algorithm for given problem at hand	ecific pro ecent de Bloom's level 3	algorithr oblem. velopmer s Cogniti Descrip Applyin	ve ve tor	e

PO	1	2	3	4	5	6
CO1				2		
CO2	2			3	1	
CO3	3		1			2

#### Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

**Course Contents:** 

Module 1: Elementary Algorithms	Hrs.
<b>Sorting:</b> Review of various sorting algorithms, topological sorting <b>Graph:</b> Definitions and Elementary Algorithms: Shortest path by BFS, shortest path in edge- weighted case (Dijkasra's), depth-first search and computation of strongly connected components, emphasis on correctness proof of the algorithm and time/space analysis, example of amortized analysis.	6
Module 2: Graph Algorithms	Hrs.
<ul><li>Matroids: Introduction to greedy paradigm, algorithm to compute a maximum weight maximal independent set. Application to Minimum Spanning Tree.</li><li>Shortest Path in Graphs: Floyd-Warshall algorithm and introduction to dynamic programming paradigm. More examples of dynamic programming.</li></ul>	7
<b>Graph Matching:</b> Algorithm to compute maximum matching. Characterization of maximum matching by augmenting paths, Edmond's Blossom algorithm to compute augmenting path.	
Module 3: Matrix Computations	Hrs.
Strassen's algorithm and introduction to divide and conquer paradigm, inverse of a triangular matrix, relation between the time complexities of basic matrix operations, LUP-decomposition.	7
Module 4: Modulo Representation and DFT	Hrs.
<b>Modulo Representation of integers/polynomials:</b> Chinese Remainder Theorem, Conversion between base-representation and modulo-representation. Extension to polynomials. Application: Interpolation problem.	6
Discrete Fourier Transform (DFT): In complex field, DFT in modulo ring. Fast Fourier	
Transform algorithm. Schonhage-Strassen Integer Multiplication algorithm.	
Module 5: Linear Programming and NP-completeness	Hrs.

Linear Programming: Geometry of the feasibility region and Simplex algorithm	
Linear Frogramming: Geometry of the feasibility region and Simplex algorithm	
<b>NP-completeness:</b> Examples, proof of NP-hardness and NP-completeness.	
rei compreteness. Examples, proor of the naraness and ter compreteness.	8
One or more of the following topics based on interest- Approximation algorithms,	
Randomized Algorithms, Interior Point Method, Advanced Number Theoretic Algorithm	
Module 6: Recent Trends	Hrs.
Recent Trends in problem solving paradigms using recent searching and sorting techniques by	
applying recently proposed data structures.	5
Module wise Measurable Students Learning Outcomes : Students will be able to	
Allound wise Aleusarusie Statemes Learning Statemes ( Statemes Will be usie to	
Module 1:	
• interpret distance based algorithms for graphs and analyse their complexity	
• perform amortized analysis of different tasks	
Module 2:	
learn greedy approach and dynamic programming paradigm for graphs	
compute maximum matching for graph structure	
Module 3:	
• learn divide and conquer paradigm and apply it for matrix computations problem	
erner and and end for the second of the second of the second second second second second second second second s	
Module 4:	
<ul> <li>use Modulo Representation of integers/polynomials learnt for interpolation problem</li> </ul>	
learn DFT application in complex field	
Madula 5	
Module 5:	
• learn the ways for solving linear programming problems	
<ul> <li>understand proof of NP-hardness and NP-completeness with examples</li> </ul>	
- understand proof of 141 -nardness and 141 -completeness with examples	
Module 6:	
• identify recent trends in problem solving paradigms using recent searching and sorting	
techniques.	

itle o	f the Course: Soft Computing	g (4CO	522	)					L		Т	Р	Cr
									3		0	0	3
re-Re	equisite Courses: Basic knowle	edge of	mat	then	natio	cs			I				
<b>fextbo</b>	ooks:												
	1. Rajasekaran S., Vijayalaks Algorithms", PHI, 2003	shmi Pa	i G	.A.,	, "N	eura	l Ne	twork	s, Fuzzy L	ogic a	and G	enetic	
	2. Ian Goodfellow, Yoshua B	engio, A	Aaro	on (	Cour	ville	e, "D	eep L	earning", l	MIT I	Press e	e-book	
Refere	nces:												
	<ol> <li>Jyh-Shing Roger Jang, Chu PHI, 2003</li> <li>George J. Klir and Bo Yua: 1995</li> </ol>								-			-	
1. 2.	To foster student's abilities to a To impart knowledge of non-tr	adition	al te	echr	nolo	gies	-					-	blems
	networks, fuzzy sets, fuzzy log To discuss hybrid applications						Δ						
	e Learning Outcomes:	017111	<b>1</b> , 1	uzz	y un		11						
	-												
CO	After completion of the cour	rse stuc	lent	t sh	ould	l be	able	e to	Bloom				
						<u> </u>			level		scripto		
CO1	analyze soft computing techni intelligent machines	iques ai	nd tl	heir	role	es in	buil	lding	4	An	alyzin	ıg	
CO2	evaluate fuzzy logic and neur various engineering problems		orks	s tec	chnio	ques	to	solve	5	Eva	aluatir	ng	
CO3	build prototyping applications	susing	gen	etic	algo	orith	ms a	and	6	Cre	eating		
COJ	hybrid approaches												
	hybrid approaches D Mapping :												
		РО	1	2	3	4	5	6					
		PO CO1 CO2	1 2	2	3	<b>4</b> 3 2	5	<b>6</b>					

#### Assessments :

**Teacher Assessment:** 

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

2

2

2

CO3

2

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared test	t/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content	(Normally first three modules)	
ESE: Assessment is based on 100% course content wi	ith60-70% weightage for course conte	nt (normal
last three modules) covered after MSE.		
Course Contents:		
Module 1: Introduction		Hrs.
Evolution of Computing: Soft Computing Constituent	-	
Computational Intelligence, Characteristics of Neuro	Computing and Soft Computing,	-
Difference between Hard		6
Computing and Soft Computing, Concepts of Learnin	g and Adaptation	
Module 2: Fuzzy Logic		Hrs.
Fuzzy Sets, Operations on Fuzzy Sets, Fuzzy Relation	· · · ·	-
Rules and Fuzzy Reasoning, Fuzzy Inference Systems	s, Fuzzy Expert Systems, Fuzzy	7
Decision Making		
Module 3: Neural Networks		Hrs.
Machine Learning Using Neural Network, Adaptive N		
Supervised Learning Neural Networks, Radial Basis F		7
Learning, Unsupervised Learning Neural Networks, A	Adaptive Resonance Architectures,	
Advances in Neural Networks		
Module 4: Genetic Algorithms		Hrs.
Introduction to Genetic Algorithms (GA), Application		7
Machine Learning Approach to Knowledge Acquisition	on	
Module 5: Hybrid Systems		Hrs.
Introduction to Hybrid Systems, Adaptive Neuro Fuzz	zy Inference System(ANFIS)	6
Module 6: Deep Learning		Hrs.
Spark auto encoder, Convolutional neural networks, R	Recurrent neural networks, Deep	7
belief networks		

After the completion of the course the student should be able to:

Module 1: Identify and comprehend various constituents of soft computing

Module 2: Apply fuzzy logic to control and decision making applications

Module 3: Formulate a research problem in respective study domains

Module 4: Apply Genetic algorithms for optimization problem

Module 5: Design a Neuro fuzzy inference system with the learning of Neural and fuzzy

Module 6: Acquaint with research in soft computing

# Professional Core (Lab) Courses

Title of	f the Course: Computing Lab 3 (4CO571)		L	Т	Р	C
			0	0	4	4
<b>Pre-Re</b> Aatlab	quisite Courses: Knowledge of Algorithm Design and Programm	ning kn	owled	lge on I	Python,	I
<b>fextbo</b>	oks:					
1. 2.	Cormen Thomas H., Leiserson Charles E., Rivest Ronald L., S Algorithms," PHI, Third Edition, 2009 Aho, Hopcroft, Ullman, "The Design and Analysis of Computer					
2. 3.	Pub. Co., 1974. Rajasekaran S., Vijayalakshmi Pai G.A., "Neural Networks, Fu					ley
4	Algorithms", PHI, 2003 Ian Goodfellow, Yoshua Bengio, Aaron Courville, "Deep Learn	ing" M	IT Pr	ess e-bo	ook	
Refere		<u>, 119</u>				
1. 2. 3.	Kleinberg and Tardos, "Algorithm Design", Pearson Education I Robert Sedgewick, "Algorithms in C++", Addison-Wesley Profe Jain Hemant, "Problem Solving in Data Structures & Algorithms Interview Guide", Create Space Independent Publishing Platform	essional s Using	, Thi			ng
4.	Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-F 2003		nd So	ft Comp	outing",	PH
5.	George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: The	ory and	Appl	ications	", PHI,	199
Course	• Objectives :					
2. 3. 4.	To introduce students to the advanced methods of designing and a To make students choose appropriate algorithm for the problem a To acquaint students with different paradigms of problem solving solving real world problem. To demonstrate knowledge of implementation of artificial neural genetic algorithms and hybrid systems To evaluate soft computing based solutions of real-world problem	t hand by hav networ	ing ha	ands-on	and use	
Course	Learning Outcomes:					
CO	After the completion of the course the student should be	Bloom	's Co	gnitive		
	able to	Level	De	escripto	r	
CO1	implement the algorithm for the real world problem at hand by considering the use different strategies that can be used for solving it	3	A	oplying		
CO2	analyze the algorithms and evaluate the complexity of the algorithm	4, 5		nalyzing valuatin		
CO3	apply appropriate soft computing technique for creating prototyping applications	3		oplying		

CO4	evaluate soft compo machines	uting tecl	nniques	s in bui	lding ii	ntellige	ent	5	Evaluating	
	Mapping :									
0-10	mapping .	PO	1	2	3	4	5	6		
0-10	mapping .	PO CO1	1 2	2	3	<b>4</b> 3	5	6		

2

2

3

1

2

2

#### Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

1

1

**CO3** 

**CO4** 

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week1indicatesstartingweekofSemester.Lab activities/Lab performance shall include performing experiments, mini-project, presentations,drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

#### **Course Contents:**

#### Laboratory Assignments :

It should consist of representative practical / simulation assignments related to core subjects- Advanced Algorithms and Soft Computing in the current semester. The partial list is as follows (the list may be updated during actual implementation) :

- Implement various sorting based algorithms
- Implement search algorithms for graphs
- Implement minimum spanning tree for a set of nodes
- Implement graph matching techniques
- Study and implement different matrix computation methods

- Study and implement different ways of modulo representation of integers/ polynomials
- Assignments based on ANN and its applications e.g Perceptron implementation, ADALINE network implementation
- Assignments based on Fuzzy logic and its applications e.g. Operations on fuzzy sets, generate fuzzy member functions and use
- Assignments based on GA and its applications e.g. Solve optimization problems using GA, Travelling Salesman Problem using GA
- Assignments based on hybrid systems and its application e,g implementation of ANFIS
- Assignments on deep learning techniques e.g. Convolution model for fixing broken images, Tensorflow tutorial.

Fitle of	f the Course: Industrial Project (4CO573)	L	Т	Р	Cr
		0	0	4	2
Pre-Re	equisite Courses:				
Fextbo	ooks: NA				
Refere	ences:				
2.	College Digital Library Journals and transactions from IEEE, ACM, Elsevier, Springer, Science e Objectives :	Direct	etc.		
1	To be able to understand recent advancements in computer science and	engine	ering by	v interac	tions
	with experts from industry and Institutes.	C	0.		
	To be able to develop self-learning ability through rigorous literature su	C	0.		
2.	To be able to develop self-learning ability through rigorous literature su development in selected area of interest.	rvey ar	nd proto	otype	
2. 3.	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id	rvey ar	nd proto	otype	repar
2. 3.	To be able to develop self-learning ability through rigorous literature su development in selected area of interest.	rvey ar	nd proto	otype	repare
2. 3.	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id report and publish a paper.	rvey ar	nd proto	otype	repar
2. 3. Course	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id report and publish a paper. <b>e Learning Outcomes:</b>	rvey ar lea in e	nd proto	otype e way, p	repar
2. 3.	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id report and publish a paper.	rvey ar lea in e	nd proto	otype e way, p	
2. 3. Course	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id report and publish a paper. <b>e Learning Outcomes:</b>	rvey ar lea in e Blooi Level	nd proto	e way, p gnitive	ptor
2. 3. Course	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the idereport and publish a paper. <b>Example Completion of the course the student should be able to</b> apply an independent learning in the identified area of computer science and engineering. communicate effectively, deliver a talk, convince the audience with	rvey ar lea in e Blooi Level	nd proto ffective m's Cog	e way, p gnitive Descri	ptor ying
2. 3. Course CO CO1	To be able to develop self-learning ability through rigorous literature su development in selected area of interest. To be able to communicate through delivery of a seminar, present the id report and publish a paper. <b>e Learning Outcomes:</b> After the completion of the course the student should be able to apply an independent learning in the identified area of computer science and engineering.	rvey ar lea in e Blooi Level	nd proto ffective m's Cog	gnitive Descri	ptor ying

#### **CO-PO Mapping :**

PO	1	2	3	4	5	6
CO1	2		2	1		
CO2		3				
CO3		3		3	1	2

#### Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week1indicatesstartingweekofSemester.Labactivities/Labperformanceshallincludeperformingexperiments,mini-project,presentations,drawings, programming and other suitable activities, as per the nature and requirement of the lab course.activities/Labactivities/Labactivities/Lab

The experimental lab shall have typically 8-10 experiments.

#### **Course Contents:**

This course will allow students to gain knowledge of the area of research. They would gain hands-on experience in that field under the guidance of domain experts from Industry/Academia. The work done should be in the area of the dissertation work that is about to be proposed in the second year of this programme.

Students are required to refer to the reputed journals, transactions in computer science focusing on novel problems in identified area of interest. It is necessary that the student should carry out extensive literature review towards the proposed work and present the same. Also it is highly desirable to have a publication based on the study carried out in the identified area.

# Professional Elective (Theory) Courses

	f the Course: Professional Elective 3 - Computer Vision (4CO531)	L	Т	Р	Cr
-	, , , , , , , , , , , , , , , , , , ,	3	0	0	3
Dro Do	equisite Courses: Fundamentals of Digital Image Processing				
Textbo					
I CAUDO					
	Gonzalez R. C., Woods R. E., "Digital Image Processing", PHI, Secon Sonka Milan, Vaclav Hlavac, Boyle, "Digital Image Processing and Co Learning, Third edition, 2013				gage
Refere					
2. 3.	S. Jayaraman, S. Esakkirajan, T. Veerkumar, "Digital Image Processin Third edition, 2010 D. A. Forsyth, J. Ponce, "Computer Vision – A Modern approach", Per Hall, 2005 Linda Shapiro, George C. Stockman, "Computer Vision", Prentice Hall e <b>Objectives :</b>	arson E			
2. 3.	To impart knowledge of advanced techniques in computer vision. To acquaint students with the concepts of color image processing, textur recognition, video processing, 3D imaging etc. by applying the algorith To allow students to compare various algorithms and select the one mo particular application.	ms to b	uild ap	olication	15.
	e Learning Outcomes:				
	· · · · ·	Bl	oom's (	Cognitiv	/e
Course	e Learning Outcomes:	Bl		Cognitiv Descrip	
Course	e Learning Outcomes:		el	-	otor
Course CO	e Learning Outcomes:         After the completion of the course the student should be able to         apply the concepts of color image processing, fundamentals of texture analysis, object recognition methods, video processing concepts, 3D imaging         analyze problems and algorithms to build solutions to the real world	Leve	Al	Descrip	otor
Course CO CO1 CO2 CO3	e Learning Outcomes:         After the completion of the course the student should be able to         apply the concepts of color image processing, fundamentals of texture analysis, object recognition methods, video processing concepts, 3D imaging	Leve 3	Aı	Descrip	otor

#### Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

#### **Course Contents:**

Module 1: Color Image Processing	Hrs.
Color Fundamentals, Color models, Gray level to color transformations, Basics of Color	
Image Processing, Color Transformations, Smoothing and Sharpening, Color	7
Segmentation	
Module 2: Texture Analysis	Hrs.
Definition, Types of texture, Texels, Texture analysis – concept and categories, Approaches to	
texture analysis, Statistics, Texture descriptors - statistical - Auto-correlation, co-occurrence	
matrices and features, edge density and direction, local binary partition, Law's texture energy	7
measures, Wavelets and texture analysis.	
Module 3: Representation & Description	Hrs.
Representation, Boundary Descriptors, Regional Descriptors, Use of Principal	(
components for description, Relational Descriptors.	6
Module 4: Object Recognition & Restoration	Hrs.
Object Recognition: Object Detection Vs recognition, Patterns and Pattern Classes,	
Knowledge Representation, Statistical Pattern Recognition, Neural Nets, Syntactic	
Pattern Recognition, Optimization Techniques in Recognition.	-
	7
Restoration: Image Restoration Model, Noise Models, Restoration using spatial	
filtering, Reduction using frequency domain filtering.	
Module 5: Moving Object Detection and Tracking	Hrs.
Introduction, Background Modeling, Connected Component Labeling, Shadow	
Detection, Single Object Tracking, Discrete Kalman Filtering, Particle-filter based	7
tracking, Mean-shift tracking, Segmentation tracking via graph cuts	
Module 6: 3D Vision	Hrs.

Introduction to 3D imaging and its applications. Study of any Research Paper(s) based on the current trends in 3D imaging or any case study.	6
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: explain and use various color models, transformations and techniques of Processing.	Color Image
Module 2:	
<ul> <li>describe fundamentals of texture and its importance in analyzing images.</li> <li>compute various texture descriptors and use it further for texture classification / retrieval.</li> </ul>	
Module 3: describe different ways in which the image can be represented	
Module 4:	
<ul> <li>demonstrate and apply patterns recognition techniques to recognize objects in images for fu understanding the scene.</li> <li>describe and apply image restoration in different ways.</li> </ul>	urther
<b>Module 5:</b> explain concepts of video processing and practically work with detecting moving techniques for single object tracking.	g objects and
Module 6:	
<ul> <li>explain fundamentals of 3D imaging.</li> <li>carry out case study and/or study any research paper based on current trends in 3D imaging</li> </ul>	5.

Title of	Title of the Course:         Professional Elective 3 - Theory and Applications of         L							L	Т	Р	Cr	
						3	0	0	3			
Pre-Requisite Courses: Fundamentals of Image processing								1				
Textbooks:												
	Chandra, A.M. and G Lo, C.P. and Young, Prentice Hall India. 2	A.K.W										n",
Refere	nces:											
	Lillesand, T.M. and K Edition. 2012 Chang, K, "Introduction											th
Course	Objectives :											
2. 3.	To impart knowledge systems (GIS) To make students fam To acquaint students A Learning Outcomes	iliar w Advanta	ith Data	a and D	Data Pro	oducts in	n RS an	d GIS.	eograpl	hical in	formatio	n
CO	After the completion	of the c	ourse t	he stud	lent sh	ould be	able to		Blo	om's C	ognitive	
									leve	1	Descripto	r
<b>CO1</b>	illustrate theories and o	concept	s of RS	and GI	S				3		Applying	
CO2	Examine Data and Dat	-							4		Analyzing	
CO3	Design solutions for techniques.	variou	ıs prot	olems 1	using	RS and	GIS	tools an	.d 6	(	Creating	
CO-PC	Mapping :											
				1		1						
		PO	1	2	3	4	5	6				
		CO1	3					1				
		CO2	1		_	2						
		CO3	3		3	2	2	3				
Assessi	nents :											
Two co	er Assessment: mponents of In Semes er Examination (ESE)			· · · ·	·				ution (N	ИSE) a	nd one E	nd
Assess	ment				M	arks						
ISE 1	mont				10							
MSE					30							

ESE First Year M Tech (Computer Science and Engineering) Curriculum for 2020-21

ISE 2

10

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

**Course Contents:** 

Module 1: Concepts and Foundation of Remote Sensing	Hrs.
Introduction, Remote Sensing System, Electromagnetic Energy, Electromagnetic Spectrum and	
its Characteristics, Energy Interaction in the Atmosphere and with the Earth's Surface,	
Resolution in Remote Sensing, Broad Classifications of Sensors and Platform, Earth	9
Observation Satellite and Sensors, Data Reception, Transmission and Processing, Remote	
Sensing Data and Data Products.	
Module 2: Satellite Image Interpretation and Processing	Hrs.
Interpretation Procedure and Elements, Interpretation strategies and keys, Digital Image	
processing and Image Analysis steps, Image Rectification and Restoration, Image	7
Enhancement, Spatial Filtering, Image Transformation, Image Classification and Analysis.	
Module 3: Applications of Remote Sensing	Hrs.
Land use Land Cover Mapping, Crop Inventory, Ground Water Mapping, Urban Growth, Flood	
Plain Mapping, Wasteland Mapping, Disaster Management.	4
Module 4: GIS – An Overview	Hrs.
Introduction, Geographical concepts and Terminology, Difference between Image Processing	
system and GIS, Various GIS packages and their salient features, Essentials components of	4
GIS, Utility of GIS.	
Module 5: GIS Data	Hrs.
GIS Data types and Data Representation, Data Acquisition, Georeferencing of GIS Data, Raster	
and Vector data, Raster to Vector conversion, Remote Sensing Data in GIS, GIS Database and	6
Database Management System	
Module 6: GIS Spatial Data Analysis and Applications	Hrs.
Measurements in GIS-Lengths, Perimeters, and Areas, Queries, Reclassification, Buffering and	
Neighborhood Functions, Map Overlay, Spatial Interpolation, Analysis of Surfaces, Network	
Analysis, GIS Applications- Problem Identification, Design A Data Model, Project	9
Management, Implementation and Evaluation, Case Studies.	
Module wise Measurable Students Learning Outcomes :	
Would wise Weasurable Students Learning Outcomes .	
After the completion of the course the student should be able to:	
Module 1: Practice theories and concepts of Remote Sensing.	
Module 2: Analyze satellite images through Digital Image Processing	
Module 3: Design solutions to various socioeconomic problems using RS data.	

Module 4: Practice theories and concepts of Geographic Information System.

Module 5: Analyze GIS data and Examine processing of GIS data.

Module 6: Design solutions to various socioeconomic problems using GIS data.

Title of the Course: Professional Elective 4 - Machine Learning (4CO535)	L	Т	Р	Cr
	3	0	0	3

#### **Pre-Requisite Courses:**

#### Textbooks:

- 1. Jason Bell, "Machine Learning Hands-On for Developers and Technical Professionals" Wiley 2015
- 2. Tom M. Mitchell "Machine Learning" MGH
- 3. Stephen Marsland, Taylor & Francis "Machine Learning: An Algorithmic Perspective" (CRC)
- 4. Trevor Hastie, Robert Tibshirani, Jerome H. Friedman "The Elements of Statistical Learning".

#### **References:**

- 1. William Whsieh "Machine Learning Methods in the Environmental Sciences, Neural Networks" Cambridge Univ Press.
- 2. Richard O Duda, Peter E. Hart and David G. Stork, John "Pattern classification" Wiley & Sons Inc., 2001
- 3. Chris Bishop "Neural Networks for Pattern Recognition" Oxford University Press, 1995

#### **Course Objectives :**

- 1. To formulate machine learning problems corresponding to different applications.
- 2. To illustrate a range of machine learning algorithms along with their strengths and weaknesses.
- 3. To apply machine learning algorithms to solve problems of moderate complexity.

#### **Course Learning Outcomes:**

Afton	the completion of the course the student should be able to					Bloon	n's Cognitive
Alter	fter the completion of the course the student should be able to						Descriptor
CO1	illustrate a range of machin	e learning alg	orithms	along	2		Understanding
	with their strengths and we	aknesses.					
CO2	apply machine learning algorithms to solve typical						Applying
	problems in Machine Learn	ing.					
CO3	analyze various machine learning tools				4		Analyzing
	Mapping :				'		7 mary 2mg
					<u> </u>		ThuryZing
			3	4	5	6	
	Mapping :		<b>3</b> 2	<b>4</b> 1		6	
	Mapping : PO	1 2	-	<b>4</b> 1 2		6	

#### **Teacher Assessment:**

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

#### **Course Contents:**

Module 1: Statistical Decision Theory	Hrs.
Statistical Decision Theory - Regression, Classification, Bias Variance, Linear Regression,	
Multivariate Regression, Subset Selection, Shrinkage Methods, Principal Component	6
Regression, Partial Least squares	
Module 2: Classification Algorithms	Hrs.
Linear Classification, Logistic Regression, Support Vector Machines, Naïve Bayes Classification	6
Module 3: Neural Networks and Decision Trees	Hrs.
Neural Networks - Introduction, Early Models, Perceptron Learning, Backpropagation, Initialization, Training & Validation, Parameter Estimation - MLE, MAP, Bayesian Estimation Decision Trees, Regression Trees, Stopping Criterion & Pruning loss functions, Categorical Attributes, Multiway Splits, Missing Values, Decision Trees - Instability Evaluation Measures	8
Module 4: Evaluation Methods	Hrs.
Bootstrapping & Cross Validation, Class Evaluation Measures, ROC curve, MDL, Ensemble Methods - Bagging, Committee Machines and Stacking, Boosting, Gradient Boosting, Random Forests, Multi-class Classification, Naive Bayes, Bayesian Networks	6
Module 5: Clustering	Hrs.
Undirected Graphical Models, HMM, Variable Elimination, Belief Propagation Partitional Clustering, Hierarchical Clustering, Birch Algorithm, CURE Algorithm, Density-based Clustering	8
Module 6: Other Learning Methods	Hrs.
Gaussian Mixture Models, Expectation Maximization, Learning Theory, Introduction to Reinforcement Learning	8

Module wise Measurable Students Learning Outcomes :
After the completion of the course the student should be able to:
Module 1: Illustrate statistical decision theory
Module 2: Demonstrate classification technique for different algorithm
Module 3: Demonstrate the working of Decision Trees
Module 4: Illustrate different evaluation measures
Module 5: Explain different graphical models and clustering techniques
Module 6: Explain gaussian mixture model and learning theory

<b>Fitle o</b>	f the Course: Professional H	Elective	4 - Net	wor	·k Se	ecur	ity	Ι		Т	Р	Cr
(4CO5	36)							3		0	0	3
Pre-Re	equisite Courses: Programmi	ng and I	Data St	ructi	ires,	Cor	nputer	Networks	5			
ſextbo	ooks:											
	1. Stallings W., "Cryptograp Education, Sixth edition, 2	•	Networ	k Se	curi	ty: P	rincip	les and Pra	actic	e", Pea	arson	
Refere	nces:											
	<ol> <li>M. Speciner, R. Perlman, World", Prentice Hall, See</li> <li>Gregor N. Purdy, "Linux Fire</li> <li>Michael Rash, "Linux Fire</li> </ol>	cond edi	tion, 20 Pocket	017 Ref	eren	ce",	O'Rei					a Publi
ours	e Objectives :											
	e Learning Outcomes:								, ~	•.•		
CO	After completion of the cou		's Cognitive Descriptor									
CO1	apply various types of crypto	aranhia	algori	hma	and	kar	7	level 3		escrip pplyin		
COI	exchange techniques	graphic	argorn	.11115	anu	ксу		5	A	рртуш	lg	
CO2	apply network security concepts to individual computer,							3	A	pplyin	g	
CO3	network as well as to any web application analyze network stack related security issues								Δ	nalyzi	nσ	
	) Mapping :		y 15540	5				4	11	1141 y 21	<u>B</u>	
		PO	1 2	3	4	5	6					
		CO1	1	2		1	2					
		CO2 CO3	1	2	23	1	3					
A a a		003	T	2	5	1	5					
ASSESS	ments :											
`ooch	er Assessment:											

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks				
ISE 1	10				
MSE	30				
ISE 2	10				
ESE 50					
ISE 1 and ISE 2 are based on assignment/declared te	est/quiz/seminar etc.				
MSE: Assessment is based on 50% of course conten	t (Normally first three modules)				
ESE: Assessment is based on 100% course content v	vith60-70% weightage for course content (no	ormally			
last three modules) covered after MSE.					
Course Contents:					
Module 1: Introduction		Hrs.			
Basic of cryptography, including conventional and authentication, and digital signatures.	public-key cryptography, hash functions,	8			
Module 2: Key Management and Distribution and	d User Authentication	Hrs.			
Symmetric Key Distribution, Distribution of Publ					
Infrastructure					
		7			
Remote User-Authentication Principles, Remote	User-Authentication Using Symmetric				
Encryption, Kerberos Systems, Remote User Authen	ntication Using Asymmetric Encryption				
Module 3: Malicious Software and Network Acco	ess Control	Hrs.			
Malicious Software: Viruses, Worms, System Corru	ption, Attack Agents, Information Theft,				
Keyloggers, Phishing, Spyware Payload Stealthing, I	Backdoors, Rootkits, Distributed Denial				
of Service Attacks					
		5			
Network Access Control, Extensible Authentication	Protocol, IEEE 802.1X Port-Based				
Network Access Control					
Module 4: IP, Transport-Level and E-Mail Secu	rity	Hrs.			
IP Security: IP Security Overview, IP Security Polic	y, Encapsulating Security Payload,				
~	hange (IKE)				
Combining Security Associations, Internet Key Excl					
		8			
Combining Security Associations, Internet Key Excl Transport-Level Security: Web Security Consideration	ons, Secure Sockets Layer, Transport	8			
Combining Security Associations, Internet Key Excl	ons, Secure Sockets Layer, Transport	8			
Combining Security Associations, Internet Key Excl Transport-Level Security: Web Security Consideration Layer Security, HTTPS standard, Secure Shell (SSH Electronic Mail Security: Pretty Good Privacy, S/MI	ons, Secure Sockets Layer, Transport application IME, Domain Keys Identified Mail				
Combining Security Associations, Internet Key Excl Transport-Level Security: Web Security Considerati Layer Security, HTTPS standard, Secure Shell (SSH Electronic Mail Security: Pretty Good Privacy, S/MI Module 5: Firewalls and Intrusion Detection Syst	ons, Secure Sockets Layer, Transport application ME, Domain Keys Identified Mail	8 Hrs.			
Combining Security Associations, Internet Key Excl Transport-Level Security: Web Security Considerati- Layer Security, HTTPS standard, Secure Shell (SSH Electronic Mail Security: Pretty Good Privacy, S/MI Module 5: Firewalls and Intrusion Detection Syst Intrusion Detection, Password Management, Firewal	ons, Secure Sockets Layer, Transport application IME, Domain Keys Identified Mail arems II Characteristics, Types of Firewalls,				
Combining Security Associations, Internet Key Exch Transport-Level Security: Web Security Considerati- Layer Security, HTTPS standard, Secure Shell (SSH Electronic Mail Security: Pretty Good Privacy, S/MI <b>Module 5: Firewalls and Intrusion Detection Syst</b> Intrusion Detection, Password Management, Firewal Firewall Basing, Firewall Location and Configuratio	ons, Secure Sockets Layer, Transport application IME, Domain Keys Identified Mail arems II Characteristics, Types of Firewalls,	Hrs. 5			
Combining Security Associations, Internet Key Excl Transport-Level Security: Web Security Considerati- Layer Security, HTTPS standard, Secure Shell (SSH Electronic Mail Security: Pretty Good Privacy, S/MI Module 5: Firewalls and Intrusion Detection Syst Intrusion Detection, Password Management, Firewal	ons, Secure Sockets Layer, Transport application appli	Hrs.			

Advanced Topics : Blockchains, Cloud Security and IoT security	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Explain basics of cryptographic techniques	
Module 2: Summarize key management and user authentication systems	
Module 3: Identify malicious software and implement network access control	
Module 4: Illustrate techniques for IP, transport layer and e-mail security	
Module 5: Use firewalls and intrusion detection systems	
Module 6: Apply wireless network security techniques	

# **Professional Elective (Lab) Courses**

Title of	f the Course: Con	nputing L	ab 4 (4	4CO57	2)			L		Т	Р	Cr
D D		111						0		0	4	2
Рге-ке	equisite Courses: N	NIL										
Textbo	ook:											
Tex	t Books mentioned	in the cor	respon	ding th	eory co	ourses.						
Refere	nces:											
_												
	erence Books ment	tioned in the	he corr	espond	ing the	ory cou	ses.					
Course	e Objectives :											
1.	To share in-depth l	knowledge	e of the	e cours	e							
2. To deliver hand-on experience in the field												
	Learning Outcon		ent do	main ai	reas							
		nes.										_
CO	After the comple	tion of th	e cour	se the s	student	t should	be	Bloom	s Cognitive Descriptor			
	able to							Level	De	escripto	or	
CO1		owledge gained for solving different problems						3		oplying		_
CO2	To analyse and evaluate the solutions and compare them							5	Ev	aluatir	ng	
CO-PC	) Mapping :											
		PO	1	2	3	4	5	6				
		CO1	2		5	2	5	U				
		CO2			2	3	1	2				
Lab As	ssessment:											
There a	re four components	s of lab as	ceceme	nt I A	1 1 1 7	I A 3 ar	nd I ah I	FSF				
	a o rour components	5 01 1a0 aS	50351110	in, LA	1, LA2	, LAJ al		-0L.				
IMP: L	ab ESE is a separat	e head of	passing	g.								

	Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
	LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
	LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
Ī	LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
	LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
	LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
	LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
	Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
	LaU ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week1indicatesstartingweekofSemester.Lab activities/Lab performance shall include performing experiments, mini-project, presentations,drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

#### **Course Contents:**

#### Laboratory Assignments :

Lab sessions are to be utilized for problem solving/designing/implementation, to ensure that students have properly learnt the topics covered in the theory course. The partial list is as follows (the list may be updated during actual implementation) :

For course: Computer Vision

- Implement and apply different texture analysis techniques
- Work around with different different color models and perform color transformations
- Implement and / or apply different ways of representing images
- Implement and / or apply different object recognition techniques
- Implement different ways of detecting moving objects

#### OR

For course: Theory and Applications of Remote Sensing & GIS

- Study of Earth Observation Satellites and Sensors
- Hands on learning of RS and GIS Tool/Software
- Visual interpretation of satellite image
- Land Use Land Cover classification/mapping of satellite image.
- Object-based satellite image classification using
- Satellite image classification using Advanced algorithms (Machine learning, Fuzzy techniques)
- Satellite image rectification and enhancement
- Georegistration of images and maps

AND

For course: Machine Learning

- Assignments on implementation of data processing.
- Assignments on implementation of decision trees and bayesian networks.
- Assignments on implementation of Artificial Neural Networks.
- Assignments on implementation of Association Rules Learning.
- Assignments on evaluation of Support Vector Machines.
- Completion of a team project work on solving a real world problem.

#### OR

For course: Network Security

- Classical encryption techniques
- Symmetric and asymmetric key cryptography algorithms
- Kerberos user authentication
- SSL/TLS
- SQL injection attack
- IPsec
- Virtual private network
- Linux firewall
- Cloud security

# **Open Electives Courses**

## **Mandatory Life Skill Courses**

# Value Added Professional Courses

# This is Last Page