Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

First Year M. Tech (Electronics Engineering) Sem. I to II

AY 2020-21

Semester I

Title o	of the Course and Course Code:	L	Т	Р	Cr	
Resear	rch Methodology for Electronics Engineers 4IC501	2	0	0	2	
Pre-Re	equisite Courses: Electronics Engineering		1	1		
Textbo	ooks:					
1.	C. R. Kothari, Research Methodology Methods and Techniques, Ne Edition, 2009	w Age inte	rnation	al, 2 nd		
2.	Deepak Chopra and Neena Sondhi, Research Methodology : Concep House, New Delhi, 2008	ots and cas	<i>es</i> , Vik	as Publi	shing	
Refere	ences:					
1.	E. Philip and Derek Pugh, How to get a Ph. D. – a handbook for stud	dents and t	heir suj	pervisors	s,	
	Open university press,5 th Edition,2010					
2.	Stuart Melville and Wayne Goddard, Research Methodology: An In	troduction	for Sci	ence &		
	Engineering Students, Kenwyn, South Africa : Juta & Co. Ltd., 199	6.				
Course	e Objectives :					
1.	To develop a research orientation among the students and to acquain research methods	nt them wit	h funda	amentals	; of	
2.	To develop understanding of the basic framework of research proces	ss and tech	niques.			
3.	To identify various sources of information for literature review and	data collec	ction.			
4.	To develop an understanding of the ethical dimensions of conducting applied research.					
5.	Appreciate the components of scholarly writing.					
Course	e Learning Outcomes:					
CO	After the completion of the course the student should be able to B	loom's Cos	nitive			
		Level		Descript	or	
CO1	Identify/formulate research the problem for M. Tech. dissertation	Remember	ing	Describ	e	
CO2	Articulate a review paper in the format of standard	Understand	ing	Explair	1	
	Journal/transactions by reviewing at least 10 papers (from standard		0	L		
	Journals /transactions /Reference Books/Handbooks etc) related to a					
CO3	To deliver a seminar on the same, prepare a presentation giving	Evaluatin	g	Discuss	3	
	critical analysis of the subject and possible outcomes	Caratina		C		
04	of M. Tech	Creating		Compos	e	
CO-PC	O Mapping :					
	FF8 -					
	PO 1 2 3 4 5 6					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	$\begin{array}{c c} CO2 & 2 \\ \hline CO3 & 2 \\ \hline \end{array}$					
	CO4 1					
	3-H, 2-M, 1-L					
Assess	ment:					

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

	· ·
Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1	Hr
Introduction Concepts of Research, Meaning and Objectives of Research, Research Process, Types of	
Research, Criteria of Good Research, Research Problem – Identifying and Defining, Research Proposals –	4
Types, contents, Sponsoring agency's requirements, Ethical aspects, IPR issues like patenting, copyrights	
Module 2	Hr
Research Design Meaning, Need and Types of research design, Literature Survey and Review, Research	
Design Process, Measurement and scaling techniques, Data Collection – concept, types and methods,	4
Processing and analysis of data, Quantitative Techniques Sampling fundamentals, Design of Experiments.	
Module 3	Hr
Quantitative Techniques Sampling fundamentals, Testing of hypothesis using various tests like Multivariate	
analysis, Use of standard statistical software, Data processing, Preliminary data analysis and interpretation,	=
Uni-variate and bi-variate analysis of data, testing of hypotheses, techniques such as ANOVA, Chi square	5
test etc., Nonparametric tests. Correlation and regression analysis	
Module 4	Hr
Measurements based research methods in Signal and Image Processing, Graphics, Vision and Pattern	
Recognition, Induction Vs Deduction, Deductive and Inductive Methods in Signal and Image	5
Processing, Graphics, Vision and Pattern, Recognition; Hypothetical-Deductive Method, Repetitions, Detterne Identity Causality and Determinism Godal's Theorem Eugzy Logia Research in the area of	
VLSI	
Module 5	Hr
Research Communication, Writing a conference paper, Journal Paper, Technical report, dissertation/thesis	_
writing. Presentation techniques, Patents and other IPRs, software used for report writing such as WORD,	5
Latex etc.	
Latex etc. Module 6	Hr
Latex etc. Module 6 Case studies: Related to Electronics Engineering.	Hr 3
Module 6 Case studies: Related to Electronics Engineering.	Hr 3
Module 6 Case studies: Related to Electronics Engineering. Module wise Measurable Students Learning Outcomes :	Hr 3

Module 2: Identify the advantages and disadvantages associated with research designs

Module 3: Explain the testing of hypothesis

Module 4: Recognize the keys in Electronics Engineering research

Module 5: Write and present review paper in conference or in journal

Module 6: Design an appropriate mixed-method research study to solve a problem in the field of Electronics Engineering

Title o	of the Course and Course Code:	L	Т	Р	Cr
	Advanced Digital Signal Processing 4EN501	3	0	0	3
Pre-Re	quisite Courses: Signals and Systems, Digital Signal Processing				
Textbo	oks:				
	 Sanjit K. Mitra, "Digital Signal Processing – A Computer base Edition, 2013 Bernard Widrow, Samuel D. Stearns "Adaptive Signal Processing NJ, 1985 	ed approach", 7 g,", Prentice-H	Fata Mc Hall, En	Graw-Hi glewoo	d Cli,
Referen	nces:				
	1. J. G. Proakis, Dimitris K Manolakis, "Advanced Digital Signal	Processing Prin	cipals, A	lgorithn	is and
	Applications,", Pearson,2007	C		C	
Course	Objectives :				
1. T 2. T 3. T Course	To illustrate the concepts of Advanced Signal Processing. To explain the different techniques for design of filters and multirate sy To enable the students for the design and development of Adaptive DSI Learning Outcomes:	stems. P systems.			
CO	After the completion of the course the student should be able to	Bloom	's Cogn	itive]
	There are completion of the course the student should be up to				
001		Level	D	escripto	r
	Explain the basic and advanced signal processing concepts.	Understanding		Discuss	
02	Design Fik and fik filters with given specifications.	Applying	De	sign, Sol	ve
CO3	Analyse the various algorithms related with multi-rate DSP	Analysing		Explain	
CO4	Illustrate adaptive signal processing algorithms	Applying	De	emonstra	te
	PO 1 2 3 4 5 6 CO1 2 2 1 CO2 2 1 1 CO3 2 2 1 CO4 1 1 1 3-H, 2-M, 1-L 1 1 1				
Assess	nent: magnetic of In Someston Evoluction (ISE). One Mid Someston Evolution	otion (MSE) on	d on o Fr	d Como	
Examin	ation (ESE) having 20%, 30% and 50% weightage respectively.	iation (IVISE) an		id Sellie	ster
	Assessment	Marks			
	ISE 1	10			
	MSE	30			
	ISE 2	10			
	ESE	50			
ISE 1 assess	and ISE 2 are based on assignment, oral, seminar, test (surprise/declare ment tool per ISE. The assessment tool used for ISE 1 shall not be used	ed/quiz), and gro d for ISE 2]	oup disc	ussion.[C)ne

MS	E: Assessment is based on 50% of course content (Normally first three modules)	
ESI	E: Assessment is based on 100% course content with70-80% weightage for course content (normally last	three
mo	dules) covered after MSE.	
Cou	rse Contents:	
1	Module 1: Review of Digital Signal Processing	Hrs
	Discrete Time Signals and systems, LTI Systems, Basic Signal Processing Operations, Discrete Time	
	Systems-Classification, impulse and step responses, phase and group delays. Time domain and	8
	frequency domain characterization of LTI discrete time systems, Z Transform, Transfer function	
2	Module 2: DSP Structures	Hrs
	Block Diagram Representation, Equivalent Structures, Basic FIR Digital Filter Structures, Basic IIR	
	Digital Filter Structures, All pass Filters, Tuneable IIR Digital Filters, IIR Tapped Cascaded Lattice	6
	Structures, FIR Cascaded Lattice Structures, Parallel All pass Realization of IIR Transfer Functions	
3	Module 3: DFT Computation Techniques	Hrs
	DFT-Definition and properties, symmetry properties, Circular convolution, Computation of DFT,	
	Decimation in time (DIT) and Decimation in Frequency (DIF) Fast Fourier transform (FFT)	6
	algorithms, Linear filtering using FFT- overlap add, overlap save methods, Goertzel Algorithm	
4	Module 4: Filter Design Techniques	Hrs
	Bilinear Transformation Method of IIR Filter Design, Design of Low pass IIR Digital Filters, Design	
	of High pass, Band pass and Band stop IIR Digital Filters, Spectral Transformations of IIR Filters,	8
	FIR Filter Design Based on Windowed series, Design of Digital Filters with Least-Mean-Square	
	Error, Constrained Least-Square Design of FIR Digital Filters	
5	Module5: Multi-rate Signal Processing	Hrs
	The Basic Sample Rate Alteration Devices, Filters in Sampling Rate Alteration Systems, Multistage	
	Design of Decimator and Interpolator, The Poly phase Decomposition, Arbitrary-Rate Sampling Rate	6
	Converter, Digital Filters Banks, Two-Channel Quadrature-Mirror Filter bank	
6	Module 6: Introduction to adaptive signal processing	Hrs
	Introduction to Adaptive Filters, Steepest descent technique, LMS algorithm-Convergence analysis,	6
	Learning curve, SVD.	
Mod	lule wise Measurable Students Learning Outcomes :	
Mod	ule 1: Discuss the Digital Signal Processing concepts	
Mod	ule 2 : Explain and construct the DSP structures	
Mod	ule 3 : Solve the problems using DFT algorithms	
Mod	ule 4 : Design FIR and IIR filter	
Mod	ule 5 : Explain multi rate signal processing	
Mod	ule 6 : Demonstrate adaptive signal processing algorithms	
Tuto	orial: Tutorial will be engaged in either of following	
	1. Solving numerical	
	2. Writing and executing MATLAB programs for various algorithms in ADSP	

Title of	f the Course and Course Code:	Title of the Course and Course Code:LTP		Р	Cr
	Embedded System Design 4EN502	3	0	0	3
Pre-Re	equisite Courses: Microprocessors / Microcontrollers				
Textbo 1. Josep 2. Fran	Textbooks: 1. Joseph Yiu, "The definitive guide to ARM Cortex-M3", Elsevier, 2nd Edition 2. Frank Vahid and Tony Givargis, "Embedded System Design", Wiley				
Referent 1. Sloss Design 2. Steve 3. Frant 4. Tech www.n	nces: s Andrew N, Symes Dominic, Wright Chris, "ARM System Deve ing and Optimizing", Morgan Kaufman Publication e furber, "ARM System-on-Chip Architecture", Pearson Educatio k Vahid and Tony Givargis, "Embedded System Design", Wiley inical references and user manuals on www.arm.com, NXP Semic xp.com and Texas Instruments <u>www.ti.com</u> , ST Microelectronics	eloper's Guide: on conductor s www.st.com.			
Course	e Objectives : At the end of this course, students will be able to				
1.	Understand ARM processor core architecture with several feature	es of peripheral	s avail	able on	
2	various embedded Cortex- M processors.				
2. 3.	Develop small embedded system by using the ARM processor co software for it.	ore based syster	ns and	applica	ntion
4.	Use EDA tools to design embedded system PCB.				
 5. Interface various memories with cortex M processor. 					
Course	e Learning Outcomes:				
CO	After the completion of the course the student should be able	Bloom's Cogn	itive		
	to	Level	Desc	cript	
CO1	Illustrate Cortex M processor architecture and its features	Understandin	Illus	trate	
CO2	Develop programs for peripherals and interrupts	Applying	Dev	elop	
CO3	Designing embedded system hardware	Creating	Des	sign	
CO4	Design embedded system software.	Creating	Des	sign	
CO5	Design Interface for various memories with Embedded system	Creating	Des	sign	

CO-PO Mapping :

РО	1	2	3	4	5	6
CO1			2			
CO2				2		
CO3			2			
CO4				1		
	3-I	H, 2	-M,	1-L		

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group

discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: ARM Cortex –M Architecture and Programming:	6
ARM Cortex M3/M4 Architecture, Registers, CPU status, Clock generation, Memory	
organization, Instruction Set, Programming model – Registers, Operation Modes, Embedded C	
Programming	
Module 2: Cortex M CPU Interrupts	6
Nested Vectored Interrupt Controller (NVIC), Vector table, Interrupt priorities, Interrupt Inputs	
and Pending behavior, Fault Exceptions, Supervisor and Pendable Service Call, SYSTICK	
Timer, Interrupt Sequences, Exits, Tail Chaining, Interrupt Latency, Startup files, initialization	
of peripherals interrupts, Interrupt routines programming.	
Module 3 : ARM Peripherals and Programming	8
On chip peripherals, GPIO, RTC, Watchdog, UART, I2C, I2S, ADC and SPI interfacing and	
Programming, Repetitive interrupt timer, PWM Block programming, CAN BUS programming,	
LIN bus programming, DMA programming, Writing LCD drives, Drivers for serial port	
communication	
Module 4: Embedded System Design and Testing	8
Design embedded system using Cortex-M3/M4 processors with SPI, UART, ADC, DAC,	
Memory, PWM peripherals. Hardware design issues, State Machine based Embedded	
Programming, Writing initialisation programs, Debugging techniques, Debugging with JTAG,	
Debugging with UART port.	
Module 5 : Memory	6
Types of Memory, static, dynamic, SDRAM, DDR RAM, Flash Memory chips, SD Card, Quad	
SPI Flash Interface with CPU.	
Module 6 : Hardware design issues	6
Selection of electronics components, Reading Schematic, Datasheets, footprints of various	
components, EDA tool for PCB design, Hierarchical design, Schematic and board layout design,	

board assembly process, board bring-up, cold and hot testing	
Module wise Measurable Students Learning Outcomes : student will able to	
Module 1: Illustrate Cortex-M embedded CPU programming model	
Module 2: Illustrate Cortex-M CPU interrupts and develop programs using interrupts	
Module 3: Develop peripheral programming	
Module 4: Design embedded system with peripherals	
Module 5: Design embedded system with various memories	
Module 6: Design schematic, PCB layout with EDA Tools and test it.	

Title of the Course and Course Code:	L	Т	Р	Cr
Electronics Lab 1 4EN551	0	0	4	2
Pre-Requisite Courses: Microprocessors / Microcontrollers				
Textbooks:				
1. Joseph Yiu, "The definitive guide to ARM Cortex-M3", Elsevier, 2nd Editio	n			
2. Frank Vahid and Tony Givargis, "Embedded System Design", Wiley				
3. User and reference guide of LPC1768				
4. Philips- An Indroduction to SDRAM and memory controller by Benny Akes	son			
5. Rigid Flex PCB design – by Ben Jordan				
	C^{1}			
1. Sloss Andrew N, Symes Dominic, Wright Chris, "ARM System Developer's	Guide:			
2 Stave furber "APM System on Chin Architecture" Poerson Education				
3 Technical references and user manuals on www arm com NXP Semiconduc	tor			
www.nxn.com and Texas Instruments www.ti.com ST Microelectronics www	st com			
4. www.altium.com				
Course Objectives : At the end of this course, students will be able to				
1. Understand ARM processor core architecture with several features of	of perip	herals a	available	e on
LPC1768 embedded Cortex- M processors.				
2. Understand interrupts and its programming with peripherals				
3. Develop small embedded system by using the ARM processor core	based s	ystems	and	
application software for it.				
4. Use EDA tools to design embedded system PCB.				
5. Interface various memories with cortex M processor.				

Course Learning Outcomes:

CO	After the completion of the course the student should be able	Bloom's Cognitive		
	to	Level	Descript	
CO1	Illustrate Cortex M processor architecture and its features	Understandin g	Illustrate	
CO2	Develop and execute programs for peripherals and interrupts	Applying	Develop	
CO3	Design and execute embedded system software	Creating	Design	
CO4	Design embedded system PCB	Creating	Design	

CO-PO Mapping :

PO	1	2	3	4	5	6
CO1			2			
CO2				2		
CO3			2			
CO4				1		
3-H, 2-M, 1-L						

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks	
Ι Δ 1	Lab activities,	Lab Course Feeulty	During Week 1 to Week 4	25	
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23	
1 4 2	Lab activities,	Lab Course Feeulty	During Week 5 to Week 8	25	
LA2	attendance, journal	Lab Course Faculty	Submission at the end of Week 9		
1 4 2	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25	
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23	
Lob ESE	Lab Performance and	Lab Course feaulty	During Week 15 to Week 18	25	
LaU ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	25	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

- 1. Write Simple C Program with header files for array manipulations
- 2. Write C programs for GPIO and debug programs, see variables and waveforms.
- 3. Writing programs for UART in polling mode
- 4. Writing programs for SPI in interrupt mode
- 5. Writing programs for I2C and ADC etc. in polling mode
- 6. Writing programs for Interrupt vector table and writing interrupt programs for UART peripherals.
- 7. Write Programs with CMSIS for UART, SPI etc.
- 8. Design Embedded system using various peripherals in group of 2 students
- 9. Design PCB schematic for embedded system using LPC1768
- 10. Design Layout for schematic generated in Exp. 9

Experiment wise Measurable Students Learning Outcomes : student will able to

Experiment 1: Develop and execute Cortex-M embedded CPU programs for arrays Experiment 2: Develop and execute Cortex-M CPU GPIO and debug it. **Experiment** 3: Develop and execute peripheral UART programming in polling mode **Experiment** 4: Develop and execute program for SPI in interrupt mode **Experiment** 5: Develop and execute program for I2C and ADC in polling mode **Experiment** 6: Develop and execute program for UART peripherals using interrupt **Experiment 7:** Develop and execute program with CMSIS for UART, SPI etc **Experiment 8:** Develop and execute program for Embedded system using various peripherals **Experiment 9:** Design schematic with EDA Tools and test it. Experiment 10: Design PCB layout with EDA Tools and test it. Experiments using MATLAB : 1. Generation and analysis of different signals in time and frequency domains. 2. Study and applications of different transforms 3. Design of Digital Filter: IIR, FIR. 4. Design of multi rate signal system Experiments using DSK 6713 DSP Kit Introduction to DSK 6713 kit and CCS environment 5. 6. Study of input/output, architecture of C6x processor 7. Digital filter design using DSK 6713 Implementation of DSP applications using DSK 6713 8.

Title of the Course and Course Code:		Т	Р	Cr
Professional Elective I: Digital VLSI Design 4EN511		0	0	3
Pro Doguisito Courses: Digital Tachniques				

Textbooks:

- 1. Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "*Digital Integrated Circuits, A System Perspective*", Pearson Education, Second Edition, First Indian Reprint, 2003.
- 2. Neil Weste, Kamran Eshraghian "Principles of CMOS VLSI Design", Addison Wesley/Pearson Education, 2010

References:

- 1. Kamran Eshraghian, Pucknell and Eshraghian "Essentials of VLSI Circuits and Systems", , Prentice-Hall (India), 2008
- 2. Sung-Mo Kang, Yusuf Leblebici "CMOS Digital Integrated Circuits: Analysis and Design", McGraw Hill Education (India), Third Edition, 2003
- 3. Neil Weste, David Harris, Ayan Banerjee "CMOS VLSI Design", Pearson Education, 2008

Course Objectives:

- 1. To explain the relevance of CMOS technology in implementing digital circuits.
- 2. To discuss in details various logic styles (static, dynamic) in implementing CMOS circuits and the effect of choosing a particular style on device performance from delay, power and area point of view.
- 3. To develop the architectures of few data-path designs (system building blocks) and an insight into extracting the functionality of displayed CMOS circuit.
- 4. To motivate the students to develop lifelong/self-learning attitude.

Course Learning Outcomes:

CO1: Apply the analytical expressions involving physical parameters, process parameters and electrical parameters to characterize the MOS transistors by taking into account the <u>fundamental principles</u> involved with MOS devices.

CO2: Analyze static and dynamic CMOS circuits logically to deduct the functionality of the circuits.

CO3: Analyze static and dynamic CMOS circuits <u>numerically</u> to compute the various device parameters and circuit performance parameters.

CO4: Select an appropriate logic style to design submicron MOS transistor based circuits using <u>logical</u>, <u>analytical and computational skills</u>

CO5: **Design** the self timed CMOS circuits, and synchronous circuits with built-in arbiters, synchronizers **CO6: Design** with Justification the architectures/schematics of data path design viz adders, multipliers and data shifters.

CO-PO Mapping :

PO	1	2	3	4	5	6
CO1				2		
CO2						1
CO3						1
CO4			2			
CO5			1			
CO6						2
3-H, 2-M, 1-L						

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks				
ISE 1	10				
MSE	30				
ISE 2	10				
ESE	50				
ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group					
discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]					
MSE: Assessment is based on 50% of course cont	ent (Normally first three modules)				

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally
last three modules) covered after MSE.

Course (Contents:
----------	-----------

Module 1:MOS Transistor	Hrs.
MOS transistor theory, MOS under static conditions, Secondary effects, Technology Scaling	4
Module 2:CMOS Inverter	Hrs.
CMOS inverter, Static and Dynamic behaviour of CMOS inverter, Power and Energy-Delay,	6
Impact of technology scaling on inverter	0
Module 3 :Combinational Static Logic Design	Hrs.
Combinational static logic designs in CMOS, CMOS (Inverter and Complex gates), pseudo-	
nmos, pass-transistor logic, transmission gate logic and design aspects for optimizing the	8
performance	
Module 4 :Combinational Dynamic Logic Design	
Combinational dynamic logic designs using pre-charge evaluate logic, domino logic, np-CMOS	
logic, design aspects for optimizing the performance, Comparison of static and dynamic designs	
Module 5:Sequential Logic Design	Hrs.
Timing metrics of sequential circuits, Sequential logic designs in CMOS, Static and dynamic	0
latches and registers	ð
Module 6:Timing Issues in Digital Circuits	Hrs.
Timing Classification, Synchronous Design (Clock skew, Jitter, Clock Distribution), Self-Timed	7
Circuits Design, Synchronizers and arbiters, Using PLL for clock synchronization	/

Module wise Measurable Students Learning Outcomes :

Module 1: ALL MOS map to CO1

- 1. MO1.1: Explain the behaviour of MOS transistor under different biasing conditions
- 2. MO1.2: Compare between short channel and long channel MOS transistors.
- 3. MO1.3: Derive the expressions for the equivalent resistance during charging and discharging of the load capacitor.
- 4. MO1.4: Explain the contribution of various built-in capacitances to the intrinsic load capacitance of the transitor
- 5. MO1.5: Solve numerical problems based on current-voltage relation under different biasing conditions.

Module 2:

- 1. MO2.1:Deduct the Voltage Transfer Curve for a CMOS inverter by considering the series combination of pMOS and nMOS transistor and their I-V characteristics in different regions of operation.
- 2. MO2.2: Derive the analytical expression for switching voltage for CMOS inverter.
- 3. MO2.3: Explain the piecewise linear model for VTC and derive the expressions for switching threshold (VM), Limiting values of low and high input voltage VIH, VIL, Noise margins corresponding to LOW and HIGH state viz.NMH and MNL
- 4. MO2.4: Compute the various parasitic capacitances and explain the transient behavior of the inverter in terms of propagation delays.
- 5. MO2.5: Design the dimensions of NMOS and PMOS transistors of an inverter and chain of inverters to optimize the delay and hence spped.
- 6. MO2.6: Compute the various components of power dissipation in inverter and optimize the dimensions for optimum energy, power delay and energy delay product.
- 7. MO2.7: Choose an appropriate low power approach for designing inverters with power

optimization.

Module 3:

- 1. MO3.1: Design a complementary MOS circuit for a given Boolean function
- 2. MO3.2: Compute the intrinsic delay by considering the logical and electrical effort and design the dimensions of transistors in the pull-up and pull-down network of the circuit for optimizing the performance.
- 3. MO3.3: Explain the design techniques for large fan-in combinational circuits.
- 4. MO3.4: Compute the switching factor and hence dynamic power dissipation for CMOS combinational circuits using probabilistic models.
- 5. MO3.5: Choose appropriate design approach to reduce switching factor and hence dynamic power dissipation.
- 6. MO3.6: Develop and design combinational circuits using static styles such as Pseudo-nMOS, Dynamic Switch Cascode Switch Logic (DCVSL), Pass Transistor logic (PL), Complementary Pass Transistor Logic (CPL) and Transmission Gate (TG)Logic.

Module 4:

- 1. MO4.1: Develop and design combinational circuits using dynamic logic static styles such as Precharge-Evaluate and explain the benefits of this for performance (speed and power) over static logic style.
- 2. MO4.2: Suggest the solutions to solve the problem of charge leakage, charge sharing, capacitive coupling in dynamic logic circuits.
- 3. MO4.3: Develop domino CMOS logic and np-CMOS logic, to solve the problem of cascading dynamic logic gates,
- 4. MO4.4: Select an appropriate CMOS logic style for implementation of CMOS circuits to optimize the performance for speed, area and power.

Module 5:

- 1. MO5.1: Explain with waveforms the timing metrics of latches and registers.
- 2. MO5.2: Design static latch and static register using master slave configuration and explain the difference between the two with the help of waveforms
- 3. MO5.3: Design dynamic latch and dynamic register using pass transistor, transmission gate and solve the problems associated with that logic style.
- 4. MO5.4: Develop the registers in other logic style viz. C2MOS, Dual Edge Registers, TSPCR etc to improve the performance.
- 5. MO5.5: Develop the schematics for SR flipflop, Schmitt Trigger, Monostable circuit, Ring Oscillator etc and explain their operation

Module 6:

- 1. MO6.1: Explain the timing basics of pipelined synchronous circuits and derive the restriction on clock period considering skew and jitter in clock signal.
- 2. MO6.2: Suggest various clock distribution approaches to minimize the clock skew and jitter problem
- 3. MO6.3: Develop self timed pipelined circuits by considering the physical and logical ordering of the functional and hand shaking circuit blocks and generating the appropriate hand shake signals.
- 4. MO6.4: Implement two-phase and four-phase protocol for data communication in self timed circuit

- using Muller-C element
- 5. MO6.5: Design CMOS synchronizers and arbiters for robust operation of synchronous circuits.
- 6. MO6.6: Compute the reliability figures of CMOS synchronous circuits by taking into considerations the clocking frequency and register related manufacturing parameters.

Title of	f the Course and Course Code:	L	Т	Р	Cr				
Pr	ofessional Elective I:Information Theory and Coding 4EN512	3	0	0	3				
Pre-Re	Pre-Requisite Courses: Probability Theory , Digital Communication								
Textbo	ooks:								
1.	1. Thomas Cover, Joy Thomas, " <i>Elements of Information Theory</i> ", Wiley Publications, second edition.								
2.	2. Andre Neabauer, "Coding Theory: Algorithms, Architectures & Applications", Wiley Publications, 2010.								
3.	R Bose, "Information Theory, Coding and Cryptography", TMH 20	007							
Refere	nces:								
1. 2. 3.	 Simon Haykin, "Digital Communication", Wiley Publications, second edition Jorge Castineira, Moreira, "Essentials of Error Control Coding", Wiley, 2006 NPTEL lecture series on – "Information theory and coding" 								
Course	e Objectives :								
1.	To discuss in detail about information theory which allows us to ana	alyze and ch	naracte	rize the					
•	fundamental limits on communication systems.								
2.	To explain various approaches of error control coding techniques.								
Course	e Learning Outcomes:								
CO	After the completion of the course the student should be able	Bloom's Co	gnitive))					
	to	Level	Des	criptor					
CO1	Analyse performance of channel using information theory.	Analyzing	Int	egrate					
CO2	Illustrate various source coding technique.	Applying	Imp	lement					
CO3	Discuss error control coding techniques to improve	Evaluating	Es	timate					
	performance of system.								

CO – PO Mapping :

PO	1	2	3	4	5	6
CO1	1					
CO2			2			
CO3				2		
3-H, 2-M, 1-L						

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks			
ISE 1	10			
MSE	30			
ISE 2	10			
ESE	50			
ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group				
discussion.[One assessment tool per ISE. The assess	sment tool used for ISE 1 shall not be used for I	SE 2]		
MSE: Assessment is based on 50% of course conten	nt (Normally first three modules)			
ESE: Assessment is based on 100% course content	with70-80% weightage for course content (nor	mally		
last three modules) covered after MSE.				
Course Contents:				
Module 1 : Review of Probability Theory		Hrs.		
Random Variable, cumulative distribution func	tion, probability density function, random	5		
variable, Bivariate random variable, joint and condi	tional probabilities.	3		
Module 2: Entropy, Relative Entropy, and Muti	al Information	Hrs.		
Entropy, Joint Entropy and Conditional Entropy, Relative Entropy and Mutual Information,				
Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of				
Information		1		
Module 3 : Source Coding and Data Compressio	n	Hrs.		
Need, Source coding theorem, fixed length codi	ng, variable length coding, kraft Inequality,			
Huffman Codes, Optimality of Huffman Codes, Sh	nannon- Fanno coding technique, comparative	6		
study of source coding technique		1		
Module 4: Channel Capacity		Hrs.		
Discrete memoryless source, Symmetric Channe	els, Properties of Channel Capacity, Jointly			
Typical Sequences, Channel Coding Theorem, B	E-SNR Trade off Fano's Inequality and the	8		
Converse to the Coding Theorem, Error Free C	Communication Over Noisy Channel, Binary	1		
Symmetric Channel and Introdution to Continous S	ources and Channels	1		
Module 5 : Linear Binary Block Codes		Hrs.		
Introduction, Generator and Parity-Check Matrices	s, Repetition and Single-Parity-Check Codes,	8		
Binary Hamming Codes, Error Detection with L	inear Block Codes, Weight Distribution and			
Minimum Hamming Distance of a Linear Block Co	de, Hard-decision and Soft-decision Decoding			
of Linear Block Codes, Cyclic Codes, Parameters of BCH and RS Codes, Interleaved and				

Concatenated Codes	
Module 6 : Convolutional Codes	Hrs.
Convolutional codes – code tree, trellis, state diagram - Encoding – Decoding: Sequential search	8
and Viterbi algorithm – Principle of Turbo coding	0
Module wise Measurable Students Learning Outcomes :	
Module 1: Solve numerical on probability theory.	
Module 2: Analyse source statistics using fundamentals of information theory	
Module 3: Implement different source coding technique.	
Module 4: Analyse performance of communication system using channel statistics	
Module 5 and 6: Apply error control coding and decoding technique to improve performance	of the
system.	

Title of the Course and Course Code:	L	Т	P	Cr					
	3	0	0	3					
Professional Elective 2:Biomedical Signal Processing 4EN515									
Pre-Requisite Courses: Signals and Systems, Digital Signal Processing									
Textbooks:									
1. Reddy D C. "Modern Biomedical Signal Processing – Principles and Techniques", TMH,									
New Delhi, 2005	New Delhi, 2005								
2. Eugene N. Bruce, "Biomedical Signal Processing and Signal Modeling", A Wiley-Interscience Publication									
JOHN WILEY & SONS, INC.	•								
References:									
1. Akay M. "Biomedical Signal Processing", Academic press, C	1. Akay M. "Biomedical Signal Processing", Academic press, California, 1994.								
2. Bronzino J D "The Biomedical Engineering handbook", CRC and Fr	2. Bronzino J D "The Biomedical Engineering handbook", CRC and Free press, Florida, 1995.								
	_								
Course Objectives :									
1. To study origins and characteristics of some of the most commonly used biomedical signals									
including ECG, EEG, evoked potentials, and EMG.			-						

2. To explore application of established engineering methods to complex biomedical signals problems

Course Learning Outcomes:

	After the completion of the course the student should be	Blo	om's Cognitive	
CO	able to -	Level	Descriptor	
CO1	Apply signal processing techniques to biomedical signals	3	Applying	

CO2	Analyze ECG and EEG signal with characteristic feature	4	Analyzing
	Model a biomedical system		
CO3	Nodel a biomedical system.	6	Creating
Assessments Two compo	CO – PO Mapping :PO123456CO123456CO123456CO123456CO2221CO3111Teacher Assessment:nents of In SemesEvaluation (ISE), One Mid Semester Exami Semester Examination (ESE) havin0%, 30% and 50% weight MidAssessmentMidMidISE 111MSE11ESE22E 222E 322E 42B 22E 53Course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally first three ment is based on 50% of course content (Normally f	nation (M3 s respectiv arks 10 30 10 50 odules)	SE) and one End
ESE: Assessn last three mod	nent is based on 100% course content with 60-70% weightage for hules) covered after MSE.	course con	tent (normally
Course Cont	ents:		
Module 1 : I	ntroduction to Biomedical Signals		Hrs.
Signals, Object Signal Conver circuits. Appli Evoked Signa	ctives and difficulties in Biomedical analysis, rsion Systems, Conversion requirements for biomedical signals, Signation areas of Bio -Signal analysis – EEG, ECG, Phonocardiogra	gnal conve m, Spiro G	rsion 7 Fram,
Module 2 · S	ignal Averaging and Data Compression Techniques		Hrs
Basics of sign averaging, lim Turning point	al averaging, signal averaging as a digital filter, a typical averager, itations of signal averaging. algorithm, AZTEC algorithm, Fan algorithm, Huffman coding	software f	for signal 6
Module 3 : A	daptive Noise Cancellation		Hrs.
Adaptive inter - Notch filters adaptive algor of maternal E	ference / Noise cancellation: Types of noise in biosignals; Digital - Optimal and adaptive filters. Weiner filters - steepest descent alg ithm - Adaptive noise canceller - cancellation of 50 Hz signal in E CG in foetal electrocardiography.	filters - IIF gorithm - L CG - Canc	and FIR MS ellation 6
Module 4 : C	Cardiological signal processing		Hrs.
Basic Electroc (parameters an of the ECG, B techniques, A segment analy	cardiography, ECG data acquisition, ECG lead system, ECG signal ad their estimation), Analog filters, ECG amplifier, and QRS detec andpass filtering techniques, Differentiation techniques, Template QRS detection algorithm, Realtime ECG processing algorithm, EC are Portable arrhythmia monitor	characteri tor, Power matching CG interpre	stics spectrum 7 etation, ST
Module 5 • N	Jeurological signal processing		Hrc
Neurological s waves, The El Analysis of El detection	signal processing: The brain and its potentials, The electrophysiolo EG signal and its characteristics (EEG rhythms, waves, and transie EG channels: Detection of EEG rhythms, Template matching for E	gical origints), Corre EG, spike	n of brain lation. and wave
Module 6 : N	Adeling of Biomedical Systems		Hrs.
Motor unit firm system model	ing pattern, Cardiac rhythm, Formants and pitch of speech, Point p ing, Autoregressive model, Autocorrelation method, Application to of model parameters. Levinson-Durbin algorithm. Computation of	rocess, Par random s	ametric 8 ignals,

Covariance method, Spectral matching and parameterization, Model order selection, Relation	
between AR and Cepstral coefficients.	
Modulewise Measurable Students Learning Outcomes :	
After completion of respective modules, Students will be able to -	
Module 1: gain insight into different biomedical signals	
Module 2 & 3: get introduced to signal processing techniques to improve biomedical signals	
Module 4 & 5 : understand applications of signal processing in Cardiology and Neurology	
Module 6: design algorithm for modeling of biomedical systems.	

Title of the Course and Course Code:			Р	Cr			
Professional Elective 2:Embedded Linux Programming 4EN516	3	0	0	3			
Pre-Requisite Courses: Nil							
Textbooks:							
 Christopher Hallinan, "Embedded Linux Primer: A Practical Real-World Approach", Prentice Hall; 1st edition (September 28, 2006), ISBN 978-0137017836 Richard Stones, Neil Matthew, "Beginning Linux Programming", Wiley; Fourth edition (2008) Felix Alvaro, "LINUX: Easy Linux For Beginners", Amazon.com Karim Yaghmour, Jon Masters, Gilad Ben-Yossef, Philippe Gerum, "Building Embedded Linux Systems", O'Reilly Media; Second Edition (August 22, 2008) ISBN: 978-0596529680 							
References:							
 P. Raghavan, Amol Lad, Sriram Neelakandan, "Embedded Linux System Design and Development", Auerbach Publications; 1 edition (December 21, 2005), ISBN: 978-0849340581 <u>http://crashcourse.ca/introduction-Linux-kernel-programming-2nd-edition</u> Anand Iyer, Director, Calypto Design Systems, NPTEL Course: "Linux Programming & Scripting", by Online Course on YouTube and Also on http://nptel.ac.in, L1-4, L7 and L43 							
Course Objectives :							
 To make students familiar with installation and use of the embedded Linux operating system To facilitate the students to learn the fundamentals of Linux as applied to embedded hardware To give exposure to system design using embedded Linux as per the industry trends. 							
CO-PO Mapping : Use H: High M: Moderate L:Low for mapping;							

PO	1	2	3	4	5	6				
CO1			2							
CO2				2						
CO3						1				
3-H, 2-M, 1-L										

Assessments

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 1: 10 Marks to be submitted before MSE marks. It is open to students.

ISE 2: 10 Marks to be submitted before ESE. It is hidden component for students.

MSE: 30 Marks to be submitted within 10 days after MSE examination is over

(Generally on module 1-3)

ESE: 50 Marks to be submitted within 10 days after ESE examination

(60-70% weight for module 4-6 and 30-40% on module 1-3)

Madula 1. Introduction	IIng
	Hrs.
Introduction to Linux, Linux Distributions, Open source Software, GPL, Facilities in Embedded	
Linux Boards used in Industry/Market, Important Accessories of Linux boards available/used in	=
industry, Care to take in handling the Linux boards, Development Setup for EL, OS installation,	3
init process, initrd, boot loaders, lilo and GRUB boot loaders, Case studies of Embedded Linux	
Based Systems	
Module 2: Linux file system and commands	
Linux File System, Permissions, CLI and Linux Shells, Linux Commands, Linux concepts, Shell	
Script, Basic Linux system administration tasks on the RPi. Linux commands for file and process	6
management. Linux Programming, Multi-file C programming Using make utility, Makefile, GNU	
debugger. Transferring Files Between Systems, Kernel, building kernel image.	
Module 3: Multithreading and Hardware Access:	
Threads and processes, Multithreaded C programming. EL hardware design issues, Logic-level	
translation circuitry. Case studies of hardware of frequently used interfaces, Communication with	7
EL board through network, EL GPIO control using sysfs, wiringPi and python. Python libraries	
Module 4: Hardware Interfacing and Programming-I	
Using onboard I2C, SPI, and UART capabilities. Circuits to the RPi that interface to its I2C bus,	
Linux I2C-tools. Communicate between UART devices using both Linux tools and custom C or	
Python code. Interface to a low-cost GPS sensor using a UART connection. Extend the	7
input/output capability using external serial ADCs, DACs, Increase the number of available	
GPIOs on the RPi using both I2C and SPI GPIO expanders.	
Module 5: Hardware Interfacing and Programming-II	
Using Interrupt functionality on devices. Increasing the number of available serial UART devices	
on the RPi using low-cost USB-to-TTL devices. USB Bluetooth adapter for the RPi and connect	-
to it from a mobile device for the purpose of building a basic remote-control application. Using	1
Wi-Fi and Xigbee along with EL board. Hardware design for given system specifications.	
Module 6: Basic Image Processing on Embedded Linux:	
Camera interfacing to EL board, Capture image and video. Stream video data to the Internet using	
Linux applications and UDP, multicast, and RTP streams. Using OpenCV to perform basic image	7
processing on the RPi. Use OpenCV to perform a computer vision face-detection task. Play audio	/
data on the using HDMI audio and USB audio adapters.	
Module wise Measurable Students Learning Outcomes:	
At the end of each module the students will be able to,	
Module 1: Apply the basic concepts of Linux for various case studies.	
Module 2: Apply the basic and frequently required Linux commands and shell scripting for basic administration	
Module 3: Write, compile multi-file, multi-threaded programs using make and debug using odb	
Module 4: Write programs to access and control the on board as well as outside hardware such as si	uch as
I2C/SPI/ GPIO/ Keyboard/I CD/Serial port etc. Design external hardware for FL board	~~ii u5
Module 5: Write programs for extending EL hardware and modules such as Wi-Fi module	
Module 6: Write OpenCV program for basic image processing using Linux.	

Τ	itle of	the Co	ourse and Course Code									
Electronics Lab 2 4EN552							L	Т	Р	Cr		
							0	0	4	2		
P	re-Req	quisite	Courses: Digital VLSI	Design Lab								
R	eferen	ce Bo	oks:									
	1. 0	Cadenc	e manual									
	2. N	Microw	vind manual									
	3. I	Lab Ge	neral manual									
C	ourse	Objec	tives:									
	1.	Den	nonstrate the flow of fol	lowing EDA tools fo	r des	igning	digital	circuits				
		a.	Microwind for designing	g digital circuits at ph	vsica	al level	U					
		b.	Cadence flow (Schemati	c entry to simulation) for	implen	nenting	CMOS	digital	l circuit	S	
		2. Prei	pare the students for exec	cuting an individual c	, or gro	up prol	blem o	, f mediu	m com	plexity.		
C	ourse	Learn	ing Outcomes:	8	0					·2		
	CO	After	the completion of the cou	irse the student shoul	d be a	able to		Bloo	m's Cog	gnitive		
			-					Level		Descrip	tor	
	CO1	Desig	n and Simulate schematic	es of CMOS circuits us	ing C	Cadence		6 th				
		tools	and 90 nm technology				((Creatin	g)	Desig	sign and	
										Simul	ate	
	C O2	Desig	gn and simulate physical	l layouts with optime	um a	rea for		6 th		PO3		
		gates	, pass-T, TX gates etc us	ing microwind tools			(0	Creating)				
	CO3	Form	ulate a research a problem	n, design, build and sin	nulate	either		6 th	(Creat	ing)		
		a rese	earched problem or assign	ned by the supervisor	in	Digital	Sk		Resear	ch Life	long	
		VLSI	Design area independent	ntly, submit a writte	n rej	port in		arning	Resear	communication		
		standa	ard format and demonst	rate the simulation	result	s with	IC	anng o skil	le and a	othics	1011	
		justifi	cation.					5K11		Junes		
C	O-PO	Mapp	ing:		1 1							
			_	PO 1 2 3 4	5	6						
			_	CO1 3								
			-	CO2 3								
			_	CO3 2								
				3-H, 2-M, 1-I								
L	ab Ass	sessme	nt:									
Т	here ar	e four	components of lab assess	sment, LA1, LA2, LA	A3 an	d Lab	ESE.					
Π	IMP: Lab ESE is a separate head of passing.											
Assessment Based on Conducted by			Conduction and Marks Submission Mark					arks				
LA1 Lab activities,		Lab Course Faculty During We			ek 1 to	1 to Week 4			25			
attendance, journal		Submission			at the e	the end of Week 5						
LA2 Lab activities, Lab Course Faculty		During Week 5 to Week 8				25						
			attendance, journal	Luc Course I wouldy	Sub	mission	at the	end of W	eek 9			
	LA	LA3 Lab activities, Lab Course Faculty During Week		ek 10 to	Week 1	25		25				
1	-		attendance, journal	······································	Sub	mission	at the e	end of W	eek 14	к 14 ²³		

Week 1 indicates starting week of Semester.

Lab ESE

Lab Performance and

related documentation

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Lab Course faculty

During Week 15 to Week 18

Submission at the end of Week 18

29

25

Proposed List of experiments:

A: Using cadence Design Tools:

- 1. NMOS and PMOS characterization
- 2. Implementation of CMOS inverter and its characterization for VTC and power
 - a. Equal area approach
 - b. Equal delay approach
- 3. Implementation of 2-inpout NAND and NOR
 - a. Finding out rise time, fall time of the output and propagation delay (50% input to
 - b. 50% output) High-to-Low and Low-to-High
 - c. Comparison of both for delay and power
- 4. Implementation of 1-bit full adder using carry-out of the stage to drive the sum output (28 transistor implementation)
- 5. Implementation of 2-input NAND and NOR gates using different logic styles and compare the performance parameters with complementary CMOS logic style
 - a. Pseudo logic style
 - b. Pass Transistor logic style
 - c. Transmission gate logic style
 - d. Differential cascade voltage switch logic
 - e. Dynamic (pre-charge and evaluate) logic style
- 6. Implementation of transmission gate based full adder circuit
- 7. Implementation of four bit Manchester carry chain
- 8. Implementation of 4-bit barrel shifter using pass transistors
- B. Demonstration of Microwind tool for layout by explaining DRC and simulation,
 - 9. Implementation of inverter, 2 input NAND gate and any other circuit for practice
- C. Task/miniproject/research problem:

For the last lab session which students will have to carry out a task for a period of at least six weeks it is recommended that:

- 1. Student can search or teacher can assign a course related medium complexity task to a group of student not exceeding two by defining the problem statement suitably.
- Student has to submit a report/Journal consisting of appropriate documents Abstract, Certificate of Completion by the supervisor, Table of Contents, Abbreviations, and other sections/chapters viz. Introduction, Motivation, Objectives, Outcomes, Brief theoretical Background, Problem Analysis, Design Aspects, Algorithms, Mathematical Model, Test Strategy, Results, Result Analysis and Conclusions and Future Scope) in the institute level standard format.
- 3. Cadence tools or other similar EDA tools are to be used for designing and implementing the designs and the report is to be written in standard IEEE format preferably using Latex.