Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

First Year M. Tech. (Mechanical Design Engineering) Sem – I to II

AY 2020-21

Professional Core (Theory) Courses

Title of	f the Course: Resea	rch Me	thodol	ogy 4IC	C 501		L T				Р	Cr	
		-	2	-	-	2							
Pre-Requisite Courses:													
Textbooks:													
1.	C. R. Kothari, "Rese	earch M	ethodol	logy", N	New Ag	e intern	ational,	2 nd edi	ition, 2	004.			
2.	Deepak Chopra an	nd Nee	na Sor	ndhi, "	Researc	ch Met	hodolog	gy: Co	ncepts	and	cases",	Vikas	
Publish	Publishing House, New Delhi, 1998												
3. S	tuart Melville and	Wayne	Godda	ard, "R	esearch	Metho	odology	: An I	ntrodu	ction f	or Scie	nce &	
Engine	ering Students", Tata	a MacGi	raw Hil	1, 2000									
Refere	nces:												
1. E. Philip and Derek Pugh, "How to get a Ph. D. – a handbook for students and their supervisors", open												', open	
univers	sity press, 2001								_	1			
2. Kumar R., "Research Methodology- A step by step guide for beginners", SAGE, 3 rd Edition, 2012.													
3. G. F	Ramamurthy, "Resear	rch Met	hodolo	gy", Dr	eam Te	ch Pres	s, New	Delhi, İ	2009.				
Course	e Objectives: The ob	jective	of the c	ourse is	8								
1.	To prepare the stude	ents to ic	lentify	and for	mulate	the rese	arch pro	oblems.		D-44	4 -		
2. 3	To impart the Know	ent to pr	r plann	ing and and writ	e paper	101 01 f	blicatio	projectory of the projectory o	t, IPKS	, Patent	s etc d Iourn	ale	
Course	Learning Outcome		epare a		c paper	<u>s ioi pu</u>	loncatio		omere	nees an	u Journa		
	After the completi	ion of th	he cour	se the s	student	should	l he		Bloot	n's Cor	mitive		
	able to				juuciii	silouit			Bloor	1 5 008			
								leve	el	Des	criptor		
CO1	Classify the researc	ch probl	em and	researc	ch plan.			III		А	pply		
CO2	Analyze the researc	ch probl	em, lite	erature a	and met	hodolo	gy.	IV		Ar	nalyze		
CO3	Interpret the resea	arch pa	pers, r	reports,	case s	studies,	patent	V		Ev	aluate		
	information and da	tabase,	etc.										
CO-PC) Mapping:			1	1	1		1	7				
			1	2	3	4	5	6	_				
		C01	3			2	3		_				
		CO2				1	3		_				
		CO3				1	2	3					
Assessi	ments:												
Teache	er Assessment:												
Two co	omponents of In Sem	ester Ev	aluatio	on (ISE)	, One N	/lid Sen	nester E	xamina	tion (N	(ISE) ar	nd one E	nd	
Semest	er Examination (ESE	E) havin	g 20%,	30% ai	nd 50%	weight	s respec	tively.					
	Assess	ment						N	larks				
	ISE								10				
	MS		30										

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

ISE 2

ESE

MSE: Assessment is based on 50% of course content (Normally first two modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last two modules) covered after MSE.

10

50

Course Contents:	
Module 1:	5 Hrs.
Meaning of research problem, Sources of research problem, Criteria, Characteristics of a	
good research problem, and Errors in selecting a research problem, Scope and objectives of	
research problem. Approaches of investigation of solutions for research problem, data	
collection, analysis, interpretation, Necessary instrumentations	
Module 2:	4 Hrs.
Effective literature studies approaches, analysis. Plagiarism, Research ethics.	
Module 3	5 Hrs.
Effective technical writing, how to write report, Paper.	
Developing a Research Proposal, Format of research proposal, a presentation and assessment	
by a review committee.	
Module 4:	4 Hrs.
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting	
and Development: technological research, innovation, patenting, development. International	
Scenario: International cooperation on Intellectual Property. Procedure for grants of patents,	
Patenting under PCT.	
Module 5:	4 Hrs.
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent	
information and databases. Geographical Indications.	
Module 6:	4 Hrs.
New Developments in IPR: Administration of Patent System. New developments in IPR; IPR	
of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and	
IITs.	
Module wise Measurable Students Learning Outcomes:	
Students will able to	
1. Explain the research problem and research plan.	
2. Propose methodology for their research topic and understand various analysis techniques.	
3. Analyze and interpret the research data.	
4. Prepare the conference papers, dissertation report and understand patent related aspects.	
5. Handle issues related to IPR.	
6. Process and interpret the research data.	

Title of	f the Course: Advanced Stress Analysis 4DE501	L	Т	Р	Cr
		3	-	-	3
Pre-Re	equisite Courses:				
Textbo	ooks:				
1. Sadd	l, Martin H., Elasticity: Theory, applications and Numeric, Acade	emic Press	s, 2005		
2. Bore	esi, A.P. and K. P. Chong, Elasticity in Engineering Mechanics, S	Second Ed	ition, Jol	nn Wiley	& Sons,
2000				-	
3. Budy	ynas, R. G. Advance strength and Applied Stress Analysis, Secor	nd Edition	, WCB/N	AcGraw I	Hill
1999					
Refere	ences:				
1.	Dally, J. W. and W.F. Riley, Experimental Stress Analysis, McC	Graw Hill	Internati	onal,	
third Ec	dition, 1991				
2.	Theory of Elasticity – Timoshenko and Goodier, McGraw Hill				
3.	Advanced Strength of Materials, Vol. 1,2 – Timoshenko, CBS				
4.	Advanced Strength of Materials – Den Harteg				
Course	e Objectives:				
1. To p	prepare the students to succeed as designer in industry/technical p	rofession.			
2. To p	provide students with a sound foundation in solid mechanics requi	ired to sol	ve the pr	oblems in	n
Industr	y.				
3. To tr	rain the students with good design engineering breadth required f	for safe an	d efficie	nt design,	,
Constru	uction, installation, inspection and testing of structural parts of th	e mechan	ical syste	em.	
Course	e Learning Outcomes:				
CO	After the completion of the course the student should be ab	le to	Bloom'	s Cogniti	ve
			level	Descrip	otor
CO1	Verify basic field equations such as equilibrium ed	quations,	V	Eval	uating
	compatibility and constitutive relationship				
CO2	Study basic field equations to torsion, bending and two-dim	nensional	IV	Ana	lyzing
	elasticity problems, and energy methods.				
CO3	Solve problems in unsymmetrical bending and shear center,	, contact	III	App	olying
	stresses and pressurized cylinders and rotating discs.				
CO-PC	O Mapping:				
	PO 1 2 3 4 5 6				
	CO1 1 3 2				
	CO2 2 3 1				
	CO3 1 1 3				
Assessi	ments:				
Teache	er Assessment:				

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.						
MSE: Assessment is based on 50% of course content (Normally first three modules)						
ESE: Assessment is based on 100% course content with 70-80% weightage for course content (n						
last three modules) covered after MSE.						
Course Contents:						
Module 1: Theory of Elasticity	7 Hrs.					
Analysis of stress, Analysis of stain, Elasticity problems in two dimension and three						
dimensions, Mohr's circle for three dimensional stresses. Stress tensor, Air's stress function in						
rectangular and polar coordinates.						
Module 2: Energy Methods	7 Hrs.					
Energy method for analysis of stress, strain and deflection The three theorem's -theorem of						
virtual work, theorem of least work, Castiglioni's theorem, Rayleigh Ritz method, Galekin's						
method, Elastic behavior of anisotropic materials like fiber reinforced composites						
Module 3: Theory of Torsion	7 Hrs.					
Torsion of prismatic bars of solid section and thin walled section. Analogies for torsion,						
Membrane analogy, fluid flow analogy and electrical analogy. Torsion of conical shaft, bar						
ofvariable diameter, thin walled members of open cross section in which some sections						
areprevented from warping, Torsion of noncircular shaft.						
Module 4: Unsymmetrical Bending and Shear Centre	6 Hrs.					
Concept of shear center in symmetrical and unsymmetrical bending, stress and deflections in						
beams subjected to unsymmetrical bending, shear center for thin wall beam cross section, open						
section with one axis of symmetry, general open section, and closed section.						
Module 5: Pressurized Cylinders and Rotating Disks	6 Hrs.					
Governing equations, stress in thick walled cylinder under internal and external pressure, shrink						
fit compound cylinders, stresses in rotating flat solid disk, flat disk with central hole, disk with						
variable thickness, disk of uniform strength, Plastic action in thick walled cylinders and rotating						
disc.						
Module 6: Contact stresses	7 Hrs.					
Geometry of contact surfaces, method of computing contact stresses and deflection of bodies in						
point contact, stress for two bodies in line contact with load normal to contact area and load						
normal and tangent to contact area. Introduction to Analysis of low speed impact						
Module wise Measurable Students Learning Outcomes:						
After the completion of the course the student should be able to:						
1) Analyse stresses in 2D problems						
2) Analyse stresses using energy methods						
3) Solve problems related to torsional loads						
4) Calculate stresses in unsymmetric bending problems						
5) Calculate stresses in pressure vessels and discs						
6) Formulate problem for contact stresses.						

Title of the Course: Advanced Vibration and Acoustics 4DE502	L	Т	Р	Cr						
	3	-	-	3						
Pre-Requisite Courses:										
Textbooks:										
1. Thomson W.T., "Theory of Vibrations with applications", George Aller	n and U	Jnwh L	td. Long	don,						
1981.										
2. S.S. Rao, Addison, "Mechanical Vibrations", Wesley Publishing Co., 1	990.									
3. Leonard Meirovitch, "Fundamentals of vibrations", McGraw Hill Intern	ationa	l Editio	on.							
References:										
1. S. Timoshenko, "Vibration problems in Engineering", Wiley, 19/4.	x <i>7</i> ·1 1		T (1 - 10	07						
2. Lawrence E. Kinsler and Austin R.Frey, "Fundamentals of acoustics", "	Niley I Chami		Ltd., IS	/8/.						
5. Michael Retunger, Acoustic Design and Noise Control, vol. 1 & II., Publiching Co. New York 1977	3. Michael Rettinger, "Acoustic Design and Noise Control", Vol. I & II., Chemical									
Course Objectives:										
1. To teach the fundamental concept of dynamic analysis of machines.										
2. To train students to prepare mathematical model of discrete and continuo	us ma	ss svste	em and	to find						
response of models for different types of excitations.		j								
3. To introduce students to fundamental concepts of acoustics and its measurem	nent.									
Course Learning Outcomes:										
CO After the completion of the course the student should be able to	Blo	oom's (Cognitiv	e						
	lev	el 1	Descript	or						
CO1 Evaluate response of a SDOF system, damped or undamped, subjected		V I	Evaluati	ng						
to simple arbitrary base or force excitations.				C						
CO2 Apply technique of decoupling and orthogonal properties of natural]	II	Applyin	g						
modes to solve differential equations of motion for MDOF systems										
CO3 Explain various terminologies used in acoustics and acoustic wave	I	V	Analyziı	ng						
transmission, derive plane and spherical wave equations, and obtain										
sound pressure level at a given distance from a simple sound source of										
known strength										
CO-PO Mapping:										
PO 1 2 3 4 5 6										
CO1 2 1 1 3										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
Assessments:										

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared t	test/quiz/seminar etc.	ſ
MSE: Assessment is based on 50% of course conte	nt (Normally first three modules)	
ESE: Assessment is based on 100% course content	t with 70-80% weightage for course content (r	ormally
last three modules) covered after MSE.		
Course Contents:		I
Module 1		7 Hrs.
Transient Vibrations, Response of a single degree of	of freedom system to step and any	
arbitrary excitation, convolution (Duhamel's) integ	ral, impulse response function	
Module 2		7 Hrs.
Multi degree of freedom systems, Free, damped and	d forced vibrations of two degree of	
freedom systems, Eigen values and Eigen vectors, r	normal modes and their properties, mode	
summation method, use of Lagrange's equations to	derive the equations of motion,	
Module 3	× ·	7 Hrs.
Continuous Systems, Natural Vibrations of beams -	- Differential equation of motion,	
solution by the method of separation of variables, fi	requency parameter, natural frequencies and	
mode shapes, forced vibration of simply supported	beam subjected to concentrated harmonic	
force at a point, Mode summation method, discretiz	zed models of continuous systems and their	
solutions using Rayleigh – Ritz method		
Module 4		6 Hrs.
Vibration Control, Methods of vibration control, pr	inciple of superposition, Numerical	
and computer methods in vibrations: Rayleigh, Ray	leigh-Ritz and Dunkerley's methods, matrix	
iteration method for Eigen-value calculations, Holz	zer's method	
Module 5		7 Hrs.
Plane acoustic waves, Sound speed, characteristic a	coustic impedance of elastic media, sound	
intensity, dB scale, Transmission Phenomena, trans	mission from one fluid medium to another,	
normal incidence, reflection at the surface of a solid	d, standing wave patterns, Symmetric	
Spherical waves, near and far fields, simple models	s of sound sources, sound power,	
determination of sound power and intensity levels a	at a point due to a simple source	
Module 6		6 Hrs.
Psychoacoustics, Speech, mechanism of hearing, th	rresholds of the ear – sound intensity and	
frequency, loudness, equal loudness levels, loudness	ss, pitch and timbre, beats, masking by pure	
tones, masking by noise.		
Module wise Measurable Students Learning Outo	comes:	,I
After the completion of the course the student sho	ould be able to:	
1. Calculate system response to transient vibration	ions	
2. Determine motion response for multi degree	systems.	
3. Find natural frequency for continuous system	1	
4. Select appropriate methods for vibration cont	trol	
5. Understand concept of sound propagation		
6. Appreciate sound characteristics and relation	with human hearing	

Professional Core (Lab) Courses

T	itle of	f the Co	ourse: Design Engineer	ing La	b i	1, 4D	E55	51				L	Т	Р		Cr
												-	-	4		2
P	re-Rec	quisite (Courses:													
Т	extbo	oks:														
	1.	Kumar	D.S Mechanical Measur	ement	an	d Co	ntro	ol, N	letro	poli	tan Book	Co. Pvt	. Ltd.,	New	Del	hi,
		4 th Edit	ion, 2007.													
	2.	Beckwi	ith and Buck, Mechanica	l Meas	sur	emer	nt, P	ears	son I	Educ	ation Asia	a, 5th E	dition,	, 2001	•	
	3.	Rao S.	S. Mechanical Vibration	s, Pear	so	n edı	icati	ion,	$5^{\text{th}} \epsilon$	editi	on, 2010.					
R	eferei	nces:														
	1.	Doebel in Emesto, Measurement Systems, McGraw Hill International Publication Co. New														
		York,4th Edition,1990														
	2.	Reddy .	J. N, An Introduction to	Finite	El	lemei	nt M	leth	od; 2	2/e,]	McGraw I	Hill Inte	ernatio	nal Ec	litio	ons,
	-	3 rd Edit	ion, 2008					_							~	
	3.	. Rettinger Michael, "Acoustic Design and Noise Control", Vol. I &II, Chemical Publishing Co. New														
	York, 1st edition, 1977															
C	ourse	Objec	tives:													
A	t the e	end of the	he course:								1					
1	. Stude	ents wil	I be able to use various e	experin	nei	ntal t	echi	nıqu	les re	eleva	ant to the s	subject.				
2	. Stude	ents wil	l acquire hands on exper	ience o	on	the v	arıo	ous t	est-1	ngs,	Experime	ental set	up.			
3.	. Stude	ents wil	I be able to function as a	team 1	me	embei	r									
4	. Stude	ents wil	l develop communicatio	n skills	5.											
5.	. Stude	ents wil	I be able to write technic	al repo	ort	s.										
6	. Stude	ents will	l be able to use different	softwa	are	e´s.										
	ourse	Learn	ing Outcomes:		.1			. 1			11 4	D1		<u>a .</u>		
	CO	After	the completion of the c	ourse 1	the	e stu	den	t sh	ould	be	able to	BIO	om's	Cognii	live	
												leve	el	Descri	ipto	r
(CO1	Solve	field problems by using	differe	nt	vibra	ntior	n co	ntrol	ling		I	II .	Apply	ing	
		techni	ques.													
(CO2	Measu	are transmissibility chara	cteristi	ics	of a	syst	tem				V	V	Evalua	atin	g
(CO3	Identi	fy different measuremen	t techn	iqı	ues						Г	V .	Analy	zing	e e e e e e e e e e e e e e e e e e e
С	CO-PC) Mapp	ing:													
				PO	1	2	3	4	5	6						
				CO1	3	2				3						
				CO2	2		3			3						
			-	CO3	1		3			2						
L	ab As	ssessme	ent:													
Т	here a	re four	components of lab asses	sment,	L	A1, I	LA2	, LA	A3 ar	nd L	ab ESE.					
		1 505														
ΙΓ	MP: La	ab ESE	is a separate head of pas	sing.												
I	Δεερ	sement	Based on	C	n c	luctor	1 hv		C	ndu	ction and N	Jarke Si	ihmisei	ion	Ma	rks
	73963	sincht	Lab activities		л		ı Üy			ing	Week	$\frac{1}{1}$ to	Weel		1110	110
	L	A1	attendance. journal	Lab C	Co	urse F	Facu	lty	Sub	miss	sion at the e	end of W	Veek 5		2	5
	т	12	Lab activities,	Late	٦,	т	70.0	14	Dur	ring	Week	5 to	Week	8	~	

Lab Course Faculty

25

Submission at the end of Week 9

LA2

attendance, journal

LA2	Lab activities,	Lah Course Ecoulty	buring Week 10 to Week 14					
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23				
Lob ESE	Lab Performance and	Lab Course feaulty	During Week 15 to Week 18	25				
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23				

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations,

drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course Contents:	
List of Experiments for Advanced Stress Analysis (Minimum eight experiments)	20 Hrs
1. To calibrate the Bourdon Tube Pressure Gauge.	
2. To carry out the speed measurement.	
3. To carry out the strain measurement.	
4. To measure the displacement by using LVDT.	
5. To measure vacuum by using pressure gauge.	
6. To find out stress-strain curve by using Tensile Test.	
7. To find out impact energy of the specimen by Impact Test	
8. To find out the surface hardness by Hardness Test.	
9. To measure the overall vibration of a rotary machine.	
List of Experiments for Advanced Vibrations and Acoustics (Minimum ten	24 Hrs
experiments)	
1. To determine natural frequency of single degree of freedom spring mass system.	
2. To determine natural frequency of two degree of freedom spring mass system.	
3. To determine natural frequency of double pendulum system	
4. To plot response curve of system under forced vibration	
5. To determine mode shapes of a thin plate.	
6. To perform noise measurement and addition /subtraction of noise levels.	
7. To carry out $1/3^{rd}$ octave band analysis of machine noise.	
8. To write matlab programme for eigen value solutions.	
9. To find motion transmissibility curve for given setup.	
10. To find out force transmissibility for given setup.	
11. To design dynamic vibration absorber for given spring mass damper system.	
12. To carry out the lumped mass system analysis (Building Model).	
13. To write matlab programme for phase plane plot	
14. To draw Simulink matlab model for single degree freedom spring mass damper system	
15. To draw Simulink matlab model for double degree freedom spring mass damper system	
16. Industrial visit	

Professional Elective (Theory) Courses

Title o	f the Course: Advanced Mach	nine De	sign	4 D	E 5	11				L	Т	Р	Cr
Profes	Professional Elective 1											-	3
Pre-R	equisite Courses:											•	
Textb	ooks:												
1.	Ulrich K.T. and Eppinger S., P	roduct]	Des	ign	and	Dev	elop	ome	nt, McGra	w-Hill	Educa	tion; 5 th	
	edition, 2011												
2.	Dieter G.E., Engineering Desig	gn, McC	Brav	v-H	ill E	duc	atior	ı 5 th	edition, 2	012			
3.	Prashant Kumar, Product Desig	gn, Crea	ntivi	ity,	Con	cept	s an	d Us	sability, P	HI Nev	v Delh	i, 1 st editi	ion,
	2011												
Refere	ences:					nd							
1.	John J.C., Design Methods, W	iley Inte	er so	cien	ce, 2	2 nd e	ditic	on, 1	.970				h
2.	Law A. M. and Kelton W.D, S	imulatio	on, l	Moo	delli	ng a	nd A	Anal	ysis, McC	iraw Hi	ll Edu	cation, 4 ^e	11
2	edition, 2017	·			a				1 0	•	and	. 100	-
3.	Pahl G. and W. Beitz, Enginee	ring De	sıgr	1- a	Sys	tema	itic .	App	roach, Spi	inger, i	2 nd ed1t	10n, 1996).
Cours	e Objectives:	1.			1		/. 1	•	1 6 .				
1. To p	brepare the students to succeed a	as desig	ner	1n 11	ndu	stry ,	tech	1n1Ca	al professi	on.	c· 1	. • 1	1 /
2. 10 p	provide students the knowledge	of steps	1nv	VOIV	ed 1	n de	sign	and	developn	nents of	f indus	trial proc	luct.
3. 10 p	brepare the students to use know	leage o	I er	gon	omi	cs, a	lestn	letic	s for deve	lopmen	it of in	dustrial	
A To r	il. Venara the students to use know	ladra o	fra	nid	nro	totyr	ina	val	uo onolvei	e etano	lordiza	tion for	
4. IU L	product of industrial Product	leuge o	114	più	pro	loty	лпg,	, vai	ue analysi	s, stanc	laiuiza		
Cours	a Learning Outcomes.												
	After the completion of the	COURSA	tho	etu	don	t cha	hlu	ha	able to	Blo	om's (Comitive	`
CO	After the completion of the	course	inc	stu	ucn	t SIN	Juiu	DC a				Descripto	r
C01	Demonstrate an ability to reco	omize t	he r	heed	lof	soci	sty t	o de	sign the			Apply	ing
COI	products as per their requirem	ients			1 01	5001	JUYU	0 uc	sign the	1	11	трргу	шg
CO2	Recommend appropriate char	iones to a	nnl	v ae	sth	etic	and	eron	nomic		V	Evalua	tino
	concepts to product	1505 10 1	'PP1	y ut	Joth		and '	0150	monne		•	Lvuluu	ting
CO3	Design and develop the produ	icts by u	isin	g pr	inci	ples	of I	DFM	IA, rapid	V	/I	Creat	ing
	prototyping, reliability and ec	onomy		01		1			× 1				υ
CO-P	O Mapping:	5								<u> </u>	I		
		PO	1	2	3	4	5	6					
		CO1	3		2	3	1						

Assessments:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

1 2

2

CO2 1

CO3 3

Assessment	Marks						
ISE 1	10						
MSE	30						
ISE 2	10						
ESE	50						
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.							
MSE: Assessment is based on 50% of course conter	t (Normally first three modules)						
ESE: Assessment is based on 100% course content	with 70-80% weightage for course content (no	ormally					
last three modules) covered after MSE.	6						
Course Contents:							
Module 1: Product Development Process		7 Hrs.					
Development processes and organizations, Product	Planning Product development management						
establishing the architecture, clustering geometric la	vout development - Fundamental and						
incidental interactions - related system level design	issues						
Module 2: Concept Generation		6 Hrs.					
Need Identification and problem definition, product	specification, concept generation and						
selection, evaluation, creativity methods, Concept te	esting						
Module 3: Ergonomics and Aesthetics	6	6 Hrs.					
Industrial design Design for Emotion and experience Introduction to retrofit and Eco design							
Human behavior in design, ergonomics and aestheti	cs						
Module 4: Robust Design		7 Hrs.					
Design for Reliability, strength based reliability, par	rallel and series systems, robust design,						
Integrate process design, Managing costs, Robust de	esign, Integrating CAE, CAD, CAM tools,						
Simulating product performance and manufacturing	processes electronically. Need for industrial						
design-impact							
Module 5: Design for Manufacturing and Assem	bly	7 Hrs.					
Design for manufacture, assembly, maintenance, ca	sting, forging, Estimation of Manufacturing						
cost, reducing the component costs and assembly co	osts, Minimize system complexity						
Module 6: Rapid Prototyping		7 Hrs.					
Rapid Prototyping Liquid based processes, Powder	based processes and Solid based processes;						
Classes of RP systems: 3D Printers, Enterprise Prote	otyping centers, Direct digital tooling, Direct						
digital manufacturing, system classification, RP Ap	plications						
Module wise Measurable Students Learning Outc	omes:						
After the completion of the course the student sho	uld be able to:						
1. Demonstrate that creativity, manufacturability, ass	embly, maintainability, emotions, reliability an	re also					
important aspects of design other than finding dimen	sions and stresses in the highly competitive, dy	ynamic					
and customer centered market.							
2. Demonstrate the ability to identify needs of the cus	stomer and convert them into technical specific	cations					
of a product.							
3. Recommend the changes in existing design while	designing for manufacture, assembly, emotion	is and					
maintenance.							
4. Design the components considering strength based	d reliability.						
5. Design a product after identifying the need and det	termining the specifications and constraints of	a					
product for a particular purpose.							
product for a particular purpose.							
6. Recommend various methods of rapid prototyping	g the products to test and modify the designs.						

Title of	itle of the Course: Design for Manufacturing and Assembly 4DE512						512	L	Т	Р	Cr										
Profess	sional Elective 1									3	-	-	3								
Pre-Re	equisite Courses:																				
Textbo	ooks:																				
1. Rao S. S., Engineering Optimization: theory and practice, John Wiley, 2 nd edition, 1996.																					
2.	Ashby M. F. and Johnson K, Materials and Design - the art and science of material selection in																				
	product design, Pearson publi	ications,	$3^{rd} \epsilon$	editio	on, 2	2002.															
3.	G Dieter, Engineering Design	n - a mat	eria	ls ar	nd pr	oces	sing	appı	roach, Mo	Grav	v Hill,	, 2 nd editi	on,								
	2006.																				
Refere	nces:																				
1.	Bralla J G, Handbook for Pro	duct De	sign	for	Mar	nufac	ture	, Mc	Graw Hil	1, 2 nd	editic	on, 2003.									
2.	ASTM Design handbook.																				
3.	Courtney T H, Mechanical B	ehavior	of N	late	rials	, Mc	Grav	v Hil	ll, 4 th edit	ion, 2	2008.										
4.	Swift K G and Booker J D, P	rocess s	elec	tion	fro	n de	sign	to m	anufactu	re, Lo	ondon	: Arnold,	1997								
Course	e Objectives:																				
1.	To provide the students the k	nowled	ge o	of dif	fere	nt ste	eps i	nvol	ved in Pro	oduct	Deve	lopment	Cycle.								
2.	To prepare the students to us	e knowl	ledg	e of	man	ufac	turin	ig pro	ocess.												
3.	To prepare the students to su	cceed as	s des	signe	er in	indu	ıstry	/tecł	nnical pro	ofessi	on.										
Course Learning Outcomes:																					
CO	After the completion of the course the student should be able toBloom's Cognitive						ve														
										lev	vel	Descrip	otor								
CO1	Explain the product develop	ment cy	cle								IV	Analyz	ing								
CO2	Study the principles of asser	nbly to	mini	imiz	e the	e asse	embl	ly tin	ne		V	Evalua	ting								
CO3	Interpret the effect of manu	facturin	g pi	roces	ss ar	nd as	sem	bly o	operation	5	III	Applyi	ng								
	on the cost of product		01					•					U								
CO-PC) Mapping:																				
		PO	1	2	3	4	5	6]												
		CO1		2	2		3														
		CO2	3			2	2														
		CO3		2	3		2														
Assess	ments:		1	I	I	I	l		1												
Teache	er Assessment:																				
Two co	omponents of In Semester Eva	luation	(ISE	E), O	ne N	Aid S	Seme	ester	Examina	tion (MSE)	and one	End								
Semest	er Examination (ESE) having	20%, 3	0% :	and	50%	wei	ghts	resp	ectively.												
	Assessment								Μ	arks											
	ISE 1 10																				
	MSE 30																				
	ISE 2 10																				
	ESE								-	50											
					•								I								

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1	6 Hrs.
Introduction Need Identification and Problem Definition, Concept Generation and	
Evaluation, Embodiment Design, Selection of Materials and Shapes	
Module 2	6 Hrs.
Properties of Engineering Materials, Selection of Materials – I, Selection of Materials – II,	
Case Studies – I, Selection of Shapes, Co-selection of Materials and Shapes, Case Studies – II,	
Module 3	6 Hrs.
Selection of Manufacturing Processes, Review of Manufacturing Processes, Design for	
Casting, Design for Bulk Deformation Processes, Design for Sheet Metal Forming Processes,	
Module 4	6 Hrs.
Design for Machining, Design for Powder Metallurgy, Design for Polymer Processing, Co-	
selection of Materials and Processes, Case-Studies – III	
Module 5	10 Hrs.
Design for Assembly, Review of Assembly Processes, Design for Welding – I, Design for	
Welding – II, Design for Brazing and Soldering, Design for Adhesive Bonding, Design for	
Joining of Polymers, Design for Heat Treatment, Case-Studies - IV	
Module 6	6 Hrs.
Design for Reliability, Failure Mode and Effect Analysis and Quality, Design for Quality,	
Design for Reliability, Approach to Robust Design, Design for Optimization,	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Explain the product development cycle	
2 Solve the manufacturing issues that must be considered in the mechanical engineering desi	gn
Process	
3 Study the principles of assembly to minimize the assembly time	
4 Explain the effect of manufacturing process and assembly operations on the cost of produc	ct
5 Be familiar with tools and methods to facilitate development of manufactural mechanical d	lesigns

6 Know Reliability approach of design.

7734 / 3		277 21				F		
Title o	of the Course: Mathematical Methods in Engineering 41	DE51	$\lfloor 3 \rfloor$	/ T		Р	Cr	
Protes	sional Elective 1		5	-		-	3	
Pre-Re	equisite Courses:							
Textbo	poks:	1.6						
1. Rona	ald E, Walpole, Sharon L. Myers, Keying Ye, <i>Probability a</i>	ind S	tatistics fo	r Engine	ers			
and Sci	<i>ientists</i> (8th Edition), Pearson Prentice Hall, 0/	NI.	NT 1		0			
2. J. B.	. Doshi, Differential Equations for Scientists and Engineers	i, Nai	rosa, New	Delhi, Iu	0			
Ketere	ences:	(74h)	Dalition) U	Tilar Ctu	Jant	E-litica	- 00	
I. Doug	glas C. Montgomery, Design and Analysis of Experiments	(/th) 4 adit	Edition), where $\frac{1}{2}$	/iley Stu	ideni	Eanuo	n, 09.	
2. S. F. 2. Will	. Gupta, Statistical Methoas, S. Chanu & Solis, 57 in revised		1011, Uð Drohahility	and				
J. WIII	dam W. Hilles, Douglas C. Wolligomery, David W. Goldsnies for Engineering (Ath Edition) Willey Student edition (1a11, 1 16	Probability	апа				
A Adv	25 Jor Engineering, (411 Euron), which Student curton, o	10.	Wiley Indi	a(13)				
Course	alleed Elighteering Mathematics (7th Edition), El win Krey.	szig,	Wiley mu	a (13)				
1 Ton	e Objectives.	raic a	nd graphic	al renres	entat	tions		
and the	pir use in practical applications	are a	nu grapine	arrepres	SCIItat	uons,		
2 To n	prepare students to outline the physical systems and formula	ate m	athematica	1 models	s for t	them		
2. 10 r 3 To n	nake students to solve differential equations using numeric	al tec	hniques an	d transfe	orm			
technia		11 100	iniques un	u uuisi	01111			
Course	e Learning Outcomes:							
CO	After the completion of the course the student should	be al	ble to	Bloom	's Co	ognitive	ee	
		~ .		1 1				
CO1	A sub- statistical tashniques to encluze multiverieto funct			levei		escripu)r	
	Apply statistical techniques to analyze mutuvariate function.	HORIS.	- orvladga				5	
02	Evaluate solution of engineering problems by apprying a	the k	nowledge	v	Ev	/aluam	ıg	
CO3	of ordinary and partial differential equations	ution	from the	IV	Δ.	noluzin	~	
LUS	Analyze nature of a given wave equation and obtain sol	f	arotion of	1 V	AI	naryzm	g	
	perspective of D Alembert principle and/or by method o	I sep	aration of					
COP								
CO-PC	J Mapping: $\boxed{\mathbf{PO} 1 \mid 2 \mid 3 \mid 4 \mid 5}$	6	1					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-					
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2						
I	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Aggogg		<u> </u>						
ASSESSI Two c	menus:	anter	Evominati	on (MS)	E) and	d one l	End	
Semest	ter Examination (ESE) having 20% 30% and 50% weights	resn	Examinan		E) an		LIIU	
Junes	Accessment	TCSP	Mar	be				
	ISE 1		1(N N N N N N N N N N N N N N N N N N N				
	MSE		30)				
	ISE 2		10)				
	FCF		50)				
	ESE)				

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1. Introduction to Probability Theory	5 Hrs
Probability Theory and Sampling Distributions, Dasis methodility theory along with examples	5 111 5.
Probability Theory and Sampling Distributions. Basic probability theory along with examples.	
Module 2: Probability distributions and theorems	5 Hrs.
Standard discrete and continuous distributions like Binomial, Poisson, Normal, Exponential etc.	
Central Limit Theorem and its significance. Some sampling distributions like x ² , t, F.	
Module 3: Testing of Statistical Hypothesis	8 Hrs.
Testing a statistical hypothesis, tests on single sample and two samples concerning means and	
variances. ANOVA: One – way, Two – way with/without interactions.	
Module 4Ordinary Differential Equations:	7 Hrs.
Ordinary linear differential equations solvable by direct solution methods; solvable nonlinear	
ODE's;	
Module 5: Partial Differential Equations and Concepts in Solution to Boundary Value	7 Hrs.
Problems:	
Solution methods for wave equation, D'Alembert solution, potential equation, properties of	
harmonic functions, maximum principle, solution by variable separation method	
Module 6: Major Equation Types Encountered in Engineering and Physical Sciences	8Hrs.
Solution methods for wave equation, D'Alembert solution, potential equation, properties of	
harmonic functions, maximum principle, solution by variable separation method	
Module wise Measurable Students Learning Outcomes:	<u>.</u>
After the completion of the course the student should be able to:	
1. Use appropriate sampling technique for given application	
2. Analyse different methods for testing statistical hypothesis.	
3. Solve ODE for linear systems	
4. Solve partial differential equation	
5. Select correct solution method for solving various problems.	

Title of the Course: Reliability Engineering 4DE514	L	Т	Р	Cr
Professional Elective 1	3	-	-	3
Dre Dequicite Courses				

Pre-Requisite Courses:

Textbooks:

1. Balagurusmy E., "Reliability Engineering", Tata McGraw-Hill Publishing Co. Ltd., 1984.

2. Birolini Alessandro, "Reliability Engineering", Springer, Seventh Edition, 2013.

3. Modarres M, Kaminskiy M, "*Reliability Engineering and Risk Analysis-A Practical Guide*", CRC Press, Second Edition, 2010.

References:

1. Ebiting Charles E., "Introduction to Reliability and Maintainability Engineering", Waveland Pr Inc., Second edition, 2009.

2. Kapoor K.C., Lamberson L.R., "*Reliability in Engineering Design*", John Wiley & Sons, First edition, 1977.

3. Rao S.S., "Reliability Based Design", Tata McGraw Hills, 1st edition, 1980.

Course Objectives:

1. To prepare the students to compute reliability engineering parameters and estimates for applications in mechanical devices

2. To provide knowledge of reliability and maintainability of machines and systems.

3. To train the students to apply knowledge of probability for reliability analysis of machines and mechanisms.

4. To teach use reliability theory for product life calculation and for maintenance of machines and mechanical systems.

Course Learning Outcomes:						
CO	After the completion of the course the student should be able to	Bloom's Cognitive				
		level	Descriptor			
CO1	Apply various probability distributions theory for reliability analysis.	III	Applying			
CO2	Evaluate reliability analysis of mixed and complex systems.	V	Evaluating			
CO3	Design a machine element based on reliability theory.	VI	Creating			

CO-PO Mapping:

PO	1	2	3	4	5	6
CO1	2		2			2
CO2	3		2			2
CO3	3		2			3

Assessments:

Teacher Assessment:

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1 Fundamental Concepts	6 Hrs.
Introduction to reliability, History, Reliability terminologies, Failure, Failure density, Failure	
Rate, Hazard Rate, Mean Time To Failure, MTBF, Maintainability, Availability, PDF, CDF,	
Safety and reliability, Quality, Cost and system effectiveness, Life characteristic phases, Modes	
of failure, Areas of reliability, Quality and reliability assurance rules, Product liability,	
Importance of reliability,	
Module 2 Probability and Reliability	7 Hrs.
Basic probability concepts, Laws of probability, Introduction to independence, mutually	
exclusive, conditional probability, Discrete and continuous probability distributions,	
Comparison of probability distributions - Binomial, Normal, Lognormal, Poisson, Weibull,	
Exponential. Standard deviation, Variance, Mean, Mode and Central limit theorem.	
Module 3 System Reliability and Modelling:	7 Hrs.
Series, Parallel, Mixed configuration, k- out of n structure, Complex systems- enumeration	
method, Conditional probability method, Cut set and tie set method, Redundancy, Element	
redundancy, Unit redundancy, Standby redundancy and its types, Parallel components, Single	
redundancy, Multiple redundancy.	
Module 4 Maintainability and Availability:	6 Hrs.
Objectives of maintenance, Types of maintenance, Maintainability, Factors affecting	
maintainability, System down time, Availability - inherent, achieved and operational	
availability. Introduction to Reliability Centered Maintenance.	
Module 5 Reliability in Design & Development	7 Hrs.
Failure mode effects analysis, Severity/Criticality analysis, FMECA examples, RPN, Ishikawa	
diagram for failure representation, Fault tree construction, Basic symbols development of	
functional reliability Block diagram, Fault tree analysis, Fault tree evaluation techniques,	
Minimal cut set method, Delphi methods, Monte Carlo evaluation.	
Module 6 Reliability Testing	7 Hrs.
Introduction to reliability testing, Stress strength interaction, Introduction to Markov model.	
Testing for Reliability and Durability- Accelerated Life Testing and Highly Accelerated Life	
Testing (HALT), Highly Accelerated Stress Screening (HASS).	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Explain concept of reliability and its terminologies.	
2. Apply various probability distributions theory for reliability analysis.	
3. Estimate reliability analysis of mixed and complex systems.	
4. Discuss concept of reliability and maintainability of machines and systems	
5. Perform failure mode analysis.	
6. Design machine elements based on reliability theory and evaluate product life of machine cor	nponents
and system.	

Title of	f the Course: Advanced Engineering Materials 4DE515	L	Т	Р	Cr	
Profess	sional Elective 2	3	-	-	3	
Pre-Re	equisite Courses:			1		
Textbo	oks:					
1. Materials Science and Engineering, William D. Callister, Jr, John Wiley & sons, 07						
2.	Modern Physical Metallurgy and Material Engineering, Science, Proces	s, appli	cation	,		
Smallm	an R.E., Bishop R J, Butterworth Heinemann, Sixth Ed., 1999.					
3.	Essentials of Materials Science & Engineering, Donald R. Askeland, We	endelin	J.			
	Wright, PradeepFulay					
Refere	nces:					
	1 Sidney H. Avener, <i>Physical Metallurgy</i> , Tata McGraw Hill Education	on Priva	ate Lin	nited, 2^{n}	1	
	Edition, 1997				1	
	2 George E. Dieter, <i>Mechanical Metallurgy</i> , Tata McGraw Hill Public	cation, S	Si Met	ric Editi	$5n, 3^{rd}$	
	Revised edition, 2013.					
	3 Ashok Sharma, Rajan, Heat Treatment: Principles & Techniques, Pl	ni Learr	ning Pv	vt. Ltd-N	lew	
~	Delhi, 2nd edition, 2011.					
Course	Objectives:	CI	c ·	c		
1.	To demonstrate understanding Mechanical properties of materials and i	nfluenc	e of im	perfecti	ons	
2	over mechanical properties.	1				
2.	To demonstrate understanding phase diagrams and their use in predicting	ig phase	e transi	ormatio	n and	
	microstructure also understand and predict various types of failures usin	ig conce	eptor	racture		
2	To recognize Electrical Thermal Optical and Magnetic Properties of m	atala a	oromio	a nolum	20r 0	
5.	and compositos and understand the economic considerations in usage as	ietais, c		s, poryn f mataria	leis	
	human use	iu iecyc	ung o			
Course	Learning Outcomes:					
CO	After the completion of the course the student should be able to	Blo	om's (Cognitive		
	The completion of the course the student should be uple to	510				
		leve	el De	scriptor		
CO1	Apply knowledge of mechanics, physical and chemical properties of	of III	Ap	plying		
	materials including metals, ceramics, polymers and composites an	d				
	imperfections and their effects on mechanical properties of material	S				
000	and cause of failure.	1 37		1		
CO2	Examine phase diagrams in predicting phase transformation an	d V	Ev	aluating		
CO2	microstructure.	f VI	Cr			
COS	metale commission nolymers and composite		Cn	eating		
	Monning:					
0.10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
	$\begin{bmatrix} \mathbf{CO3} & 1 & 2 & 3 & 1 \end{bmatrix}$					

Assessments:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1	7 Hrs.
Introduction, Atomic Structure, Interatomic Bonding and Structure of Crystalline	
Solids:	
Historical perspective of Materials Science. Why study properties of materials? Classification	
of materials. Advanced Materials, Future materials and modern materials, Atomic structure.	
Atomic bonding in solids, Crystal structures, Crystalline and noncrystalline materials. Miller	
indices. Anisotropic elasticity. Elastic behaviour of composites. Structure and properties of	
polymers. Structure and properties of ceramics.	
Module 2	7 Hrs.
Imperfections in Solids and Mechanical Properties of Metals, Diffusion, Dislocations	
and Strengthening Mechanisms:	
Point defects. Theoretical yield point. Line defects and dislocations. Interfacial defects. Bulk or	
volume defects. Atomic vibrations; Elastic deformation. Plastic deformation. Interpretation of	
tensile stress-strain curves Yielding under multiaxial stress. Yield criteria and macroscopic	
aspects of plastic deformation. Property variability and design factors, Diffusion mechanisms.	
Steady and non-steady state diffusion. Factors that influence diffusion. Non-equilibrium	
transformation and microstructure, Dislocation and plastic deformation. Mechanisms of	
strengthening in metals. Recovery, recrystallization and grain growth. Strengthening by second	
phase particles. Optimum distribution of particles. Lattice resistance to dislocation motion.	
Module 3	7 Hrs.
Phase Diagrams	
Equilibrium phase diagrams. Particle strengthening by precipitation. Precipitation reactions.	
Kinetics of nucleation and growth. The iron-carbon system. Phase transformations.	
Transformation rate effects and TTT diagrams. Microstructure and property changes in iron-	
carbon system	
Module 4	7 Hrs.
Fracture. Ductile and brittle fracture. Fracture mechanics. Impact fracture. Ductile brittle	
transition. Fatigue. Crack initiation and propagation. Crack propagation rate. Creep.	
Generalized creep behaviour. Stress and temperature effects	
Module 5	7 Hrs.
Applications and Processing of Metals and Alloys, Polymers, Ceramics, and	

composites:	
Types of metals and alloys. Fabrication of metals. Thermal processing of metals. Heat	
treatment. Precipitation hardening. Types and applications of ceramics. Fabrication and	
processing of ceramics, Mechanical behaviour of polymers. Mechanisms of deformation and	
strengthening of polymers. Crystallization, melting and glass transition. Polymer types. Polymer	
synthesis and processing, Particle reinforced composites. Fibre reinforced composites.	
Structural composites	
Module 6	5 Hrs.
Electrical, Thermal, Optical and Magnetic Properties and economic Considerations:	
Electrical conduction. Semi conductivity. Super conductivity. Dielectric behaviour.	
Ferroelectricity. Piezoelectricity Heat capacity. Thermal expansion. Thermal conductivity.	
Thermal stresses Diamagnetism and Para magnetism. Ferromagnetism.Antiferromagnetism and	
ferrimagnetism. Influence of temperature on magnetic behaviour. Economic, Environmental	
and Social Issues of Material Usage - Economic considerations. Environmental and societal	
considerations. Recycling issues. Life cycle analysis and its use in design	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Understand Atomic Structure, Interatomic Bonding and Structure of Crystalline Solids	
2. Understand Imperfections in Solids and Mechanical Properties of Metals, Diffusion, Disloc	ations
and Strengthening Mechanisms.	
3. Understand Phase Diagrams.	
4. Understand Fracture mechanics and Creep behavior.	
5. Understand Applications and Processing of Metals and Alloys, Polymers, Ceramics, and	
Composites.	

6. Understand Electrical, Thermal, Optical and Magnetic Properties and economic Considerations in Materials Engineering.

Title of	f the Course: Mechanics of Co	mposi	te M	late	erial	ls 4I	DE5	16		L	Т		Р	Cr
Profess	Professional Elective 2												-	3
Pre-Re	Pre-Requisite Courses:													
Textbo	Textbooks:													
1.	1. WD Callister, Materials Science and Engineering, An introduction., John Wiley & Sons, NY,													
	Indian edition, 2007													
2.	2. Bhagwan D. Agarwal, Lawrence J. Broutman, Analysis and Performance of fiber composites,													
	John Wiley and Sons, Inc. 199	0.												
Refere	nces:													
1.	Isaac M. Daniels, OriIshai, Eng	ineerin	g M	lech	ainc	cs of	f Co	mpc	site Mater	ials, O	xfor	d Ui	niversit	ty
	Press, 1994.													
2.	Mazumdar S. K., Composite Ma	anufact	turin	ng –	Ma	teri	als, l	Proc	luct and Pi	rocessi	ng E	ngir	neering	, CRC
	Press, Boca Raton, 2002													
3.	Robert M. Jones, Mechanics of	Compo	osite	e M	ateri	ials,	Tay	lor	and Franci	s, Inc.	, 199	9.		
Course	e Objectives:													
1.	To teach students treatment of the	he clas	sific	catio	on a	nd p	orope	ertie	s of comp	osite m	nateri	ials,	of the	
	different ways composites can b	be laid	up a	ind	how	^y the	y ca	n be	e analyzed	with e	emph	nasis	s on ph	ysical
	understanding.													
2.	To perform independent analysi	is of th	e co	mp	osite	e ma	iteria	als v	which is in	creasir	ng us	ed i	n many	⁷ fields
	e.g. in transportation (sea, land,	air, spa	ace)	, th	e 01	l 1nd	lustr	у, сі	vil engine	ering c	const	ruct	ion, sp	orts
9	equipment, biomechanics and m	nedicin	e.											
Course	e Learning Outcomes:									D1		0	• ,•	
CO	After the completion of the c	ourse t	the s	stuo	lent	t sho	ould	be	able to	Blo	om'	s Co	ognitive	3
										lev	el	Des	criptor	
CO1	Identify the properties of fiber	and ma	atrix	k ma	ateri	als	used	l in c	commercia	1 V	7	Eva	luating	,
	composites, as well as some co	ommon	ma	nuf	actu	ring	tecl	hniq	ues.					
CO2	Analyze a laminated plate i	in ben	ding	g, iı	nclu	ding	g fir	ndin	g laminat	e IV	Ι.	Ana	lyzing	
	properties from lamina propert	ties and	l fin	d re	sidu	ial s	tress	ses f	rom curin	g				
	and moisture.													
CO3	Predict the failure strength of	a lami	nate	ed c	omp	oosit	e pl	ate	Knowledg	e V	7	Eva	luating	
	of issues in fracture of compo	osites a	and	env	viror	nme	ntal	deg	radation o	f				
	composites.													
CO-PC) Mapping:								l					
		PO	1	2	3	4	5	6						
		CO1	1			3		2						
		CO2	2		3			2						
		CO3	2		3	2		2						
Assessi	ments:													
Teache	er Assessment:													

Assessment	Marks					
ISE 1	10					
MSE	30					
ISE 2	10					
ESE 50						
ISE 1 and ISE 2 are based on assignment/declared t	test/quiz/seminar etc.					
MSE: Assessment is based on 50% of course conte	nt (Normally first three modules)					
ESE: Assessment is based on 100% course content	t with 70-80% weightage for course content (n	ormally				
last three modules) covered after MSE.	6 · 6 ·	j				
Course Contents:						
course contents.						
Module 1 Introduction to composite material		7 Hrs				
characteristics Overview of advantage and limitation	ons of composite materials. Significance and	7 111 5.				
objectives of composite materials. Science and tech	unology current status and future prospectus					
Module 2 Pagia Concents and Characteristics	mology, current status and future prospectus	7 Una				
Module 2 Basic Collectis and Characteristics	comptris and abusical definition. Matarial	/ n rs.				
structural performance of conventional material, G	eometric and physical definition, Material					
response, Classification of composite materials, Sca	are of analysis; Micromechanics, Basic					
lamina properties, Constituent materials and p	roperties, Properties of typical composite					
materials						
Module 3 Reinforcements		7 Hrs.				
Preparation-layup, curing, properties and applica	tions of glass fibers, carbon fibers, Kevlar					
fibers and Boron fibers. Properties and applica	tions of whiskers, particle reinforcements.					
Mechanical Behavior of composites: Rule of mixt	cures, Inverse rule of mixtures. Isostrain and					
Isostress conditions.						
Module 4 Manufacturing of Metal Matrix Comp	osites	7 Hrs.				
Casting – Solid State diffusion technique, Claddi	ing – Hot isostatic pressing. Properties and					
applications. Manufacturing of Ceramic Matrix Co	omposites: Liquid Metal Infiltration – Liquid					
phase sintering. Manufacturing of Carbon – Carbo	on composites: Knitting, Braiding, Weaving.					
Properties and applications.						
Module 5 Manufacturing of Polymer Matrix Co	mposites	7 Hrs.				
Preparation of Moulding compounds and prepregs	- hand layup method - Autoclave method -					
Filament winding method – Compression moulding	ng - Reaction injection moulding. Properties					
and applications.						
Module 6 Strength		6 Hrs.				
Laminar Failure Criteria-strength ratio, maximum	m stress criteria, maximum strain criteria,					
interacting failure criteria, hygrothermal failure.	Laminate first play failure-insight strength;					
Laminate strength-ply discount truncated maximum	n strain criterion; strength design using caplet					
plots; stress concentrations.						
		1				
Module wise Measurable Students Learning Out	comes:					
After the completion of the course the student sho	ould be able to:					
1. Elucidate to recent developments in composi	tes, including metal and ceramic matrix compo	osites.				
2. Identify the properties of fiber and matrix ma	aterials used in commercial composites, as well	l as				

- some common manufacturing techniques.
- 3. Predict the elastic properties of both long and short fiber composites based on the constituent

properties.

- 4. Explain the basic concepts and difference between composite materials with conventional materials.
- 5. Analyze a laminated plate in bending, including finding laminate properties from lamina properties and find residual stresses from curing and moisture.
- 6. Predict the failure strength of a laminated composite plate, knowledge of issues in fracture of composites and environmental degradation of composites.

Title of	f the Course: Analysis and Synth	hesis	of M	cha	nism	n 4D	E51	7	L	Т	Р	Cr
Professional Elective 2 3											-	3
Pre-Re	Pre-Requisite Courses:											
Textbooks:												
1. R.S. Hartenberg and J. Denavit, "Kinematic Synthesis of Linkages", McGraw-Hill, New York, 1980.												
2. Robe	2. Robert L.Nortan, "Design of Machinery', Tata McGraw Hill Edition											
3. Ham	3. Hamilton H.Mabie, "Mechanisms and Dynamics of Machinery", John Wiley and sons New York											
Refere	References:											
1. A. G	1. A. Ghosh and A.K. Mallik, "Theory of Machines and Mechanisms", Affiliated East-West Press, New											
Delhi, 1	1988.											
2. A.G	. Erdman and G.N. Sandor, "Mech	hanis	m De	sign -	- Ar	nalys	sis a	nd Synthe	sis", (Vol. 1	and 2),	
Prentice	e Hall India, 1988.											
3. A.S.	Hall, "Kinematics and Linkage D	Desig	n", Pr	entic	e Ha	ll of	fInd	ia.				
4. J.E. S	Shigley and J.J. Uicker, "Theory o	of Ma	chine	s and	Me	char	nism	s", 2nd Eo	lition,	McGr	aw-Hill,	1995
Course	Objectives:											
1. To p	rovide students with a sound found	datio	n in k	inem	atic	and	synt	hesis of n	nachin	es and	mechan	isms.
2. To tr	ain the students to apply complex	num	ber, n	atric	es a	nd a	lgeb	ra for ana	lysis o	f mech	anisms.	
3. To p	3. To prepare the students to use modern software for kinematic and dynamic analysis of the mechanisms.											
	Course Learning Outcomes:											
Course	E Learning Outcomes:							<u> </u>				
Course CO	E Learning Outcomes: After the completion of the cou	urse t	he st	ıden	t she	ould	be	able to	Bl	oom's	Cognitiv	ve
Course CO	E Learning Outcomes: After the completion of the cou	urse t	he st	ıden	t she	ould	be	able to	Bl	oom's zel	Cognitiv	ve
Course CO CO1	After the completion of the cou Select, configure, and synth	urse t	the stu	iden	t sho	ould	be	able to	Bl	oom's /el V	Cognitiv Descrip Evaluat	ve tor
Course CO CO1	Examing Outcomes: After the completion of the course Select, configure, and synth complete systems, Use kinema	urse t nesize	the stu	iden chani	t she	con	be be	able to nents int and solv	Bl lev o	oom's /el V	Cognitiv Descrip Evaluat	ve tor ing
Course CO CO1	After the completion of the cou Select, configure, and synth complete systems. Use kinema constraint equations to design lin	urse t nesize atic g	the straight me	iden chani try t	t she	con con ormu task	be mpo ilate	able to nents int and solv	Bl lev o e	oom's /el V	Cognitiv Descrip Evaluat	ve tor ing
Course CO CO1	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design line Formulate analytical equations d	urse t nesize atic g nkage	the strain	iden chani try t speci he re	t she ical o fc fied	con con ormu task	be mpo late	able to nents int and solv	Bl lev o e	oom's /el V	Cognitiv Descrip Evaluat Creating	ve tor ing
Course CO CO1 CO2	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lin Formulate analytical equations d and acceleration of all moving lin	urse t nesize atic g nkage descri inks.	the straight me geome s for bing t	iden chani try t speci he re	t she ical o fo fied lativ	con ormu task ve po	be mpo late as.	able to nents int and solv	Bl lev o e y	oom's vel V VI	Cognitiv Descrip Evaluat Creating	ve tor ing
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design line Formulate analytical equations d and acceleration of all moving line Analyze and animate the move	urse t nesize atic g nkage descri inks.	me geome s for bing t	iden chani try t speci he re	t sho ical o fo fied lativ	con ormu task ve po	be mpo ilate cs. ositio	able to nents int and solv on, velocit	Bl lev o e y	oom's vel V VI	Cognitiv Descrip Evaluat Creating	ve tor ing g
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lim Formulate analytical equations d and acceleration of all moving lim Analyze and animate the move- linkages. Students will be ab	urse t nesize atic g nkage descri inks. ement ole to	the strategies for bing to of phone app	iden chani try t speci he re anar	t she ical o fc fied lativ and	con ormu task ve po	be mpo ilate cs. ositioneric	able to nents int and solv on, velocit cal four-base	Bl lev o e y u d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design line Formulate analytical equations d and acceleration of all moving line Analyze and animate the moves linkages. Students will be able techniques in the selection, anal	urse t nesize atic g nkage descri inks. ement ole to lvsis.	the straigeome seome bing t of p and s	iden chani try t speci he re anar y m	t she ical o fc fied lativ and esis	con prmu task ve pc l sph rn c of c	mpo llate as. ositioneric component	able to nents int and solv on, velocit cal four-base poter-base	Bl lev o e y ur d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lim Formulate analytical equations d and acceleration of all moving lim Analyze and animate the mover linkages. Students will be able techniques in the selection, anal their integration into complete m	urse t nesize atic g nkage descri inks. ement ble to lysis, necha	the str e me geome s for bing t of p o app and s nical	iden chani try t speci he re anar anar yntho syste	t she ical o fc fied lativ and code: esis ms	con ormu task /e pc l sph rn c of c	h be mpo ilate s. ositio neric comp	able to nents int and solv on, velocit cal four-base poter-base	B1 lev o e y ur d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lim Formulate analytical equations d and acceleration of all moving lim Analyze and animate the movem linkages. Students will be able techniques in the selection, anal their integration into complete m	urse t nesize atic g nkage descri inks. ement ble to lysis, necha	the structure me geome s for bing t of p of p and s nical	iden chani try t speci he re anar y m yntho syste	t she ical o fc fied lativ and code esis ms	con ormu task 7e pc l sph rn c of c	be mpo llate cs. ositio	able to nents int and solv on, velocit cal four-base ponents an	Bl lev o e y ur d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3 CO-PC	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lim Formulate analytical equations d and acceleration of all moving lim Analyze and animate the mover linkages. Students will be ab techniques in the selection, anal their integration into complete m Mapping: P	urse t nesize atic g nkage descri inks. ement ole to lysis, necha	the straig me geome s for bing t bing t of p and s nical	iden chani try t speci he re anar yntho syste	t she ical o fc fied lativ and code esis ms	cor ormu task ve pc l sph rn c of c	be mpo llate s. ositio meric comp omp	able to nents int and solv on, velocit cal four-base poter-base	Bl lev o e y ur d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3	Examing Outcomes: After the completion of the could Select, configure, and synth complete systems. Use kinema constraint equations to design lim Formulate analytical equations d and acceleration of all moving lim Analyze and animate the move linkages. Students will be able techniques in the selection, anal their integration into complete m Mapping:	urse t nesize atic g nkage descri inks. ement ole to lysis, necha	the structure eome s for bing t of p and s nical 1 2 1	iden chani try t speci he re anar y m syste 3 2	t she ical o fc fied lativ and aode esis ms 4 3	con ormu task ve pc l sph rn c of c	be mpo ilate as. ositio meric comp omp	able to nents int and solv on, velocit cal four-base ponents an	Bl lev o e y u d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng
Course CO CO1 CO2 CO3	E Learning Outcomes: After the completion of the course Select, configure, and synth complete systems. Use kinema constraint equations to design lime Formulate analytical equations data and acceleration of all moving lime Analyze and animate the move linkages. Students will be able techniques in the selection, anal their integration into complete mediate Mapping:	urse t nesize atic g nkage descri inks. ement ble to lysis, necha	he straigeome geome is for bing t of pi and s nical 1 2 1	iden chani try t speci he re anar y m yntho syste 3 2	t she ical o fc fied lativ and code esis ms 4 3 3	con prmu task ve po l sph rn c of c	be mpo alate as. ositio omp omp	able to nents int and solv on, velocit cal four-base ponents an	Bl lev o e y ur d d	oom's /el V VI IV	Cognitiv Descrip Evaluat Creating Analyzi	ve tor ing g ng

Assessments:

Teacher Assessment:

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared te	est/quiz/seminar etc.	
MSE: Assessment is based on 50% of course conten	t (Normally first three modules)	
ESE: Assessment is based on 100% course content	with 70-80% weightage for course content (n	ormally
last three modules) covered after MSE.		
Course Contents:		
Module 1		7 Hrs.
Basic Concepts; Definitions and assumptions; plana	r and spatial mechanisms; kinematic pairs;	
degree of freedom; equivalent mechanisms; Kinema	tic Analysis of Planar Mechanisms. Review	
of graphical and analytical methods of velocity and	acceleration analysis of kinematically	
simple mechanisms, velocity-acceleration, analysis	of complex mechanisms by the normal	
acceleration and auxiliary-point methods.		
Module 2		7 Hrs.
Curvature Theory: Fixed and moving centrodes, infl	ection circle, Euler-Savary equation,	
Bobillier constructions, cubic of stationary curvature	e, Ball's point, Applications in dwell	
mechanisms.		
Module 3		7 Hrs.
Kinematic Synthesis of planar mechanisms, accurac	y (precision) points, Chebesychev spacing,	
types of errors, Graphical synthesis for function gen	eration and rigid body guidance with two,	
three and four accuracy points using pole method, co	entre and circle point curves, Analytical	
synthesis of four-bar and slider-crank mechanisms.		
Module 4		7 Hrs.
Freudenstein's equation, synthesis for four and five	accuracy points, compatibility condition,	
synthesis of four-bar for prescribed angular velocitie	es and accelerations using complex	
numbers, three accuracy point synthesis using comp	lex numbers.	
Module 5		6 Hrs.
Coupler Curves: Equation of coupler curve, Robert-	Chebychev theorem, double points and	
symmetry.		
Module 6		6 Hrs.
Kinematic Analysis of Spatial Mechanisms, Denavit	t-Hartenberg parameters, matrix method of	
analysis of spatial mechanisms		
Module wise Measurable Students Learning Outco	omes:	
After the completion of the course the student show	uld be able to:	
1. Analyse planar mechanisms for velocity and a	acceleration.	
2. Use different techniques for synthesis of mech	nanisms	
3. Synthesis 4 bar mechanisms for given applica	tion	
4. Synthesis of 4 bar mechanism for velocity and	acceleration	
5. Determine coupler curves for mechanisms		
6. Analyse spatial mechanisms.		

Title of	the Course: Process Equipme	ent Des	sign 4	4D	E5 1	18				L	Т	Р	Cr
Professional Elective 2										3	-	-	3
Pre-Requisite Courses:													
Textbo	oks:												
1. Mah	1. Mahajani V.V. and Umbrani S.B., "Process Equipment Design", Macmillan Publishing India Ltd.,												
Fourth edition, 2009.													
2. Bieuro of Indian standard "Code for unfired pressure vessels IS:2825", Indian Standard Institution,													
Revised	d Edition												
Refere	nces:												
1. Brov	wnell L. E and Young H, "Proce	ess Equ	iipme	ent	Des	sign	", Jo	hn '	Willey Put	olicatio	n, Firs	t Edition	,2004.
2. Harv	vey J. F., "Theory and Design o	f Press	ure I	est	sel'	' CE	BS P	ubli	sher, Third	leditio	on, 200	4.	
Course	Objectives:												
1. To	prepare the students to succeed	as desig	gner	in p	proc	cess	indu	ıstry	//technical	profes	sion.		
2. To	provide students with a sound for	oundati	on in	pr	oce	ss e	quip	mer	nt design re	equired	l to sol	ve the	
pro	blems in process industry.												
3. To	train the students with good des	ign eng	gineer	ring	g br	ead	h re	quir	ed for safe	and e	fficient	t design,	
con	struction, installation, inspection	n, testir	ng an	d c	erti	fica	tion	of u	infired prea	ssure v	essels.		
4. To	aware the students about rules a	nd regu	ılatio	ns	rela	ated	to tł	ne oj	perational	safety	of proc	cess	
equ	ipment.												
Course	E Learning Outcomes:												
CO	After the completion of the c	ourse t	the st	tud	lent	t sho	ould	be	able to	Blo	om's (Cognitive	e
										le	vel	Descri	ptor
CO1	Distinguish types of equipment	nt used	l in t	he	pro	cess	ind	lustr	y and thei	r I	V	Analy	zing
	general procedure of design.												
CO2	Recommend the appropriate	equipm	ent f	for	a p	oroc	ess	by a	considering	3 1	V	Evalua	ıting
	process hazards and safety me	asures.											
CO3	Design pressure vessels and i	its corr	espoi	ndi	ng	com	pon	ents	using BIS	5 1	/I	Creat	ing
	and ASME codes of pressure v	vessels											
CO-PC	Mapping:												
		PO	1	2	3	4	5	6					
		CO1	1					2					
		CO2			2								
		CO3	3		2			3					

Assessments:

Teacher Assessment:

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Ľ	ourse Contents:	
l	Module 1 Introduction to Process Equipments	6 Hrs.
]	introduction, Basic process requirement of plants and projects, Types and classification of	
e	equipments used in process industry, General design procedure, Materials of construction and	
0	corrosion prevention, Design codes required in process equipment design.	
l	Module 2 Pressure Vessels	7 Hrs.
]	Design parameters, Design criteria, Design of pressure vessel components - Shell, Head,	
I	Nozzle, flanged joint, Thermal stresses in cylindrical shell, Cylindrical pressure vessels under	
0	combined loading, Fabrication process, Inspection and testing of pressure vessels.	
l	Module 3 High Pressure Vessels	7 Hrs.
(Constructional features, Stresses in thick walled shells, Multi-shell construction, Shrink fit	
0	construction, Stresses in shrink fit construction, Supports for pressure vessels.	
]	Discontinuity stresses in pressure vessel.	
l	Module 4 Storage Vessels	7 Hrs.
e L	Storage vessels and its type, Fixed roof storage tanks, Variable volume tanks-vapor lift type and	
1	loating roof type, Accessories of storage tanks, column supported storage tanks, Design of	
1	rectangular tanks.	
]	Reaction vessel - Heating systems of reaction vessels, Design and construction of jackets.	
l	Module 5 Heat Exchangers	6 Hrs.
_	5	00
۲.	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers,	
	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers.	
 	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features.	
 	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments	7 Hrs.
	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries.	7 Hrs.
	Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry.	7 Hrs.
	 Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: 	7 Hrs.
	 Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: 	7 Hrs.
1 1 1 1 1 1 1 1 1	 Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d 	7 Hrs. esign.
1 1 1 1 1 1 1 1 1 2	 Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes of press 	7 Hrs. esign. ure
1 1 1 1 1 1 1 1 2	 Types of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes of pressive vessels. 	7 Hrs. esign. ure
1 1 1 1 1 1 1 2. 3.	 Fypes of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes of pressure vessels. Design High pressure vessels and its corresponding components using BIS and ASME codes or pressure vessels. 	7 Hrs. esign. ure
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Fypes of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes or pressure vessels. 	7 Hrs. esign. ure
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 Fypes of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes of pressure vessels. Design High pressure vessels and its corresponding components using BIS and ASME codes or pressure vessels. 	7 Hrs. esign. ure f
1 1 1 1 1 1 2. 3. 4. 5.	 Fypes of heat exchangers and constructional features, Design of shell and tube heat exchangers, Arrangements of tubes, baffles, Expansion provisions for heat exchangers. Evaporators and crystallizers – Types and its constructional features. Module 6 Process Equipments Agitators, Centrifugal machines, Filters and dryers used in process industries. Process hazards and safety in the process industry. Iodule wise Measurable Students Learning Outcomes: fter the completion of the course the student should be able to: Recognize the types of equipment used in the process industry and their general procedure of d Design pressure vessels and its corresponding component using BIS and ASME codes of pressive vessels. Design High pressure vessels and its corresponding components using BIS and ASME codes or pressure vessels. Design storage and reaction vessels and its corresponding components using BIS and ASME codes or pressing heat exchangers, evaporators and crystallizers required for process industry. 	7 Hrs. esign. ure f

Professional Elective (Lab) Courses

Title of the Course: Professional Elective -Design Engineering Lab 2	L	Т	Р	Cr
4DE552	-	-	4	2

Text Books:

As per the course details

References:

As per the course details

Course Objectives:

1. To provide fundamental knowledge and expertise in order to produce competency in recent engineering fields.

2. To develop ability through the applications of the acquired knowledge, skills, and tools pertinent to design engineering.

3. To engage in continuous professional development in response to technological challenges in design engineering.

Course Learning Outcomes:

CO	After the completion of the lab the student should be able to	Bloom's Cognitive		
		level	Descriptor	
C01	Demonstrate clearly and effectively for the practical utilization in	III	Applying	
	day-to-day life			
CO2	Analyze results using significant modern scientific methods	IV	Analyzing	
CO3	Build ability to understand advanced technologies and research	VI	Creating	
	in design engineering			

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			2			
CO2					2	1
CO3						1

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
TA1	Lab activities,	Lah Course Fegulty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
1.4.2	Lab activities,	Lah Course Fegulty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA2	Lab activities,	Lab Course Fegulty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23

	Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25	25
		related documentation		Submission at the end of Week 18	23	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Students should perform experiments based on electives selected from PE 1 and 2

Professional Elective – 1 (Experiments from any one elective selected by student)

List of	f Experiments for course Advanced Machine Design	20
1	To perform ergonomic analysis of office chair	Hrs
2	To perform ergonomic analysis of a car	1115.
3	To carry out aesthetic analysis of a bike	
4	To carry out aesthetic analysis of a home appliance.	
5	To prepare 3D model of a product designed by student.	
6.	To make prototype of above product using 3D printer.	
	10 mane Prototype of accive Protato acing of Printers	
List of	20	
eight e	experiments)	Hrs.
1.	Life cycle of mechanical equipment design based on requirements of customer,	
	management, marketing, manufacturing, transportation etc Case study.	
2.	Appropriate example of DFMA for improving product quality, cost and time to	
	the market.	
3.	Case study based on design considerations for manual, automated and flexible	
	assembly.	
4.	Realistic problem of geometric dimensioning and tolerance considerations for	
	manufacturing and assembly.	
5.	Application of tools like lean manufacturing in the perspective of DFMA.	
6.	Application of tools like six sigma in the perspective of DFMA.	
7.	Use of DFMA for sand casting with example.	
8.	Use of DFMA for machining with example.	
9.	Use of DFMA for extrusion with example.	
10	. Use of DFMA for welding with example.	
List of	f experiments for course Mathematical Methods in Engineering	20
1.	Solve examples on probability	Hrs.
2.	Case study on probability distribution functions	
3.	Case study on hypothesis testing	
4.	Prepare MATLAB program for solving ordinary differential equations using ODE	
_	function	
5.	Prepare MATLAB program for solving ordinary differential equations using	
	dsolve function	
0. 7	Prepare MATLAB program for solving elliptic PDE	
/.	F Experiments for course Policibility Engineering	20
		20
	Assignment on Drobability and Daliability	Hrs.
2. 2	Assignment on Flobaulity and Reliability.	
) 3. /	Case study: Delightlifty in mechanical product design and development	
4. 5	Case study: Reliability in meintenance and meintainability	
5.	Case study: Testing of reliability of the product	
0.	case study. result of rendomity of the product.	

Profes		
List of Experiments for course Advanced Engineering Materials		20
1.	Tensile test of ferrous and nonferrous metals.	Hrs.
2.	Hardness test.	
3.	Creep test at room temperature on Solder wire.	
4.	Impact test on steels samples and establish nil ductility temperature.	
5.	Fatigue test on Mild steel samples	
6.	Microstructural analysis of Ferrous base metals	
7.	Microstructural analysis of Non Ferrous base metals	
8.	Effect of work hardening on mechanical properties of materials	
List of	Experiments for course Mechanics of Composite Materials	20
1.	Two assignments and case study discussion on Basic Concepts and Characteristics	Hrs.
-	of composites.	
2.	Two assignments and case study discussion on Elastic Behaviour of	
3	Unidirectional Lamina of composites.	
5.	of composites.	
4.	Two assignments and case study discussion on Elastic Behaviour of Laminate of	
	composites.	
5.	Two assignments and case study discussion on Stress Analysis of Laminates.	
6.	Two assignments and case study discussion on Failure analysis of Composites	
List of	experiments for course Analysis and Synthesis of Mechanisms	20
1.	Solve examples on calculation of degree of freedom of mechanism	Hrs.
2.	Case study on Euler Savary Equation	
3.	Case study on designing four bar mechanism using graphical method	
4.	Case study on designing slider crank mechanism using graphical method	
5.	Prepare 3D model in modeling software and simulate a mechanism	
6.	Case study on designing four bar mechanism using complex algebra method	
7.	Case study on designing slider crank mechanism using complex algebra method	
8.	Analyze mechanism using a simulation software such as Simulink, solidworks etc	
9.	Mini project on designing mechanism for path generation/function generation	
List of	Experiments for course Process equipment design	20
1.	Study of materials of construction and corrosion prevention of process	Hrs.
	equipments.	
2.	Design calculations for pressure vessel design.	
3.	Drawing of pressure vessel in sheet or using any mechanical software	
4.	Design calculations for storage vessel design.	
Э. 6	Analysis of cylindrical pressure vessel using EFA Software	
0.	marysis of cylindrical pressure vessel using FEA Software.	

Open Electives Courses

There are no courses under this category for this semester.

Mandatory Life Skill Courses

There are no courses under this category for this semester.
Value Added Professional Courses

There are no courses under this category for this semester.

EVEN Semester

Professional Core (Theory) Courses

Title of	f the Course: Finite Flement Method ADF521	T	Т	P	Cr					
I IIIC OI	the Course. Finite Element Method 4DE521	3	-	-	3					
Pre-Re	auisite Courses:									
Textbo	oks:									
1. Klau	us JurgenBathe, "Finite Element Procedures" Print ice Hall of India I	Pvt. Ltd	. Four	h						
Prir	nt.2008									
2. J.N.F	Reddy. "Introduction to Finite Element", Tata McGraw Hill Publishing	g Co. Lt	d.1998							
3. O.C.	Zienkiewicz "The Finite Element Method", Tata McGraw Hill Publish	ning Co.	Ltd. 5	th revise	d					
edition	,2000.	υ	,							
References:										
1. T.R.Chandrupatla. "Introduction to Finite Element in Engineering", Prentice Hall, New Delhi, 2 nd										
Edition	n-1997									
2. Davi	d V. Hutton, Fundamentals of finite element analysis, Tata McGraw H	ill Publi	shing (Co. Ltd						
Seco	nd edition 2005.		_							
3. S. S	Rao. "Introduction to Finite Element in Engineering", Elsevier, 5 th edit.	ion,2012	2.							
4.Cook	R.D. "Concepts and applications of finite element analysis" Wiley, Ne	w York,	, 4 th Ed	. 02.						
5. Loga	n Deryl L., "A First Course in Finite Element Method", Thomson Broc	k/Cole,	5th Ed.							
Course	• Objectives: The objective of the course is									
1.	1. To teach the fundamentals of finite element method with emphasize on the underlying theory,									
	assumption, and modeling issues.									
2.	To provide hands on experience using finite element software to model	, analyz	e and c	lesign						
	mechanical systems.									
Course	e Learning Outcomes:									
At the e	end of the course the student will be able to:									
1. Class	sify a given problem on the basis of its dimensionality as 1-D, 2-D,	or 3-D,	, time-o	depende	nce as					
Static o	r Dynamic, Linear or Non-linear.									
2. Cons	struct system level matrix equations from a given mathematical mode	l of a p	roblem	followi	ng the					
Galerki	n weighted residual method or principle of stationary potential.									
3. Estin	nate three sources of errors in implementing FEM and suggest remedie	es to min	nimize	the same	e for a					
given p	roblem, viz. Modeling errors, Approximation errors, and numerical error	ors.								
CO	After the completion of the course the student should be able	Blo	om's C	ognitive	;					
	to	level	Ι	Descripto	or					
CO1	Classify a given problem on the basis of its dimensionality as 1 D	TT	Un	derstand	ling					
COI	2 D or 3 D time dependence as Static or Dynamic Linear or	11		uerstand	ung					
	Non-linear									
CO2	Construct system level matrix equations from a given	Ш		Applyin	a					
	mathematical model of a problem following the Galerkin weighted	111		rbhians	5					
	residual method or principle of stationary potential									
CO3	Estimate three sources of errors in implementing EFM and suggest	V	Г	valuatin	ισ					
	remedies to minimize the same for a given problem viz Modeling	v		a a u a u a u l	5					
	errors. Approximation errors and numerical errors									
	errors, Approximation errors, and numerical errors.									

CO-PO Mapping:

	1	2	3	4	5	6
CO1	3					
CO2				3	2	2
CO3		2	2			3
CO3		2	2			3

Assessments: Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							
ESE	50							
ISE 1 and ISE 2 are based on assignment/declared	test/quiz/seminar etc.							
MSE: Assessment is based on 50% of course conte	ent (Normally first three modules)							
ESE: Assessment is based on 100% course content with60-70% weightage for course content (nor								
last three modules) covered after MSE.								
Course Contents:								
Module 1:		3 Hrs.						
Classification of problems – Dimensionality, time	dependence, Boundary Value problems,							
Initial value problems, Linear/Non-linear, etc,								
Module 2:		9 Hrs.						
Differential equation as the starting point for FEM,	, steps in finite element method,							
discretization, types of elements used, Shape funct	ions, Linear Elements, Local and Global							
coordinates, Coordinate transformation and Gauss-	Legendre scheme of numerical integration,							
Nodal degrees of freedom.								
Module 3:		9 Hrs.						
Finite element formulation, variational, weighted r	esidual and virtual work methods.							
Module 4:		9 Hrs.						
1-D and 2-D problems from Structural Mechanics	– Bar, Beam, Plane stress and plane							
Strain problems, Axisymmetric problems – Axi-sy	mmetric forces and geometry.							
Module 5:		6 Hrs.						
Computer implementation, higher order elements,	iso-parametric formulation.							
Module 6:		4 Hrs.						
Eigen-value problems, Natural vibration of bars an	d beams, Methods to find eigen-values							
andeigen-vectors.	-							

Module wise Measurable Students Learning Outcomes:

1. Students will be able to explain the Mathematical modeling and FEM.

2. Students will be able to use Design Engineering problems by using FEM. Students will develop confidence for self education and ability for lifelong learning.

3. Students will demonstrate an ability to formulate and solve Design Engineering problems by using variational formulation methods.

4. Students will have ability to design machines, systems, and projects required for industry based on the

static analysis of machine components.

5. Students will be able to organize experiments and analyze and interpret the data.

6. Students will be able to use modern tools, software, and equipments to analyze and solve the dynamic problems.

Title of	itle of the Course: Computer Aided Design 4DE522										Р	Cr	
									3	-	-	3	
Pre-Re	quisite Courses:												
Textbo	oks:												
1. Zeid	Ebrahim, CAD/CAM Theory a	nd Prac	tice,Ta	ıtaM	lc.G	raw	Hill	s, 3 rd editi	on,200	9.			
2. Rad	lhakrishnan P., Subramanyan S	., Raju	V. ,C/	AD/	CAN	A/C]	IM, ,	New Age	Interr	nationa	al, 2^{nd} e	dition,	
2010.													
Refere	References:												
1. Lee Kunwoo, Principles of CAD/CAM/CAE systems, , Addison Wesley, 2 nd edition,1999													
2. Machover Carl ,The C4 handbook: CAD, CAM, CAE, CIM, Tab Professional and Reference Books,													
3 rd edition, 1998													
3. Tar	aman Khalil ,CAD-CAM: Meet	ting Too	lay's P	rodu	ıctiv	ity (Chall	lenge, Uni	versity	of M	ichigan,	, 6 th	
edition,	, 2012												
Course	Objectives:												
1.	To introduce the students applied	cation o	of Geor	netr	ic D	ime	nsioi	ning and T	oleran	cing			
2.	2. To impart the students modern CAD operations.												
3.	To prepare the students for use	of mod	ern FE	A sy	yster	n							
Course Learning Outcomes:													
CO After the completion of the course the student should be able to									Blo	Bloom's Cognitive			
									lev	el	Descriptor		
CO1	Demonstrate various approach	nes of ge	eometr	ic m	ode	ling			III		Applyi	ng	
CO2	Analyse geometric dimensio	ning a	nd tole	eran	cing	ba	sed	on ASMI	E IV		Analyz	ing	
	standard in design and generat	te prope	er engin	neeri	ing c	lraw	vings						
CO3	Design parts using a modern	parame	tric CA	AD s	syste	m			VI		Creatin	g	
CO-PC) Mapping:												
		PO	1 2	3	4	5	6						
		CO1	3	3		2							
		CO2	3			2							
		CO3	3		2								
Assessi	ments:												
Teache	r Assessment:												
Two co	mponents of In Semester Evalu	ation (I	SE), O	ne N	Mid	Sem	este	r Examina	tion (N	MSE) a	and one	End	
Semest	er Examination (ESE) having 24	0%, 309	% and	50%	wei	ights	s res	pectively.					
	Assessment							Μ	arks				
	ISE 1								10				
	MSE								30				
	ISE 2							10					
	ESE								50				
ISE 1	and ISE 2 are based on assignment	nent/dec	lared t	est/c	quiz/	/sem	inar	etc.				/	
MSE:	Assessment is based on 50% of	f course	conter	nt (N	Jorn	nally	' firs	t three mo	dules)				

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1	6 Hrs.
CAD Hardware and Software, Types of systems and system considerations, input and	
output devices, hardware integration and networking, hardware trends, Software modules	
Module 2	7 Hrs.
Computer Communications, Principle of networking, classification networks, network	
wring, methods, transmission media and interfaces, network operating systems,	
Module 3	6 Hrs.
Computer Graphics, Introduction, transformation of geometric models: translation, scaling,	
reflection, rotation, homogeneous representation, concatenated transformations; mappings of	
geometric models, translational mapping rotational mapping, general mapping, mappings as	
changes of coordinate system; inverse transformations and mapping	
Module 4	7 Hrs.
Projections of geometric models, orthographic projections, Geometric Modeling, curve	
representation: Parametric representation of analytic curves, parametric representation of	
synthetic curves, curve manipulations. Surface representation	
Module 5	7 Hrs.
Fundamentals of solid modeling, boundary representation (B-rep), Constructive Solid	
Geometry (CSF), sweep representation, Analytic Solid Modeling (ASM), other representations;	
solid manipulations, solid modeling based applications: mass properties calculations,	
mechanical tolerancing etc.	
Module 6	7 Hrs.
Finite Element Modeling and Analysis, Finite Element Analysis, finite element	
modeling, mesh generation mesh requirements, semiautomatic methods, fully automatic	
methods, design and engineering applications, System Simulation, Need of simulation, areas of	
applications, when simulation is appropriate tool / not appropriate, concept of a system,	
components of a system, discrete and continuous systems, model of a system, types of models,	
types of simulation approaches	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Have a conceptual understanding of the principles of CAD systems, the implementation of these	;
principles, and its connections to CAM and CAE systems.	
2. Interpret 2D, 3D transformations and projection transformations.	
3.Compare mathematical representation of 2D and 3D entities	
4. Demonstrate various approaches of geometric modeling	
5. Design basic mechanical components.	
6. Explain basic fundamentals of FEM	

Professional Core (Lab) Courses

Title of	f the Course: Design Engine		L	Т	Р	Cr							
										-	-	4	2
Pre-Re	equisite Courses: Mechanical	vibratio	ns,]	Mac	hine	Too	l De	sign.					
Textbo	ooks:												
1. Ad edi	 Adams M. L., Rotating Machinery Analysis - from Analysis to Troubleshooting, CRC Press, 2nd edition, 2009 												
2. Mohanty A. R., Machinery Condition Monitoring-Principles and Practices, CRC Press, 1 st edition, 2015													
3. Mehta N. K., Machine Tool Design, McGraw Hill Education, 3 rd edition, 2017													
Refere	nces:												
1. Wi Ne	 William J. H., Davis N., Drake P. R., Condition Based Maintenance and Machine Diagnostics, Springer Netherlands, 2nd edition, 1994 												
2. Ra	o S. S., Mechanical Vibration	s, Pearso	on ec	luca	tion	, 5 th (editi	on, 2	010				
 Koenigsberger F., Design Principles of Metal Cutting Machine Tool, The Macmillan Co, 1st edition, 1964 													
Course Objectives:													
At the	end of the course:												
1. Stud	ents will be able to use variou	s experi	men	tal te	echn	ique	s rele	evant	to the s	subject.			
2. Stud	ents will acquire hands on exp	perience	on t	he v	ario	us tes	st-rig	gs, Ez	xperime	ntal set	up.		
3. Stud	ents will be able to function a	s a team	mer	nber	•								
4. Stud	ents will develop communicat	tion skill	s.										
5. Stud	ents will be able to write tech	nical rep	orts										
6. Stud	ents will be able to use differe	ent softw	are'	S									
Course	e Learning Outcomes:												
CO	After the completion of the	e course	the	stuc	lent	shou	uld ł	oe ab	le to	Blo	om's C	Cognitive	3
										leve	el I	Descripto	or
CO1	Solve field problems by usir	ng differe	ent c	cond	ition	mon	nitor	ing		III	A	Applying	5
	techniques.												
CO2	Evaluate typical characterist	ics of dy	'nan	nic s	ystei	ms b	y cai	ryin	g out	V	F	Evaluatiı	ıg
	experiments in team												
CO3	Design equipment according	g to the r	equi	rem	ents	spec	ifiec	l.		VI	(Creating	
CO-PO) Mapping:												
PO 1 2 3 4 5 6													
CO1 3 2 3													
		CO2			3	2	2						
		CO3	2		3		2	1					

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	DuringWeek1toWeek4Submission at the end of Week5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course contents.	
List of experiments for course Computer Aided Design (Minimum eight experiments)	
	20 Hrs
1.To create 2D drawing using sketcher workbench – 2 drawings	
2.To study 3D modeling and drafting using 3D features – 5 models	
3.To study Assembling and drafting of 2D assemblies with interference checking.	
4. To study Geometric modelling by using 3D transformation	
5. To carry out Kinematic simulation of different mechanisms	
6. To study surface modelling- exercise 1.	
7. To study surface modelling- exercise 2.	
8. To study surface modelling- exercise 3	
List of experiments for course Finite Element Method (Minimum ten experiments)	24 Hrs
1. To carry out Drafting with geometrical dimensioning and tolerancing.	
2. To carry out Structural analysis of complex truss using FEA software	
3. To carry out Buckling analysis of beam using FEA software	
4. To carry out Thermal analysis of chimney using FEA software	
5. To carry out Transient Thermal analysis of fin using FEA software	
6. To carry out Thermal analysis of Axi-symmetric plate using FEA software	
7. To carry out 3D modelling and analysis of pulley using FEA software.	
8. To carry out 3D modelling and analysis of rotating shaft using FEA software	
9. To carry out Non Linear analysis using contact element using FEA software	
10. To carry out 3D modelling and analysis of corner bracket using FEA software	
11. To carry out 3D modelling and analysis of machine part using FEA software	
12. To carry out Laminar Flow analysis in 2D duct using FEA software	
13. To carry out Flow analysis around a cylinder using FEA software	

14. To carry out Structural analysis of book shelf bracket using FEA s	software
15 To carry out Structural analysis of balcony truss using FEA softwa	ire

Title o	f the Course: Industrial Proje		L	Т	Р	Cr							
										-	-	4	2
Pre-Re	equisite Courses:												
Textbo	Textbooks: As per topic Selected and Journal papers, Conference papers, Handbooks.												
References: As per topic Selected and Journal papers, Conference papers, Handbook.													
Course	Course Objectives:												
1.	To Review and increase student	s' under	star	nding	g of	the s	spec	ific	topics.				
2.	To induce Learning management of values.												
3.	 3. To teach how research papers are written and read such papers critically and efficiently and to summarize and review them to gain an understanding of a new field, in the absence of a textbook. 4. To teach how to judge the value of different contributions and identify promising new directions in 												
	specified area.												
Course	Course Learning Outcomes:												
CO	After the completion of the cou	ırse the	stu	dent	t sha	ould	be a	ble	to	Bloom's Cognitive			
										Lev	el	Descri	ptor
CO1	Apply the existing knowledge	on rea	l lif	e pr	oble	ms				III	1	Applying	5
CO2	Investigate the selected topic/	system	l .							IV	1	Analyzin	g
CO3	Verify the outcomes of the we	ork hav	e so	lvec	1 the	e spe	cifi	ed p	oroblems.	V]	Evaluatin	ıg
CO-PO) Mapping:												
		DO	1	2	2	4	5	6	1				
		PU CO1	1	4	3	4	3	0					
			2	2	1		1						
		C02	3	3			1		-				
Assass	mont	005		5			2						
There a	are four components of assessm	ent, LA	.1, I	LA2	, LA	A3 ai	nd L	.ab]	ESE.				
IMP: L	ab ESE is a separate head of pa	ssing.											

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
I A 1	Drojaat Drograg	Course Faculty/	During Week 1 to Week 4	25
LAI	Floject Flogless	Industrial Guide	Submission at the end of Week 5	23
1.4.2	Project Progress	Course Faculty/	During Week 5 to Week 8	25
LAZ		Industrial Guide	Submission at the end of Week 9	23
1.4.2	Project Progress	Course Faculty/	During Week 10 to Week 14	25
LAS		Industrial Guide	Submission at the end of Week 14	25
L -1 ESE	Project Progress	Course Faculty/	During Week 15 to Week 18	25
LauESE		Industrial Guide	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Project activities/Project performance shall include literature review, problem statement, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the industrial project.

Course Contents:

The industrial project work will start in semester II and should be an industrial problem with research potential and should involve scientific research review, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Student should undergo industrial project in registered company/organization after consulting with faculty guide assigned by the department. Industrial project should be based preferably in the area in which the candidate is interested to undertake the dissertation work. The student has to be in regular contact with guide and the topic of industrial project must be mutually decided. The examination shall consist of the preparation of report consisting literature review, detailed problem statement, methodology, etc, according to type of work carried out. The work has to be presented in front of the examiners panel formed by DPGC for evaluation.

Professional Elective (Theory) Courses

Title of	Title of the Course: Tribology in Design 4DE531								L	Т	Р	Cr	
Profess	sional elective 3								3	-	-	3	
Pre-Re	equisite Courses:								1		I		
Textbo	ooks:												
1. Bası	u, Sengupta and Ahuja, "Funde	amental.	s of	^c Tri	bolc	, gy	, PH	H Learning, I	First edi	tion, 20	11.		
2. Susł	hil Kumar Srivatsava, "Tribolo	gy in In	dus	try'	', S.	Cha	and l	Publisher, Re	vised ec	lition, 2	2001		
Refere	nces:												
 Majumdar B.C., "Introduction to Tribology of Bearings", S. Chand and Company Ltd., First Edition, 2010. 													
2. Bharat Bhushan, "Handbook of Tribology", Krieger Publishing Company, First Edition, 1997.													
3. Mervin H. Jones and Douglas Scott, "Industrial Tribology - The Practical Aspects of Friction,													
Lub	prication and Wear", Elsevier S	Scientifi	c P	ubli	shin	g C	omp	any Amsterd	am-Oxf	ord-Ne	w York,	1991.	
4. Pra	sannaSahoo, "Engineering Tril	bology"	, PI	HIL	earr	ning	Pvt	. Ltd., First I	Edition,	2011.			
Course	e Objectives:				_								
1. To	create an awareness of the impo	ortance	of t	ribc	olog	y in	desi	ign.					
2. To	describe the material selection	tor mini		zıng	; tric	tion	anc	d wear in mac	chinery.				
3. 10	3. To select bearing and bearing arrangement in machines												
Course Learning Outcomes:													
CO After the completion of the course the student should be able to									Bloc	om's Co	ognitive		
									lev	el	Descriptor		
CO1	Apply the basic theories	of fric	tior	1, V	vear	ar	ld 1	lubrication t	o II	I	Applyi	ng	
	predictions about the friction	nal beha	avio	or o	f co	omm	only	y encountere	d				
	sliding interfaces.				. •1	1	•	1 1		,	D 1		
CO2	Select materials and lubrican	ts to su	gge	est a	trit		gica	l solution to	a V		Evaluati	ng	
CO2	particular situation.	na min	~ • • •		. h			houte	V	т	Creatin	~	
003	Design a nyurodynamic bearn	ng using	3 19	iriot	is de	arm	ig ci	narts.	V.	1	Creatin	lg	
СО-РС) Mapping:	DO	4		•								
		PO	1	2	3	4	5	6					
			2		1			2					
		C02	1		2			3					
•		COS	1		Z			3					
Assessi	ments:												
	mponents of In Semester Evalu	uation (]	ISE		ne N	Aid	Som	nester Examir	nation (N	MSE) ar	nd one F	Ind	
Semest	er Examination (ESE) having 2	20% 30	юĽ % а	nd '	50%	we	ioht	s respectively		vi5L) a		лu	
Demest	Assessment	.070, 50	70 U		0/0	we	15110		Marks				
	ISE 1								10				
	MSE								30				
	ISE 2					10							
	ESE								50				
					1								

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

	1
Module 1 Lubrication Theory	6 Hrs.
Introduction to Tribology, Tribology in design - bearing materials - its properties, Bearing	
construction, Tribology in industry, Lubrication - introduction, basic modes of lubrication,	
Lubricants properties, Lubricants standards, Types of additives, Bearing Terminology - Sliding	
contact bearings and Rolling contact bearings, Comparison between sliding and rolling contact	
bearings.	
Module 2 Friction and Wear	6 Hrs.
Friction - Laws of friction, Friction classification, Causes of friction, Theories of dry friction,	
Friction measurement, Stick-Slip motion and friction instabilities.	
Wear - Wear classification, Wear between solids, Wear between solid and liquid, Factors	
affecting wear, Measurement of wear, Theories of Wear.	
Module 3 Lubrication of Bearings	8 Hrs.
Theory of hydrodynamic lubrication, Mechanism of pressure development in oil film, Two	
dimensional Reynolds's equation and its limitations, Designing of journal bearing by using	
Raimondi and Boyd method, Petroff's Solution, Parameters of bearing design - Unit bearing	
pressure, Temperature rise, Length to diameter ratio, Radial clearance, Minimum oil-film	
thickness.	
Module 4 Hydrodynamic Thrust Bearing	7 Hrs.
Introduction, Types of hydrodynamic thrust bearing, Analysis of flat plate thrust bearing,	
Tilting pad thrust bearing and Rayleigh step bearing.	
Module 5 Hydrostatic and Squeeze Film Lubrication	7 Hrs.
Hydrostatic Lubrication – Basic concept, Advantages and limitations, Viscous flow through	
rectangular slot, Load carrying capacity and flow requirement, Energy losses, Optimum design.	
Hydrostatic conical thrust bearing	
Squeeze Film Lubrication - Basic concept, Squeeze action between circular and rectangular	
plates.	
Module 6 Elasto-Hydrodynamic Lubrication	6 Hrs.
Principles and Applications, Pressure viscosity term in Reynolds's equation, Hertz' theory,	
Ertel - Grubin equation, lubrication of spheres, gear teeth and rolling element bearings,	
Gas (Air-) Lubricated Bearings: Introduction, Merits, Demerits and Applications.	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Apply basic theory of lubrication to design a bearing.	
2. Recognize the laws of friction, mechanisms of friction and appreciate the various modes of we	ar.
3. Design journal bearing and select suitable grade lubricant for specific application.	
4. Design hydrodynamic thrust bearing.	
5. Select hydrostatic and squeeze film lubrication.	

6. Analyze elasto-hydrodynamic lubrication.

Title of	f the Course: Robotics 4DE53	32							L	Т	Р	Cr
Profess	Professional elective 3 3							3	-	-	3	
Pre-Requisite Courses:												
Textbooks:												
1. John J. Craig, Introduction to Robotics (Mechanics and Control), Addison-Wesley, 2 nd Edition, 04												
2. Mike	ell P. Groover et. Al., Industrial	Roboti	cs: Te	chno	logy	, Pro	ograi	mming and	d Appl	ication	s, McGr	aw –
Hill Int	ernational, 1986.											
3. Shin	on Y. Nof, Handbook of Indus	strial Ro	obotic	s , Jo	hn V	Vile	y Co	, 01.				
Refere	nces:											
1. Rich	ard D. Klafter , Thomas A. Che	mielew	ski, N	Iicha	el N	egin	, Ro	botic Engi	neerin	g: AnI	ntegrated	1
Approa	ch, Prentice Hall India, 02.											
2. Hand	lbook of design, manufacturing	& Auto	omatio	on: R	.C. 1	Dorf	, Joh	nn Wiley a	nd Sor	ns.		
Course	e Objectives:											
1.	To introduce students to funda	mentals	s of ro	bot v	vork	ing,	prog	gramming	and in	tegration	on in a	
	manufacturing process.											
2.	To make students understand b	asic wo	rking	comp	pone	ents	of ar	n industrial	robot			
3.	To introduce recent technology	as mac	hine v	visior	1							
Course	Learning Outcomes:											
CO	After the completion of the c	course t	the stu	uden	t she	ould	bea	able to	Blo	om's (Cognitive	<u>)</u>
									leve	el	Descriptor	
CO1	Understand basic terminologie	es and c	oncer	ots as	soci	ated	with	n Robotics	II		Understa	nding
and Automation										0		
CO2	Demonstrate comprehension of	of vario	us Ro	botic	sub	-syst	tems		III		Applying	r
CO3	Analyse kinematics and dyna	mics to	expla	ain ez	xact	wor	king	g pattern of	f IV		Analyzin	g
	robots											
CO-PC) Mapping:											
		PO	1 2	3	4	5	6					
		CO1		1	1							
		CO2	1		2		1					
		CO3	1	2			2					
Assess	ments:	L										
Teache	er Assessment:											
Two co	omponents of In Semester Evalu	ation (I	(SE), (One M	Mid	Sem	este	r Examina	tion (N	ASE) a	nd one E	nd
Semest	er Examination (ESE) having 2	0%, 30	% and	50%	we	ight	s res	pectively.				
	Assessment							М	arks			
	ISE 1							-	10			
MSE									30			
ISE 2									10			
	ESE							-	50			
ISE 1	and ISE 2 are based on assignm	nent/dec	clared	test/c	quiz	/sem	inar	etc.				
MSE:	Assessment is based on 50% of	f course	conte	ent (N	lorn	nally	firs	t three mo	dules)			
ESE:	Assessment is based on 100% of	course c	conten	t wit	h 70	-80%	% we	eightage fo	or cour	se cont	ent (norr	nally
lost th	last three modules) sovered after MSE											

last three modules) covered after MSE.

Course Contents:	
Module 1: Introduction	7 Hrs.
Basic Concepts such as Definition, three laws, DOF, Misunderstood devices etc., Elements of	
Robotic Systems i.e. Robot anatomy, Classification, Associated parameters i.e. resolution,	
accuracy, repeatability, dexterity, compliance, RCC device, etc. Automation - Concept, Need,	
Automation in Production System, Principles and Strategies of Automation, Basic Elements of	
an Automated System, Advanced Automation Functions, Levels of Automations, introduction	
to automation productivity.	
Module 2: Robot Grippers:	7 Hrs.
Types of Grippers, Design aspect for gripper, Force analysis for various basic gripper system.	
Sensors for Robots:- Characteristics of sensing devices, Selections of sensors, Classification	
and applications of sensors. Types of Sensors, Need for sensors and vision system in the	
working and control of a robot.	
Module 3: Drives and control systems:	7 Hrs.
Types of Drives, Actuators and its selection while designing a robot system. Types of	
transmission systems, Control Systems -Types of Controllers, Introduction to closed loop	
control Control Technologies in Automation:- Industrial Control Systems, Process Industries	
Verses Discrete-Manufacturing Industries, Continuous Verses Discrete Control, Computer	
Process and its Forms. Control System Components such as Sensors, Actuators and others.	
Module 4: Kinematics	7 Hrs.
Transformation matrices and their arithmetic, link and joint description, Denavit - Hartenberg	
parameters, frame assignment to links, direct kinematics, kinematics redundancy, kinematics	
calibration, inverse kinematics, solvability, algebraic and geometrical methods. Velocities and	
Static forces in manipulators:-Jacobians, singularities, static forces, Jacobian in force domain.	
Dynamics:- Introduction to Dynamics, Trajectory generations	
Module 5: Machine Vision System	6 Hrs.
Vision System Devices, Image acquisition, Masking, Sampling and quantisation, Image	
Processing Techniques, Noise reduction methods, Edge detection, Segmentation.	
Robot Programming:- Methods of robot programming, lead through programming, motion	
interpolation, branching capabilities, WAIT, SIGNAL and DELAY commands, subroutines,	
Programming Languages: Introduction to various types such as RAIL and VAL II etc, Features	
of type and development of languages for recent robot systems.	
Module 6: Modeling and Simulation for manufacturing Plant Automation:	6 Hrs.
Introduction, need for system Modeling, Building Mathematical Model of a manufacturing	
Plant, Modern Tools- Artificial neural networks in manufacturing automation, AI in	
manufacturing, Fuzzy decision and control, robots and application of robots for automation.	
Artificial Intelligence: - Introduction to Artificial Intelligence, AI techniques, Need and	
application of AI. Other Topics in Robotics:- Socio-Economic aspect of robotisation.	
Economical aspects for robot design, Safety for robot and associated mass, New Trends &	
recent updates in robotics	
	1
Module wise Measurable Students Learning Outcomes: After the completion of the course the student should be able to:	

- 1. Understand basic concepts of robotics
- 2. Select appropriate grippers and sensors

- 3. Analyze different drives and controllers for their performance.
- 4. Formulate transformation matrices for kinematics
- 5. Learn different machine vision systems
- 6. Simulate plant automation using neural network and fussy logic.

Title of the Course: Fracture Mechanics 4DE533	L	Т	Р	Cr						
Professional elective 3	3	-	-	3						
Pre-Requisite Courses:	I	1								
Textbooks:										
1. Prashant Kumar, "Elements of Fracture Mechanics", Tata McGraw Hill, New Delhi, India, 2009.										
2. K. Ramesh, e-Book on Engineering Fracture Mechanics, IIT N	. K. Ramesh, e-Book on Engineering Fracture Mechanics, IIT Madras, 2007. URL:									
http://apm.iitm.ac.in/smlab/kramesh/book_4.htm	http://apm.iitm.ac.in/smlab/kramesh/book_4.htm									
3. K. R.Y. Simha, "Fracture Mechanics for Modern Engineering	g Design ", Ui	niversitie	s Press ((India)						
Limited, 2001.										
References:										
. 1 D. Broek, "Elementary Engineering Fracture Mechanics", Klu	wer Academ	ic Publis	hers, Do	ordrecht,						
1986.										
2. T.L. Anderson,"Fracture Mechanics - Fundamentals and Ap	oplications",	3 rd Editi	on, Tay	ylor and						
Francis Group, 2005.										
Course Objectives:										
1. To describe the near field equations to determine the stress-str	ain and load-	displacer	nent fie	lds						
around a crack tip for linear elastic cases.										
2. To recognize and formulate the stress intensity factor ((K) for	typical crack	configur	ations.							
3. To identify and formulate the strain energy release rate (G).										
4. To find and formulate J-integral and the stress and strain field	s around a cra	ack tip fo	r non lir	near and						
elastoplastic materials.										
5. To explain fracture toughness of materials using Kc, Gc and J	с.									
Course Learning Outcomes:										
CO After the completion of the course the student should be	Bloor	n's Cogn	itive							
able to	level	Desci	rintor	-						
		Desci	iptor							
CO1 Relate the basic concepts regarding solid materials	III	Appl	lying	1						
CO2 Check the procedures to carryout analysis of failure	V	Evalu	lating	1						
CO3 Design of Failure analysis template	VI	Crea	ating	1						

Assessments:

ISE1 and ISE2 can be based on quiz, assignments, oral, presentation, survey, surprise test, mini project etc. ISE assessment scheme will be declared by teacher at start of the course. ISE1 marks are open to students. ISE2 marks are hidden component for students.

MSE (generally on module 1-3) and ESE (30-40% weightage for modules 1-3 and 60-70% weightage for modules 4-6) may have 0-20% optional questions.

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks					
ISE 1	10					
MSE 30						
ISE 2 10						
ESE	50					
ISE 1 and ISE 2 are based on assignment/declared	test/quiz/seminar etc.					
MSE: Assessment is based on 50% of course conte	ent (Normally first three modules)					
ESE: Assessment is based on 100% course content	with60-70% weightage for course content	(normally				
last three modules) covered after MSE.						
Course Contents:						
Module 1:		6 Hrs.				
Introduction to Material Behavior, overview of dis	slocation theory and plastic deformation,					
strengthening mechanisms.						
Module 2:		7 Hrs.				
Overview of Engineering Fracture Mechanics:	Kinds of failures, Historical aspects,					
Fracture, Fatigue, Creep, Modes of fracture failure	_					
Module 3		7 Hrs.				
Energy Release Rate: Dilemma of Griffith, sur	rface energy, Griffith's realization and					
analysis, Energy release rate, Energy release rate	of DCB specimen, inelastic deformation					
at crack tip, Crack resistance stable and unstable	e crack growth, R curve, thin and thick					
plate, Critical energy release rate. Stress intensi	ty factor, relation between G_I and K_I ,					
critical stress intensity factor						
Module 4		7 Hrs.				
Anelastic deformation at the crack tip, Modeling	of Plastic Deformation, Irwin's Model,					
Dugdale Model, effective crack length, effect of pl	ate thickness.					
Module 5:		7 Hrs.				
Elastic plastic analysis, J-integral, definition and	nd engineering approach of J-integral,					
applications. Fracture Toughness Testing						
Module 6		7 Hrs.				
Crack tip opening displacement, relationship bet	ween CTOD, K _I and G _I for small scale					
yielding, Failure analysis- Spectacular Failures cas	e studies.					
Module wise Measurable Students Learning Out	comes:					

Students should be able to

- 1. Be familiar with fundamentals of plastic deformation and strengthening mechanisms.
- 2. Describe different modes of fracture.
- 3. Analyze concept of energy release rate and stress intensity factor.
- 4. Formulate and solve plastic deformation models and be able to calculate effective crack length.
- 5. Study the role of plastic zone in the metals, J-integral approach and Fracture Toughness Testing.
- 6. Formulate failure analysis process by understanding few Spectacular Failures case studies

Title of	f the Course: Advanced Meta	llurgy	4D]	E53	85					L	Т	Р	Cr
Professional Elective 4 3							3	-	-	3			
Pre-Re	Pre-Requisite Courses:												
1. V. Raghvan, "Solid State Phase Transformations", PHI Publication, 1 st Edition, 2004.													
2.	2. V. Raghvan, "Physical Metallurgy: Principles and Practice", PHI Publication, 3 rd Edition, 2015.												
3.	William D. Callister, "Fundame	entals o	of M	late	rials	Sci	ence	e and	l Engineeri	ng", V	Viley	India Pvt.	Ltd,
	7 th Edition, 2009.												
4.	Engineering Metallurgy, R. A.	Higgin	s, V	'iva	Boo	oks l	Pvt.	Ltd.	4 th Edition	,1998.			
Refere	nces:												
1.	Sidney H. Avener, " <i>Physical M</i> Edition, 1997	letallur	gy"	', Ta	ata N	ЛсG	raw	Hill	Education	Priva	te Lin	nited, 2 nd	
2.	George E. Dieter, "Mechanical	Metall	urg	у",	Tata	a Mo	Gra	w H	lill Publica	tion, S	i Met	ric Editio	n, 3 rd
	Revised edition, 2013												
3.	Biomaterials and Bioengineerin	ng Hano	ibo	ok,	Don	ald	L. V	Vise,	Marcel De	ekker	Inc.		
4.	Smithells Metals Reference Bo	ok, E. A	4. E	Bran	des	and	G. 1	B. B	rook, Butte	erwortl	h Heir	nemann.	
Course	e Objectives:												
Course	e Learning Outcomes:												
СО	After the completion of the c	course	the	stu	den	t sho	ould	be	able to	Blo	Bloom's Cognitive		
										leve	el	el Descriptor	
CO1	Apply various aspects of a	crystal	an	d 1	attic	e s	truc	ture	and their	r III		Applying	5
imperfection, and also acquisition of knowledge of composites,						,							
	ceramics, orthodontal and bior	materia	ls										
CO2	Discuss importance of equ	ilibriur	n	diag	gram	ns a	nd	thei	ir uses ir	n V		Evaluatir	ng
	developing materials												
CO3	Explain the process of heat tre	eatment	of	diff	erer	nt no	nfer	rous	s alloys and	l II		Understa	nding
	tool steel and decide a heat tre	atment	to a	acqı	uire	thei	r des	sired	properties				
CO-PO) Mapping:		1										
		PO	1	2	3	4	5	6					
		CO1	2	3	1	2	1	2					
		CO2		2	1	3	2						
		CO3		2	2		3	1					
Assess	ments:												
Teache	er Assessment:												
Two co	omponents of In Semester Evalu	ation (1	ISE), O	ne I	Mid	Sem	leste	r Examinat	tion (N	ASE) a	and one E	Ind
Semester Examination (ESE) having 20%, 30% and 50% weights respectively.													
Assessment									Ma	arks			
ISE 1									1	10			
MSE									30				
	ISE 2				10								
	ESE								4	50			

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:					
Module 1	7 Hrs.				
Aspects of Physical Metallurgy:					
Crystal structure, systems and Barvias lattices, Indexing of lattice planes (Miller's Indices),					
Indexing of lattice directions, Co-ordination Number (Ligency), Density calculations and					
imperfections in crystals					
Module 2	7 Hrs.				
Study of Equilibrium diagrams for Fe-C systems, Cu - Bronze alloys i.e. Cu:Zn, Cu:Sn,					
Cu:Al etc., Developments in metallic materials like HSLA state, maraging steels, dual phased					
steels, creep resisting steels, materials for high and low temperature applications, Nimerics,					
Inconels, Haste Alloys etc., Al, Ni alloys, Ti, Mg alloys.					
Module 3	7 Hrs.				
Heat Treatment of Nonferrous alloys, Heat Treatment of Tool steels					
Module 4	7 Hrs.				
Orthodental materials, Bio material, Prosthetic materials, Nano materials, super					
conducting materials, sports materials.					
Module 5	7 Hrs.				
Composites, ceramics, cermets, shape memory alloys their manufacturing techniques,					
advantages and limitations.					
Module 6	7 Hrs.				
Surface coatings and their tribological aspects. PVD, CVD, IVD ion implantation method.					
Module wise Measurable Students Learning Outcomes:					
After the completion of the course the student should be able to:					
1. Apply knowledge of Physical Metallurgy, imperfections in crystals in Materials Engineering	ng field.				
2. Importance of Equilibrium diagrams in Materials Engineering field.					
3. Summarize various heat treatment processes.					
4. Summarize applications various advanced materials and their properties.					
5. Explain properties and applications Composites, ceramics, shape memory alloys.					
6 Classify types of eastings and their processes					

6. Classify types of coatings and their processes.

Title o	f the Course: Condition Based Monitoring 4DE536	L	Т	Р	Cr				
Profes	sional Elective 4	3	-	-	3				
Pre-Re	Pre-Requisite Courses:								
Textbo	ooks:								
1. Adams M. L., Rotating Machinery Analysis - from Analysis to Troubleshooting, CRC Press, 2 nd									
	edition, 2009								
2.	Cornelius S., Paresh G., Practical Machinery Vibration Analysis and P	redictiv	ve Mai	intenance	e,				
	Newnes, 1 st edition, 2004								
3.	Mohanty A. R., Machinery Condition Monitoring-Principles and Pract	ices, C	RC Pr	ess, 1 st e	dition,				
	2015								
Refere	nces:								
1.	William J. H., Davis N., Drake P. R., Condition Based Maintenance an	d Mac	hine D	Diagnosti	cs,				
	Springer Netherlands, 2 nd edition, 1994								
2.	L.L. Faulkner, Handbook of Industrial Noise Control, Industrial press,	1 st edit	tion 19	976					
3.	Rao S. S., Mechanical Vibrations, Pearson education, 5 th edition, 2010								
Course	e Objectives:								
1.	To make students aware of some methods and procedures applied for g	general	Condi	ition					
	Monitoring.								
2.	To make students appreciate and understand the basic idea behind vibr	ation-b	based s	structural					
	health								
	monitoring and vibration-based condition monitoring, know the genera	al stage	es of C	Μ					
3.	To prepare students capable to apply some basic techniques for analysis	is of ra	ndom	and perio	odic				
	signals								
4.	To prepare students aware of some basic instrumentation used for mac	hinery	and st	ructural					
	vibration-based monitoring								
0									
Course	e Learning Outcomes:	D1	,	<u> </u>					
	CO After the completion of the course the student should be able to Bloom's Cognitive								
		leve	el	Descripto	or				
CO1	Calculate the characteristic of problems related to vibrations	V	V	Evalua	ting				
CO2	Apply knowledge for preventive maintenance	Ι	II	Apply	ring				
CO3	Investigate the data for troubleshooting vibration problems in th	е Г	V	Analyz	zing				
	mechanical machines								

CO-PO Mapping:

PO	1	2	3	4	5	6
CO1			3		2	3
CO2	2					1
CO3				2	3	

Assessments:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Types of Maintenance	7 Hrs.
Types of maintenance, basic idea of health monitoring and condition monitoring of structures	
and machines. Critical speed of shafts, Some basic techniques.	
Module 2: Signal Processing	6 Hrs.
Basics of signal processing: Study of periodic and random signals, probability distribution,	
statistical properties, auto and cross correlation and power spectral density functions of	
commonly found systems, spectral analysis.	
Module 3: Fourier Transform	7 Hrs.
Fourier transform: the basic idea of Fourier transform, interpretation and application to real	
signals. Response of linear systems to stationary random signals: FRFs, resonant frequencies,	
modes of vibration	
Module 4: Vibration Based Fault Diagnosis	7 Hrs.
Introduction to vibration-based monitoring, Machinery condition monitoring by vibration	
analysis: Use and selection of measurements, analysis procedures and instruments	
Module 5: Applications of Condition Monitoring	6 Hrs.
Typical applications of condition monitoring using vibration analysis to rotating machines,	
unbalance, misalignment, faulty gears and bearings, vibration problem related to the foundation.	
Transmissions of vibration and its isolation	

Module 6: Other Health Monitoring Techniques	7 Hrs.
Other health monitoring techniques, acoustic emission, oil debris and temperature analysis,	
Applications.	
Module wise Measurable Students Learning Outcomes:	
After the completion of the course the student should be able to:	
1. Calculate the critical speed of rotor system.	
2. Investigate the vibration signal for faults.	
3. Apply fast Fourier transform to get the frequency domain signal.	
4. Calculate fundamental parameters of vibration measurement.	
5. Investigate the problem in machine using condition monitoring techniques.	
6. Apply other techniques to identify faults.	

tle of the Course: Optimization Techniques in Design, 4DE537 ofessional Elective 4		Т	Р	Cr
Professional Elective 4	3	-	-	3

Pre-Requisite Courses:

Textbooks:

- 1. S. S. Stricker, "Optimising performance of energy systems" Battelle Press, New York, 1985.
- 2. R.C. Johnson, "Optimum Design of Mechanical Elements", Willey, New York, 1980.
- 3. J. S. Arora, "Introduction to Optimum Design", McGraw Hill, New York, 1989.
- 4. Kalyanmoy Deb, "Optimization for Engineering Design", Prentice Hall of India, New Delhi, 05

References:

- 1. Rao S, "Engineering optimization, Theory and Practice, New Age International Publishers, 1996.
- 2. R.J. Duffin, E.L. Peterson and C.Zener "Geometric Programming-Theory and Applications", Willey, New York, 1967.
- 3. G.B. Dantzig "Linear Programming and Extensions Princeton University Press",

Princeton, N. J., 1963.

Course Objectives:

- To design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, ethical, health and safety, manufacturability, and sustainability.
- To use the operations research techniques and tools for necessary engineering practice.
- To use mathematical methods and computers to make rational decisions in solving a variety of optimization problems.

Course	e Learning Outcomes	:									
CO	After the completion of the course the student should be able to							Bloom's Cognit			
										level	Descriptor
CO1	Develop algorithms	Develop algorithms for design optimization.									Applying
CO2	Evaluate and interpret solution of an optimization problem.								V	Evaluating	
CO3	Formulate and const optimization technic	Formulate and construct the optimum solution of the problems using optimization techniques.									Creating
CO-PC) Mapping:								7		
			1	2	3	4	5	6			
		CO1	2		2	1	1	3			
		CO2	3		1		3				
		000	2	1	2		1		1		

Assessments:

ISE1 and ISE2 can be based on quiz, assignments, oral, presentation, survey, surprise test, mini project etc. ISE assessment scheme will be declared by teacher at start of the course. ISE1 marks are open to students. ISE2 marks are hidden component for students.

MSE (generally on module 1-3) and ESE (30-40% weight age for modules 1-3 and 60-70% weight age for modules 4-6) may have 0-20% optional questions

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment Marks							
ISE 1	10						
MSE	30						
ISE 2 10							
ESE 50							
ISE 1 and ISE 2 are based on assignment/declared te	est/quiz/seminar etc.						
MSE: Assessment is based on 50% of course conten	t (Normally first three modules)						
ESE: Assessment is based on 100% course content with60-70% weightage for course content ()							
last three modules) covered after MSE.							
Course Contents:							
Module 1:		7 Hrs.					
Introduction to optimization, classification of optimization	ization problems, classical						
optimization techniques							
Module 2:		7 Hrs.					
Linear programming, simplex method and Duality in	n linear programming, sensitivity or						
post-optimality analysis, Karmarkar's methods,							
Module 3:							
Non-Linear Programming: - One dimensional minin	nization, unconstrained and						
constrained minimization, direct and indirect method	ds,						
Module 4:		7 Hrs.					
Geometric programming, Optimum design of mecha	anical elements like beams, columns,						
gears, shafts, etc.							
Module 5:		7 Hrs.					
Introduction to Genetic Algorithms, Operators, appl	ications to engineering optimization						
Problems.							
Module 6:		7 Hrs.					
Optimum selection of material and processes in me	echanical design using material selection						
charts and optimization							
Module wise Measurable Students Learning Outco	omes:						
1. Introduction to optimization techniques and under	rstand its classification.						
2. Able to understand the linear programming, Dual	ity and sensitivity analysis.						
3. Understand non-linear programing.							
4. Use Geometric programming for optimum design	of mechanical elements.						
5. Able to understand Genetic Algorithms and its use in industrial design.							

6. Select materials and processes related to optimization.

Professional Elective (Lab) Courses

Title of the Course: Professional Elective - Design Engineering	L	Т	Р	Cr
Lab 4- 4DE573	-	-	4	2

Text Books:

As per the course details

References:

As per the course details

Course Objectives:

1. To provide advanced knowledge and expertise in order to produce creative and imaginative engineers with a strong scientific acumen.

2. To develop ability through hands-on experience for implementing modern methods, techniques and best practices in manufacturing

3. To make aware about current scenario and facilitate with modern trends which are tending towards their own area of interest

Course Learning Outcomes:

CO	After the completion of the lab the student should be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Validate technological solutions to defined problems.	III	Applying		
CO2	Acquire knowledge developed by scholarly predecessors and	IV	Analyzing		
	critically assess the relevant technological issues.				
CO3	Create skills towards research oriented fields.	VI	Creating		

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			1			2
CO2				2	1	
CO3	1					1

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lah Course Feaulty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
1.4.2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lob ESE	Lab Performance and	Lah Course feaulty	During Week 15 to Week 18	25
Lab ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentation	ons,						
drawings, programming and other suitable activities, as per the nature and requirement of the la	ab course.						
Students should perform experiments based on electives selected from PE 3 and 4 Professional Elective 3 (Experiments from any one elective as calested by student)							
Professional Elective – 3 (Experiments from any one elective as selected by student)							
List of Experiments for course Tribology in Design	20						
1. Design calculations for journal bearing.	Hrs.						
2. Design calculations for hydrodynamic thrust bearing.							
3. Design calculations for hydrostatic lubrication and							
4. Design calculations squeeze film lubrication.							
5. Study of recent development in industrial tribology.							
6. Case Study: Lubrication system used in specific application.							
List of Experiments for course Robotics (Minimum eight experiments)							
1. Study of Automation - Concept. Need.	20						
2. Assignment on Automation in Production System	Hrs.						
3 Study of robot grippers							
A Study of Sensors – types classification selection							
4. Study of Schools – types, classification, selection.							
5. Study of drives in robots – electric, predmatic, hydrautic.							
6. Prepare MATLAB program for calculating Denavit Hartenberg parameters							
7. Prepare Simulink Model of Four Bar mechanism for forward kinematics analysis							
8. Prepare Simulink Model of Four Bar mechanism for inverse kinematics analysis							
9. Case study on sampling and quantization in signals and systems							
10. Case study on motion interpolation in robotic manipulators							
11. Study of Artificial Neural Networks and its application in automation							
12. Study of Socio-Economic aspect of robotisation							
13. Study of economical aspects for robot design							
List of experiments for course Fracture Mechanics	20						
1. Case study discussion on Spectacular Failures case studies- Failure Analysis of	Hrs.						
Engineering Structures Methodology							
 Case study discussion on Spectacular Failures case studies- Overview of the Mechanisms of Failure in Heat Treated Steel Components. 							
3. Case study discussion on Spectacular Failures case studies- Failure in Steel Forging.							
4. Case study discussion on Spectacular Failures case studies- Failures from the Casting							
Process.							
5. Case study discussion on Spectacular Failures case studies- Sources of Failures in Carburized and Carbonitrided Components.							
 6. Case study discussion on Spectacular Failures case studies- Steel Component Failures in Aerospace Applications 							
 Case study discussion on Spectacular Failures case studies- Failure Analysis of Steel Welds 							
 Case study discussion on Spectacular Failures case studies- Analysis and Prevention of Corrosion-Related Failures 							

Profes	ssional Elective – 4 (Experiments from any one elective as selected by student)	
List of	f experiments for course Advanced Metallurgy	20 Hrs.
1.	Two assignments on Model preparation of Bravis lattices.	
2.	Effect of low alloy steels on Mechanical properties of materials-Tensile test, hardness	
	test, Impact test.	
3.	Manufacturing of Al alloys and development of precipitation hardening cycle for	
	strength improvements.	
4.	Study of dual phase steels-effect of dual phase on forming properties of materials.	
5.	Study of high temperature properties of materials: - high temperature tensile test.	
6.	Study of Heat Treatment steels: carry out different trials of heat treatment for the	
	optimization of properties	
7.	Study of Heat Treatment of tool steels: carry out different trials of heat treatment for	
	the optimization of properties	
List of	f experiments for course Condition Based Monitoring (Minimum eight	20
experi	iments)	Hrs.
1.	Measurement of overall vibration of a rotary machine.	
2.	Frequency analysis of a rotary machine using FFT analyser.	
3.	Detect of the fault by frequency analysis.	
4.	Single plane balancing of rotor using FFT analyser	
5.	Two plane balancing of a rotor using FFT analyser.	
0.	Measurement of sound levels using sound meter	
8	One-third octave band analysis of machine noise	
9	Identification of soft foot of machine installed on four foundation bolts by using	
	virtual lab simulator.	
10	0. Analysis of vibration levels caused by cavitation in centrifugal pump by using virtual	
	lab simulator.	
List of	f experiments for course Optimization Techniques in Design	20
1.	Two assignments and case study discussion on classical optimization techniques.	Hrs.
2.	Two assignments and case study discussion on in linear programming.	
3.	Two assignments and case study discussion on Non-Linear Programming.	
4	Two assignments and case study discussion on Geometric programming.	
5	Two assignments and case study discussion on Introduction to Genetic Algorithms	
6	Two assignments and case study discussion on Optimum selection of material and	
0.	processes in mechanical design	

Mandatory Life Skill Courses

Title of the Course: Constitution of India 4IC601														
Manda	tory Life Skill Course										L	Т	Р	Cr
										Ī	02	-	-	-
Pre-Re	Pre-Requisite Courses: -													
Textbo	oks:													
1.	Dr. S. N. Busi, Dr. B. R. Ambe	dkar fra	ami	ng o	of In	diar	n Co	nsti	tution,	1st	Edition	n, 2015.		
2.	M. P. Jain, Indian Constitution	Law, 7	th E	dn.,	Ley	kis N	Jexi	s, 20	014.	~ - -				
3.	3. D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015.													
	References:													
1.1	The Constitution of India, 1930	(Dale A	(Ct)	, 00	oven	inne	III P	uon	cation					
Course	Objectives :													
The obj	jectives of the course are:										6 T			
l.	To review and create awareness	s on vai	rıou	is pi	OV18	sions	s 1n	the	constit	utio	n of In	dia.		
Course	After the completion of the co		a		• • • • •	1	1 10 0	a b 1		1	···· ' ~ C			
CO	After the completion of the co	urse the	e su	udel	it si	ioui	i be	able	e r	5100		ognitive		
									1	evel	D	escripto	or	
CO1	Explain the premises informing	ng the t	win	n the	emes	sof	libe	rtv :	and	2	T	Indersta	nding	
001	freedom from a civil rights pe	rspectiv	ve.				1100		and	-		nucibu	namg	
CO2	Address the growth of Indian	opinior	n reg	garc	ling	mo	dern	Ind	lian	2	U	ndersta	nding	
	intellectuals' constitutional re-	ole and	l en	ntitle	eme	nt to	o ci	vil a	and					
	economic rights as well as the	e emerg	genc	ce o	f na	tionl	1000	d in	the					
	early years of Indian nationali	sm.												
CO3	Address the role of socialism	in India	a af	ter t	he c	comi	nen	cem	ent	2	U	ndersta	nding	
	of the Bolshevik Revolution	in 191	17 :	and	its	imp	act	on	the					
	initial drafting of the Indian C	onstitut	tion	l .										
CO-PC) Mapping :													
			1	2	3	4	5	6						
		CO1												
		CO2												
		CO3												
Assessi	ments :													
Teache	er Assessment:													
					1									
	Assessment									Μ	arks			
	ISE 1										10			
	MSE										30			
	ISE 2										10			
	ESE										50			
ISE 1	and ISE 2 are based on assignm	nent/dec	clar	ed t	est/c	luiz/	'sem	nina	r etc.					
MSE:	Assessment is based on 50% of	f course	e co	nter	nt (N	lorn	nally	/ firs	st three	mo	dules)			

Course Contents:	
Module 1	4 Hrs.
History of Making of the Indian Constitution	
Drafting Committee, (Composition & Working)	
Module 2 Philosophy of the Indian Constitution	4 Hrs.
Preamble, Salient Features	
Module 3 Contours of Constitutional Rights & Duties	5 Hrs.
Fundamental Rights; Right to Equality; Right to Freedom; Right against Exploitation;	
Right to Freedom of Religion; Cultural and Educational Rights; Right to Constitutional	
Remedies; Directive Principles of State Policy; Fundamental Duties.	
Module 4 Organs of Governance	5 Hrs.
Parliament, Composition, Qualifications and Disqualifications, Powers and Functions,	
Executive, President, Governor, Council of Ministers	
Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions	
Module 5 Local Administration	5 Hrs.
District's Administration head: Role and Importance,	
Municipalities: Introduction, Mayor and role of Elected Representative,	
CEO of Municipal Corporation.	
Pachayati raj: Introduction, PRI: ZilaPachayat.	
Elected officials and their roles, CEO ZilaPachayat: Position and role.	
Block level: Organizational Hierarchy (Different departments),	
Village level: Role of Elected and Appointed officials,	
Importance of grass root democracy	
Module 6 Election Commission	5 Hrs.
Election Commission: Role and Functioning.	
Chief Election Commissioner and Election Commissioners.	
State Election Commission: Role and Functioning.	
Institute and Bodies for the welfare of SC/ST/OBC and women.	

Title of the Course: Pedagogy Studies 4IC60										
Mandatory Life Skill Course	L	Т	Р	Cr						
	02	-	-	-						
Pre-Requisite Courses: -									1	
Textbooks:										
1. Agrawal M (2004) Curricular reform in schools: The importance of evaluation, Journal of Curriculum										
Studies, 36 (3): 361-379.										
2. Akyeampong K (2003) Teacher training in G	2. Akyeampong K (2003) Teacher training in Ghana - does it count? Multi-site teacher education research									
project (MUSTER) country report 1. London: D)FID.									
3. Akyeampong K, Lussier K, Pryor J, Westbro	ok J (2013	3) In	npro	oving teaching	ng and le	arning	of basic	maths	
and reading in Africa: Does teacher preparation	coun	t? In	tern	atio	nal Journal	Educatio	nal Dev	velopme	nt, 33	
(3): 272–282.										
4. Chavan M (2003) Read India: A mass scale,	rapid,	'lea	rnin	ng to	read' camp	aign.				
5. www.pratham.org/images/resource%20work	ing%2	20pa	per%	%20	02.pdf.					
References: 1. Alexander RJ, 2001, Culture and	d peda	agog	y: I	nter	national con	nparisons	s in prin	nary		
education, Oxford and Boston: Blackwell.										
2. Ackers J, Hardman F (2001) Classroom inter	actior	n in 1	Ken	yan	primary sch	ools, Co	mpare, i	31 (2):		
245-261.										
Course Objectives :										
The objectives of the course are:										
1. To discuss pedagogical practices being u	used	by t	eacl	hers	in formal	and inf	ormal	classroc	oms in	
developing countries.										
2. To provide the evidence on the effectiveness	of the	ese p	eda	gog	ical practice	s, in wha	t condit	tions, ar	d with	
what population of learners.										
3. To explain teacher education (curriculum	and j	pract	ticui	m)	and the sch	ool curr	iculum	and gu	idance	
materials best support effective pedagogy.										
Course Learning Outcomes:										
CO After the completion of the course the	stude	nt sł	noul	d be	e able to	Bloom's Cognitive				
						level	Des	criptor		
										
CO1 Outline pedagogical practices, and exit	isting	evic	lenc	e or	the review	2	Un	Iderstan	ding	
topic to inform programme design and	polic	y m	akın	g ui	ndertaken.					
CO2 Explain critical evidence gaps to guide	the d	level	lopn	nent	Į	2	Unc	lerstand	ing	
CO-PO Mapping :		_	.	_						
	1 2	3	4	5	6					
CO3										
Assessments :

Teacher Assessment:

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared t	est/quiz/seminar etc.	
MSE: Assessment is based on 50% of course conter	t (Normally first three modules)	
Course Contents:		
Module 1 Introduction and Methodology		5Hrs.
Aims and rationale, Policy background, Conceptual	framework and Terminology, Theories	
of learning, Curriculum, Teacher education, Concer	tual framework, Research questions,	
Overview of methodology and Searching.		
Module 2		5 Hrs.
Thematic overview: Pedagogical practices are being	gused by teachers in formal and	
informal classrooms in developing countries.		
Curriculum, Teacher education.		
Module 3		5 Hrs.
Evidence on the effectiveness of pedagogical practic	ces, Methodology for the in depth stage:	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies.	ces, Methodology for the in depth stage:	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu	ces, Methodology for the in depth stage: Im) and the school curriculum and	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu guidance materials best support effective pedagogy	ces, Methodology for the in depth stage: (m) and the school curriculum and ? Theory of change.	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effe	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices.	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effe Pedagogic theory and pedagogical approaches, Tea	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu guidance materials best support effective pedagogy ⁶ Strength and nature of the body of evidence for effe Pedagogic theory and pedagogical approaches, Tea Pedagogic strategies.	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and	
Evidence on the effectiveness of pedagogical practic quality assessment of included studies. How can teacher education (curriculum and practicu guidance materials best support effective pedagogy Strength and nature of the body of evidence for effe Pedagogic theory and pedagogical approaches, Tea Pedagogic strategies. Module 4	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and	5 Hrs.
 Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effered pedagogic theory and pedagogical approaches, Tear Pedagogic strategies. Module 4 Professional development: alignment with classroometers. 	ces, Methodology for the in depth stage: um) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support	5 Hrs.
Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effective Pedagogic theory and pedagogical approaches, Tea Pedagogic strategies. Module 4 Professional development: alignment with classroo Peer support, Support from the head teacher and the	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support e community, Curriculum and	5 Hrs.
 Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effer Pedagogic theory and pedagogical approaches, Tea Pedagogic strategies. Module 4 Professional development: alignment with classroo Peer support, Support from the head teacher and the assessment, Barriers to learning: limited resources and pedagogical r	ces, Methodology for the in depth stage: um) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support e community, Curriculum and and large class sizes	5 Hrs.
 Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effered Pedagogic theory and pedagogical approaches, Teater Pedagogic strategies. Module 4 Professional development: alignment with classroo Peer support, Support from the head teacher and the assessment, Barriers to learning: limited resources a Module 5 	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support e community, Curriculum and and large class sizes	5 Hrs. 5 Hrs.
 Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effer Pedagogic theory and pedagogical approaches, Tear Pedagogic strategies. Module 4 Professional development: alignment with classroo Peer support, Support from the head teacher and the assessment, Barriers to learning: limited resources a Module 5 Research gaps and future directions 	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support e community, Curriculum and and large class sizes	5 Hrs. 5 Hrs.
 Evidence on the effectiveness of pedagogical practice quality assessment of included studies. How can teacher education (curriculum and practice guidance materials best support effective pedagogy? Strength and nature of the body of evidence for effer Pedagogic theory and pedagogical approaches, Tea Pedagogic strategies. Module 4 Professional development: alignment with classroo Peer support, Support from the head teacher and the assessment, Barriers to learning: limited resources a Module 5 Research gaps and future directions Research design, Contexts, Pedagogy, Teacher edu 	ces, Methodology for the in depth stage: im) and the school curriculum and ? Theory of change. ctive pedagogical practices. chers' attitudes and beliefs and m practices and follow-up support e community, Curriculum and and large class sizes cation, Curriculum and assessment	5 Hrs. 5 Hrs.

Title of the Course: Disaster Management 4IC603				
Mandatory Life Skill Course	L	Т	Р	Cr
	02	-	-	-
Pre-Requisite Courses: -				
Textbooks:				
 R. Nishith, Singh AK, "Disaster Management in India: Perspectives Royal book Company. 	issues a	nd strate	gies "'N	lew
 Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And India, New Delhi. 	Reflectio	ns", Pren	tice Ha	ll Of
3. Goel S. L., Disaster Administration And Management Text And Cas	e Studie	s",Deep a	&Deep	
Course Objectives :				
The objectives of the course are:				
1. To impart knowledge for critical understanding of key concepts in d	isaster ri	sk reduct	ion and	
humanitarian response, and disaster management approaches				
2. Critically evaluate disaster risk reduction and humanitarian response	policy a	nd practi	ce from	L
multiple perspectives.				
3. Develop an understanding of standards of humanitarian response and	d practic	al relevar	ice in sp	pecific
types of disasters and conflict situations.			1. 00	
4. Critically understand the strengths and weaknesses of, planning and	program	ming in c	lifferen	t
Countries, particularly their nome country or the countries they work	111			
Course Learning Outcomes:	DI	, ,	•,•	
CO After the completion of the course the student should be able to	Bloc	Bloom's Cognitive		
	leve	l De	scriptor	
CO1 Explain disaster risk reduction and humanitarian response poli	cy 2	2 U	ndersta	nding
and practice from multiple perspectives				
CO2 Summarize standards of humanitarian response and practic	al 2	2 Un	derstan	ding
relevance in specific types of disasters and conflict situations.				8
CO3 Outline the strengths and weaknesses of disaster manageme	nt 2	2. Un	derstan	ding
approaches, planning and programming in different countries.				
CO-PO Mapping :	<u> </u>			

Assessments :	
Teacher Assessment:	
Assessment Marks	
ISE 1 10	
MSE 30	
ISE 2 10	
ESE 50	
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content (Normally first three modules)	
Module 1 Introduction	4 Hrs.
Disaster: Definition, Factors and Significance: Difference Between Hazard and Disas	er:
Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.	,
Module 2 Repercussions Of Disasters And Hazards	4 Hrs.
Economic Damage, Loss Of Human And Animal Life, Destruction Of Ecosystem, Natu	ral
Disasters: Earthquakes Volcanisms Cyclones Tsunamis Floods Droughts And Famines	
Landslides And Avalanches. Man-made disaster: Nuclear Reactor Meltdown. Indust	ial
Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.	
Modulo 3 Disastan Drong Areas In India	4 Ung
Module 5 Disaster 110he Areas III India	4 111 5.
Study Of Seismic Zones; Areas Prone To Floods and Droughts, Landslides and Avalanch	es;
Areas Prone To Cyclonic And Coastal Hazards With Special Reference To Tsunami; Po	ost-
Disaster Diseases And Epidemics	
Module 4 Disaster Preparedness And Management	4 Hrs.
Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation	Of
Risk: Application Of Remote Sensing, Data From Meteorological and Other Agencies, Media	
Reports: Governmental and Community Preparedness.	
Module 5 Risk Assessment	4 Hrs.
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster	ter
Risk Situation. Techniques Of Risk Assessment, Global Co-Operation In Risk Assessment a	ind
Warning, People's Participation In Risk Assessment. Strategies for Survival.	
Module 6 Disaster Mitigation	4 Hrs.
Meaning, Concept and Strategies Of Disaster Mitigation, Emerging Trends In Mitigati	on.
Structural Mitigation And Non-Structural Mitigation, Programs Of Disaster Mitigation In Inc.	ia.

Title of the Course: Value Education 4IC604				
Mandatory Life Skill Course	L	Т	Р	Cr
	02	-	-	-
Pre-Requisite Courses: -				
Textbooks:				
1. Chakroborty, S.K. "Values and Ethics for organizations Theory and prac	ctice", C	Dxford V	Universi	ty
Press, New Delhi				
Comme Obligations				
Course Objectives : The chiestives of the course and				
1 To import he course are:				
1. To impart knowledge on value of education and self- development.				
2. To imbibe good values in students.				
3. To highlight importance of character.				
Course Learning Outcomes:	D1	, ,	•,•	
After the completion of the course the student should be able to	Bloom	r's Cog	nitive	
	level	Des	scriptor	
CO1 Explain value of education and self- development.	2	Uı	nderstan	ding
CO2 Summarize importance of good character, and Behavior development.	2	Un	derstand	ling
1 2 3 4 5 6 CO1 1 1 1 1 1 CO2 1 1 1 1 1 CO3 1 1 1 1 1				
Assessments : Teacher Assessment:				
Assessment	Marks			
ISE 1	10			
MSE	30			
ISE 2	10			
ESE	50			
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.				
MSE: Assessment is based on 50% of course content (Normally first three me	odules)			

Modu	le 1	6Hrs.
1.	Values and self-development -Social values and individual attitudes. Work ethics,	
	Indian vision of humanism.	
2.	Moral and non- moral valuation. Standards and principles.	
3.	Value judgments	
Modu	le 2	6 Hrs.
1.	Importance of cultivation of values	
2.	Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness,	
	Cleanliness.	
3.	Honesty, Humanity. Power of faith, National Unity.	
4.	Patriotism. Love for nature, Discipline	
Modu	le 3	7 Hrs.
1.	Personality and Behavior Development - Soul and Scientific attitude. Positive	
	Thinking. Integrity and discipline.	
2.	Punctuality, Love and Kindness.	
3.	Avoid fault Thinking.	
4.	Free from anger, Dignity of labour.	
5.	Universal brotherhood and religious tolerance.	
6.	True friendship.	
7.	Happiness Vs suffering, love for truth.	
8.	Aware of self-destructive habits.	
9.	Association and Cooperation.	
10	. Doing best for saving nature	
Modu	le 4	7 Hrs.
1.	Character and Competence –Holy books vs Blind faith.	
2.	Self-management and Good health.	
3.	Science of reincarnation.	
4.	Equality, Nonviolence, Humility, Role of Women.	
5.	All religions and same message.	
6.	Mind your Mind, Self-control.	
7.	Honesty, Studying effectively	

Value Added Professional Courses

There are no courses under this category for this semester.

This is Last Page