Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

First Year M. Tech (Civil Structural Engineering) Sem. I to II

AY 2020-21

Title of the	Course:				L	Т	Р	Cr
Research]	Methodolog	<u>y (4IC501)</u>			2	-	-	2
Desirable (Courses: NA							
Textbooks:								
 2nd Editi 2. Kumar Publicat 3. Melville 	on, 2004. Ranjit, "Res ions, 4 th Editi e Stuart and 6	search Metho on, 2014. Goddard Wayı	rch Methodolog dology: A Ste ne, "Research M npany Ltd, 2000	p by Step C 1ethodology: A	duide	for b	eginners	s", SAGE
References	:							
2. Mayall,	"Industrial D pa T., "Intelle	Design", McGra	perty", Taylor & aw Hill, 1992. Rights Under W			3.		
the hyp 2. To ena possible concluc 3. To imp journals	othesis, desig ble students e/alternative s le the research part knowledg s and to expos	n a research la to investigate solutions, solv h findings. ge to analyze se students to r	g research, identi yout, set a resear the problem, in e and prove the critically the lite esearch ethics, I	rch process and terpret the res solution adap erature and pu	l meth ults, p ted–lo	odolog ropose ogically	y. theorie and an	es, suggest nalytically,
Course Lea	rning Outco					Dlass		
CO	After the cor able to	mpletion of the	course the stude	ent should be	Ι	Level	m's Cog Des	scriptor
CO1	Analyze res		significance in e	conomic, soci	al	III	Analy	zing
CO2	Discuss res logically and	-	n and its desig	gn for solutio	n	V	Evalu	ating
CO3	Produce rest and patent de		, publication, D	Dissertation, IP	R	VI	Creati	ng
CO-PO Ma	pping: (Use	1, 2, 3 as Corr	elation Strengt	hs)				
PO	1	2	3	4		5		6
CO1	2					2		
CO2		2	2			3		
CO3 Assessment Teacher As		2				2		
1			tion (ISE), One 1g 20%, 30% and				. ,	and one
	Assessment	t		Ma	arks			

ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/	declared test/quiz/seminar etc.	
Ũ	urse content (Normally first three modules)	
	e content with 60-70% weightage for course content	
(normally last three modules) covered after	er MSE.	
Course Contents:		
Module 1: Engineering Research proces	ss	6 Hrs.
good research problem, Errors in selec	research problem, Criteria and Characteristics of a eting a research problem, Definition, scope and aches of investigation of solutions for research etation, Necessary instrumentations.	
Module 2: Research methodology		8 Hrs.
	es identification for solution, Experimental and tistical methods in engineering research, Software re studies approaches, critical analysis.	
Module 3: Effective Technical Writing		6 Hrs.
Plagiarism, Research ethics, Effective Presentation of paper/report/seminar.	technical writing, how to write report, Paper.	
Module 4: Patents and IPR		8 Hrs.
and Development: technological research, International Scenario: International coop grants of patents, Patenting under PCT. Pa and transfer of technology. New Develop	Designs, Trade and Copyright. Process of Patenting , innovation, patenting, development. eration on Intellectual Property. Procedure for atent Rights: Scope of Patent Rights. Licensing ments in IPR: Administration of Patent System. ical Systems, Computer Software etc. Traditional	
At end of each module students will be ab	ble to:	
 Formulate and analyze the research layout, set a research process and met Evaluate research tools to obtain solu 	problems, state the hypothesis, design a research thodology. tion to research problem. and prepare seminar, write research article and	

Title of the	Course:				L	Т	Р	Cr
Mechanic	s of Structu	res (4ST501)	<u>)</u>		3	-	-	3
Desirable (Courses: Sol	id Mechanics,	Structural Mech	anics I, Structu	ral M	echani	cs II	
Textbooks:	:							
 Timosh Compa Gere. J 	nenko. S. P. & ny Ltd., 2 nd E	& Gere. J. M., dition,1985. aver. W., "Ma	Advanced Theor "Theory of Ela atrix Analysis o	stic Stability",	Tata	McGra	w-Hill	Publishing
References	:							
 Beaufit John L. Course Ob To imp To prov 	F.W et al. "C and Meek, "I jectives: art the knowledgepare student	Computer Meth Matrix Structur edge of advanc ge for analyzin	ix Structural An ods of Structura <u>cal Analysis", M</u> ed methods of s g special types o computer progr	Analysis", Pre <u>c Graw Hill Bo</u> tructural analys of structures.	entice ook Co sis.	Hall, i ompany	llustrate 7, illustr	d,1970. ated,1971.
	arning Outco	mes:						
	After the co	nnletion of the	course the stude	ent should be		Bloo	m's Co	gnitive
СО	able to	inpletion of the	course the study]	Level Descriptor		
CO1	Apply advar	nced methods f	or analysis of st	ructures.		III	Appl	ying
CO2	Calculate fo	orces and displa	acements for spe	cial structures.		IV	Evalu	ating
CO3		program by usi field applicatio	ing matrix methons.	ods of structura	al	VI	Crea	ting
CO-PO Ma	apping: (Use	1, 2, 3 as Corr	elation Strengt	hs)				
РО	1	2	3	4		5		6
CO1	2		2	2				2
CO2			3	3				2
CO3	2		2	2				2
Assessment	ts:							
Teacher As	ssessment:							
Two compo	onents of In Se	emester Evalua	tion (ISE), One	Mid Semester	Exam	ination	(MSE)	and one
End Semest	er Examinatio	on (ESE) havin	g 20%, 30% and	d 50% weights,	respe	ctively	•	
	Assessment	ţ	Marks					
	ISE 1]	0			
MSE 30								

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment	nt/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of c	ourse content (Normally first three modules)	
ESE: Assessment is based on 100% cou (normally last three modules) covered a	rse content with 60-70% weightage for course content fter MSE.	t
Course Contents:		
Module 1: Influence line Diagrams fo	r Indeterminate Structures	8 Hrs.
Influence line Diagrams for Indetermin Continuous beams and two hinged arche	ate Structures: Muller-Breslau's Principle I.L.D. for es.	
Module 2: Beams Curved in Plan		7 Hrs.
Beams Curved in Plan: Analysis of dete	erminate & indeterminate beams curved in plan.	
Module 3: Beams on Elastic Foundat	ions	7 Hrs.
Beams on Elastic Foundations: Analysis	s of infinite, semi-infinite & finite beams.	
Module 4: Beam Columns		8 Hrs.
equation. Analysis of beam-columns su	& material nonlinearity, Governing differential bjected to different loadings and support conditions. asymmetrical, Stiffness and carry-over factors for various loads.	
Module 5: Flexibility Method		7 Hrs.
Flexibility Method: Element approach, beams, frames and trusses, Lack of fit, 7	Flexibility matrix, Equivalent loads, Applications to remperature stresses.	
Module 6: Stiffness Methods		8 Hrs.
Stiffness Methods: Matrix methods, Ele Applications to beams, frames and truss	ment approach, Stiffness matrix, Equivalent loads, es, direct stiffness method.	
Module wise Outcomes		
At end of each module students will be		
	quantities for statically indeterminate structure.	
2. Analyze beams curved in plan and co		
 Analyze beams on elastic foundation Apply beam - column concept for an 	s with different boundary condition and loading.	
 Apply beam - column concept for an Analyze structural system using elen 	•	
	ctural systems using matrix methods of structural	

Title of the Course:	т	т	D	Cr	
The of the Course.	L	1	P	Cr	
Structural Dynamics and Earthquake Engineering (4ST502) 3					
Desirable Courses: Engineering Mathematics, Geology					
Textbooks:					
1. Clough R. W. and Penziene Joseph, "Dynamics of Structures",	McGı	aw Hi	ill Educ	cation (ISE	

- 1. Clough R. W. and Penziene Joseph, "*Dynamics of Structures*", McGraw Hill Education (ISE Editions); International 2 Revised edition August 1993.
- 2. Chopra A.K., "Dynamics of Structure: Theory & Application to Earthquake Engineering", Pearson Education Lim., 4th Edition, 2014
- 3. Agarwal P. and Shrikhande M., "*Earthquake Resistant Design of Structures*", PHI Learning Pvt. Ltd., 2006.

References:

- 1. Key David, "*Earthquake Design Practice for Buildings*", Thomas Telford Publication London, 2nd Edition, 2006.
- Dowrick D. J., "Earthquake Resistant Design for Engineers & Architects", John Wiley & Sons., 2nd Edition, 1987.
- 3. Manual of "Earthquake Resistant Non-Engineering Construction", University of Roorkee, 2000.

Course Objectives:

- 1. To impart knowledge of ground motion characteristics and its effect on Civil Engineering structures.
- 2. To prepare students to solve problems on dynamics of structures in SDOF and MDOF Systems.
- 3. To illustrate national and global codal provisions for design of earthquake resistant structures and implementation of same for seismic retrofit.

CO	After the completion of the course the student should be able				Bloor	Bloom's Cognitive		
СО	to	•			Level Desc			
CO1	Use engineering seismology and its characteristics for development of response spectra.							
CO2	Estimate response of structures subjected to earthquake loads for various building configurations.					Analyzing		
CO3	Evaluate forces for design of earthquake resistant structure.					Evaluating		
CO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)								
PO	1	2	3	4	5	6		
CO1	1		2	3		2		

Course Learning Outcomes:

Assessments:

CO2

CO3

Teacher Assessment:

1

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.

2

2

1

2

2

3

2

Assessment	Marks
------------	-------

ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1: Seismological Aspect in Earthquake Engineering	6 Hrs.
Characteristics of Earthquakes, Elastic rebound theory, Measurement of earthquakes, Magnitude, Intensity, magnitude relationship, Seismograph, Liquefaction. Attenuation relationship, MCE and DBE, Performance of various structures in past earthquake.	
Module 2: SDOF Systems and Estimation of Forces	6 Hrs.
Earthquake response of linear SDOF systems and its application in dynamic analysis. Concept of earthquake response spectrum, Tripartite plot of response spectrum, Construction of design response spectrum. Use of Code Spectra to find response of structures. Equivalent static method to find story shear and its distribution along height of building.	
Module 3: MDOF Systems and Dynamic Analysis	7 Hrs.
Earthquake response of linear MDOF systems, Modal analysis, Participation factors, Modal contributions, Dynamic analysis of Multistoried buildings.	
Module 4: ERD of Structure and Roll of Ductility	7 Hrs.
Concept of earthquake resistant design, Objectives, Ductility and different types of ductility. Over strength, Response reduction factor, Ductile Detailing of structural components as per code. lateral stiffness, Conceptual design, Building configuration.	
Module 5: Distribution of Lateral Forces and Codal Provisions	6 Hrs.
Floor diaphragm, Rigid floor diaphragm, Center of mass and center of stiffness, Torsionally un-coupled and coupled systems, Lateral load distribution, Minimum eccentricity, Provisions of IS: 1893 for buildings, Base shear, Application to Multistory buildings, Load combinations, Ductile detailing, Provisions of IS: 13920.	
Module 6: Structural Control and Retrofit Issues	7 Hrs.
Different lateral load resisting systems, Configuration of tall structures with modeling. Nonlinear analysis of structures. Concepts of structural Control, Energy dissipating devices. Retrofit issues and their solutions with advanced techniques.	
Module wise Outcomes	
At end of each module students will be able to:	
1. Use concept of seismology and attenuation relations to find EPGA.	
 Estimate response of SDOF system under various dynamic forcing functions. Evaluate dynamic response of MDOE systems 	
3. Evaluate dynamic response of MDOF systems.	
4 Apply the concept of continuous resistant ductile design	
 Apply the concept of earthquake resistant ductile design. Compute torsional shear as per codal provision in multistoried building frames. 	

Desirable Courses: Concrete Technology

Textbooks:

- 1. Gambhir M. L., "Concrete Technology", Tata McGraw Hill Publications, 3rd Edition 2004.
- 2. Shetty M. S., "Concrete Technology", S. Chand Publications, Latest Edition 2005.
- 3. Santhakumar A. R., "Concrete technology", Oxford Higher Education/Oxford University Press, 1st Edition 2006.

References:

- 1. Neville A. M., "Concrete Technology", Addision Weslley.
- 2. Neville A.M., "Properties of Concrete", Pitman, 1968.
- 3. Lue F.M., "Chemistry of Cement and Concrete", Edward Arnold, 3rd Edition, 1970.

Course Objectives:

Course Learning Outcomes.

- 1. To provide students the necessary knowledge of Properties & techniques of Mix design of advanced types of concrete.
- 2. To provide the technical information of modern concrete such as SCC, RMC, FRP, FRC and HPC etc.
- 3. To inculcate the information of structural health monitoring for repair and rehabilitation structures and the various concepts and testing methods adopted in non-destructive testing of concrete.

~~	After the co	mpletion of the	ne course the stude	nt should be	Bloo	m's Cognitive
CO	able to				Level	Descriptor
CO1	Study of m various grad	-	high performance	of concrete of	IV	Analyzing
CO2	Evaluate e concretes.	xperimentally	V Evaluating			
CO3	Design experiments for vibration measurements & dataVICreationacquisition system.VIVI					
CO-PO M	lapping: (Use	e 1, 2, 3 as Co	rrelation Strength	ıs)		
РО	1	2	3	4	5	6
CO1	2		1	3		2
CO2			2	2		2
CO3	2		2	1	1	2
Assessme	nts:					
Teacher A	Assessment:					
There are	four compone	nts of lab asse	ssment, LA1, LA2	, LA3 and Lab E	SE.	
IMP: Lab	ESE is a separ	ate head of pa	assing.			
Assessme	ent Ba	sed On	Conducted By	, Conducti Sub	on and M omission	larks Marks

LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course Contents:

List of Experiments:

- 1. Evaluate of static and dynamic modulus of elasticity of concrete and strain measurement.
- 2. Evaluate of flexural strength of concrete.
- 3. Evaluate Mix Design by I.S. Code method (with OPC Cement).
- 4. Evaluate Mix Design by I.S. Code method (with Slag Cement).
- 5. Evaluate Mix Design by I.S. Code method (with Admixtures Cement).
- 6. Determination of Grading curve of Mix aggregate & sieve analysis.
- 7. Non-destructive testing of concrete.
- 8. Determination of Poisson's ratio of concrete.
- 9. Determination of properties of SCC, RMC, FRP, FRC and HPC.
- 10. Experiments based on Vibration measurements and data acquisition system.

Title of the	e Course:				L	Т	Р	Cr
Dynamics	s of Structur	es Laborator	<u>y (4ST552)</u>		-	-	4	2
Desirable	Courses: Stru	ctural Dynamic	es and Earthquak	e Engineering				
Textbooks	:							
1. Clough	R. W. and Pe	enziene J., "Dy	namics of Struct	ures", McGrav	v Hill	Pub.		
-	•	•	John Willey & S					
_	a A. K., "Dyr e Hall Pub.	namics of Stru	ctures - Theory	& Applicatio	n to I	Earthqu	ake En	gineering",
References	:							
			ctures", Ane boo					
		•	CBS Publishers					
		d Chandra Br imited, 2 nd Edit	ijesh, "Elements ion 2000	s of Earthqua	ke En	gineer	ng", So	outh Asian
Course Ob			2000.					
-	-	e of SDOF sys	tem under variou	us dynamic loa	ding	by solv	ing diff	erent types
of prot				· ·	. 1.	l 1	1.00	•
		r of MDOF sys ucting experim	stem under vario	us dynamic loa	adıng	by solv	ing diff	erent types
-	•	• •	of distributed ma	ass model by c	onduc	ting ex	nerimer	nts
5. To pio	vide kilowiedź		of distributed in	iss model by c	onduc		permer	115.
Course Le	arning Outco	mes:						
СО	After the con	mpletion of the	course the stude	ent should be		Bloo	m's Co	gnitive
CO	able to	-]	Level	De	scriptor
CO1	Apply princ systems.	iples of dynan	nics to solve SD	OF and MDO	F	III	Apply	ving
CO2	Appraise be	ehavior of discr	rete system.			IV	Analy	zing
CO3		havior of cont and liquefaction	inuous system a 1.	nd judge effe	ct	V	Evalu	ating
СО-РО М	apping: (Use	1, 2, 3 as Corr	elation Strengt	hs)			_	
PO	1	2	3	4		5		6
CO1			2	3				2
CO2	1		2	2				2
CO3	1		3	2				2
Assessmen Teacher A								
There are f	our componen	ts of lab assess	ment, LA1, LA2	2, LA3 and Lal) ESE	•		
	_	ate head of pass						
IIVII . Lau I		1						

			Submission	
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course Contents:

List of Experiments: (Any eight experiments in addition to the assignments)

- 1. Assignments on each module of structural dynamics and earthquake engineering course.
- 2. Dynamics of a three storied building frame subjected to harmonic base motion.
- 3. Dynamics of a one-storied building frame with planar asymmetry subjected to harmonic base motions.
- 4. Dynamics of a three storied building frame subjected to periodic (non-harmonic) base motion.
- 5. Vibration isolation of a secondary system.
- 6. Dynamics of a vibration absorber.
- 7. Dynamics of a four storied building frame with and without an open ground floor.
- 8. Dynamics of one-span and two-span beams.
- 9. Earthquake induced waves in rectangular water tanks.
- 10. Dynamics of free-standing rigid bodies under base motions.
- 11. Seismic wave amplification, liquefaction and soil-structure Interactions.

Title of the	Course:				L	Т	Р	Cr	
	nal Elective	1 Theory of	Elasticity and	Plasticity 199	3				
(4ST511) Desirable (Courses: Sol	id Mechanics							
Textbooks:	:								
2. Singh S	Sadhu, "Theor	ry of Elasticity	ity", Alpha Scie ", Khanna Publi ", Khanna Publi	shers, 4 th Editio	on, 20	12.	ed Editi	on, 2008.	
References	:								
Edition 2. Chakra	i, 2010. barthy. J, "Th <u>n W. and Mel</u>	eory of Plastic	, "Theory of E ity", Tata McGr ineering Plastici	aw-Hill P. Co.	Ltd., ź	2 nd Edt	ion, 200	07.	
 To imp polar pr To imp problem 	oart knowledg roblems. part knowledg ns. ovide knowled	ge of various	eories of elastic theories of tor s theories of pl	sion and appl	y ther	n to s	olve 21	D torsional	
Course Lea	arning Outco	mes:							
	After the completion of the course the student should be Bloom's Cognitive								
CO	After the con	mpletion of the	course the stud	ent should be		D100		gnitive	
СО	After the con able to	mpletion of the	e course the stud	ent should be]	Level		escriptor	
CO CO1	able to Apply the k		undamental meth					escriptor	
	able to Apply the kind for 2-D Carte Analyze tors	nowledge of fu esian and Pola	indamental meth r problems. s and apprise va	nods of elastici	ty	Level	De Appl	escriptor	
CO1	able to Apply the kind for 2-D Carte Analyze torse solve 2-D to	nowledge of fu esian and Pola sional problem rsional probler cept of materi	indamental meth r problems. s and apprise va	nods of elastici	ty to	Level III	De Appl Anal	escriptor ying	
CO1 CO2 CO3	able to Apply the kind for 2-D Carta Analyze torse solve 2-D to Discuss condition of structures	nowledge of fu esian and Pola sional problem rsional probler cept of materi	indamental meth r problems. is and apprise va ns.	nods of elastici rious theories plastic behavi	ty to	Level III IV	De Appl Anal	escriptor ying yzing	
CO1 CO2 CO3	able to Apply the kind for 2-D Carta Analyze torse solve 2-D to Discuss condition of structures	nowledge of fu esian and Pola sional problem rsional probler cept of materi	Indamental meth r problems. Is and apprise vans. al yielding and	nods of elastici rious theories plastic behavi	ty to	Level III IV	De Appl Anal	escriptor ying yzing	
CO1 CO2 CO3 CO-PO Ma	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss condition of structures apping: (Use	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr	Indamental meth r problems. Is and apprise vans. al yielding and relation Strengt 3 2	nods of elastici rious theories plastic behavio hs) 4 2	ty to	Level III IV V	De Appl Anal	escriptor ying yzing lating	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss compositions of structures apping: (Use 1	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr	indamental meth r problems. is and apprise vans. al yielding and relation Strengt 3 2 2 2	nods of elastici rious theories plastic behavio hs) 4 2 3	ty to	Level III IV V	De Appl Anal	escriptor ying yzing lating 6 2 2 2	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss condition of structures Apping: (Use 1 1 1	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr	Indamental meth r problems. Is and apprise vans. al yielding and relation Strengt 3 2	nods of elastici rious theories plastic behavio hs) 4 2	ty to	Level III IV V	De Appl Anal	escriptor ying yzing hating 6 2	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2	able to Apply the ki for 2-D Carti Analyze tors solve 2-D to Discuss con of structures apping: (Use 1 1 1 ts:	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr	indamental meth r problems. is and apprise vans. al yielding and relation Strengt 3 2 2 2	nods of elastici rious theories plastic behavio hs) 4 2 3	ty to	Level III IV V	De Appl Anal	escriptor ying yzing lating 6 2 2 2	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss condition of structures apping: (Use 1 1 1 ts: ssessment: onents of In Set	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr 2 2 emester Evalua	indamental meth r problems. is and apprise vans. al yielding and relation Strengt 3 2 2 2	nods of elastici rious theories plastic behavion hs) 4 2 3 2 Mid Semester	ty to or Exam	Level III IV V 5	Det Apply Analy Evalu Image: state stat	escriptor ying yzing lating 6 2 2 2 2	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss condition of structures apping: (Use 1 1 1 ts: ssessment: onents of In Set	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr 2 emester Evalua on (ESE) havir	indamental meth r problems. is and apprise vans. al yielding and relation Strengt 3 2 2 2 2 2	nods of elastici rious theories plastic behavio hs) 4 2 3 2 Mid Semester d 50% weights	ty to or Exam	Level III IV V 5	Det Apply Analy Evalu Image: state stat	escriptor ying yzing lating 6 2 2 2 2	
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	able to Apply the kind for 2-D Carting Analyze torse solve 2-D to Discuss condition of structures apping: (Use 1 1 1 ts: ssessment: onents of In Sector ter Examination	nowledge of fu esian and Pola sional problem rsional probler cept of materi 1, 2, 3 as Corr 2 emester Evalua on (ESE) havir	indamental meth r problems. is and apprise vans. al yielding and relation Strengt 3 2 2 2 2 2	nods of elastici rious theories plastic behavio hs) 4 2 3 2 Mid Semester d 50% weights M	ty to or Exam , respe	Level III IV V 5	Det Apply Analy Evalu Image: state stat	escriptor ying yzing lating 6 2 2 2 2	

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/d	eclared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of cour	se content (Normally first three modules)	
ESE: Assessment is based on 100% course (normally last three modules) covered after	content with 60-70% weightage for course content MSE.	
Course Contents:		
Module 1: Introduction to Elasticity		8 Hrs.
Transformation of stress, Equilibrium equ	urface force, Stress at a point, Stress & Strain, ations in two and three dimensions in Cartesian displacement relations, Compatibility equations, s.	
Module 2: Plane Stress and Strain		8 Hrs.
stress and Plane strain problems, Airy s	quations of equilibrium and compatibility, Plane tress function approach, 2D problems in polar adial pressure, Plate with stress concentration.	
Module 3: Torsion		7 Hrs.
	theory, Warping function, Prandtl's membrane gular and open section. Strain energy in axial, ork and minimum potential energy.	
Module 4: Plasticity		8 Hrs.
	of solids, Idealized plastic solids, Similarities & y, Idealized material behavior, Coulomb friction	
Module 5: Hydrostatic Stresses		7 Hrs.
Graphical representation of yield criteria	Invariants of deviatoric stresses, Yield criteria, , Flow rules, Stress-strain relation for perfectly m in bending, Thick walled cylinder and circular	
Module 6: Plastic Analysis of Structures		7 Hrs.
Upper bound, lower bound and uniquenes loads for beams and frames.	nge, Moment – curvature relation, Shape factor, s theorems, Methods of analysis to find collapse	
Module wise Outcomes		
At end of each module students will be able	e to:	
 Apply the elastic stress-strain behavior Apply the application of fundamentals Analyze torsional theories and apply to Discuss plastic stress-strain behavior to Discuss various criteria for material yie Analyze 2D problems for finding colla 	o solve 2D torsional problems. o solve basic problems. elding and apply to various problems.	

Professional Elective 1 Structural Health Monitoring and Smart Materials (4ST512) 3 - 3 Desirable Courses: - 3 Textbooks: - 3 1. Daniel Balageas, Claus - Peter Fritzenam I Alfredo Guemes, Structural He Monitoring, Published by ISTE Ltd., UK 2006. - - 3 2. Guidebook on Non-destructive resting of Concrete Structures, Training course series 17, International Atomic Energy Agency, Vienna, 2002. -	Title of the	e Course:				L	Т	Р	Cr	
Textbooks: 1. Daniel Balageas, Claus - Peter Fritzenam I Alfredo Guemes, Structural He Monitoring, Published by ISTE Ltd., UK 2006. 2. Guidebook on Non-destructive Testing of Concrete Structures, Training course series 17, International Atomic Energy Agency, Vienna, 2002. 3. Gandhi, M.V., Thompson B. D., Smart Materials and Structures, ISBN 978-0-412-37010-6 References: 1. Handbook on "Repair and Rehabilitation of RCC Buildings", Published by Director Gen CPWD, Govt. of India, 2002. 2. Handbook on Seismic Retrofitting of Buildings, Published by CPWD & Indian Buil Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: 1. To impart knowledge of smart materials. 2. To illustrate principles of structural health monitoring. 3. To provide quantitative means to assess the structural integrity loss a system undergoes natural disasters and other hazardous events. Course Objectives: Course Learning Outcomes: Coor After the completion of the course the student should be able to Bloom's Cognitive able to Coor Apply knowledge of smart materials and techniques of SHM. Coor Appraise structural conditions by various techniques of SHM. Coor Appraise structural conditions by various techniques of SHM. Coor Appraise structural conditions by vari				Health Monite	oring and			-	3	
1. Daniel Balageas, Claus - Peter Fritzenam I Alfredo Guemes, Structural He Monitoring, Published by ISTE Ltd., UK 2006. 2. Guidebook on Non-destructive Testing of Concrete Structures, Training course series 17, International Atomic Energy Agency, Vienna, 2002. 3. Gandhi, M.V., Thompson B.D., Smart Materials and Structures, ISBN 978-0-412-37010-6 References: 1. Handbook on "Repair and Rehabilitation of RCC Buildings", Published by Director Gen CPWD, Govt. of India, 2002. 2. Handbook on Seismic Retrofitting of Buildings, Published by CPWD & Indian Buil Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: 1. To impart knowledge of smart materials. 2. To illustrate principles of structural health monitoring. 3. To provide quantitative means to assess the structural integrity loss a system undergoes natural disasters and other hazardous events. Course Learning Outcomes: Course Learning Outcomes: Course After the completion of the course the student should be able to Mapply knowledge of smart materials and techniques to SHM. Course Appraise structural conditions by various techniques and simulation. Coing Appraise structural conditions by various techniques and simulation. Coing Appraise structural conditions by various techniques and simulation. Coing Appraise	Desirable	Courses:								
Monitoring, Published by ISTE Ltd., UK 2006. 2. Guidebook on Non-destructive Testing of Concrete Structures, Training course series 17, International Atomic Energy Agency, Vienna, 2002. 3. Gandhi, M.V., Thompson B. D., Smart Materials and Structures, ISBN 978-0-412-37010-6 References: 1. Handbook on "Repair and Rehabilitation of RCC Buildings", Published by Director Gen CPWD, Govt. of India, 2002. 2. Handbook on Seismic Retrofitting of Buildings, Published by CPWD & Indian Buil Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: 1. To impart knowledge of smart materials. 2. To illustrate principles of structural health monitoring. 3. To provide quantitative means to assess the structural integrity loss a system undergoes natural disasters and other hazardous events. Course Learning Outcomes: Course After the completion of the course the student should be able to Biolom's Cognitive Level Descripte Con After the completion of the course the student should be able to III impart the completion of the course the student should be able to Stude Con After the completion of the course the student should be able to Stude 	Textbooks	:								
1. Handbook on "Repair and Rehabilitation of RCC Buildings", Published by Director Gen CPWD, Govt. of India, 2002. Indian Buil Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: 1. To impart knowledge of smart materials. 2. To illustrate principles of structural health monitoring. 3. To provide quantitative means to assess the structural integrity loss a system undergoes natural disasters and other hazardous events. Bloom's Cognitive Descripter integrity loss a system undergoes natural disasters and other hazardous events. Course Learning Outcomes: Course Learning Outcomes: Outcomes: Course Learning Outcomes: Course Larning Outcomes: OUTCON Structural conditions by various techniques of SHM. <td colsp<="" td=""><td>Monito 2. Guideb 17, Int</td><td>oring, Publishe book on Non ernational Ato</td><td>ed by ISTE Ltd -destructive T omic Energy Ag</td><td>l., UK 2006. Testing of Conc gency, Vienna, 2</td><td>rete Structure 002.</td><td>s, Tra</td><td>ining</td><td>course</td><td>series No.</td></td>	<td>Monito 2. Guideb 17, Int</td> <td>oring, Publishe book on Non ernational Ato</td> <td>ed by ISTE Ltd -destructive T omic Energy Ag</td> <td>l., UK 2006. Testing of Conc gency, Vienna, 2</td> <td>rete Structure 002.</td> <td>s, Tra</td> <td>ining</td> <td>course</td> <td>series No.</td>	Monito 2. Guideb 17, Int	oring, Publishe book on Non ernational Ato	ed by ISTE Ltd -destructive T omic Energy Ag	l., UK 2006. Testing of Conc gency, Vienna, 2	rete Structure 002.	s, Tra	ining	course	series No.
CPWD, Govt. of India, 2002. Indian Buil Congress in Association with IIT, Madras, Narosa Published by CPWD & Indian Buil Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: Into impart knowledge of smart materials. 2. To illustrate principles of structural health monitoring. 3. To provide quantitative means to assess the structural integrity loss a system undergoes natural disasters and other hazardous events. Course Learning Outcomes: Coor After the completion of the course the student should be able to Bloom's Cognitive Descripter Description CO1 Apply knowledge of smart materials and techniques to SHM CO2 Appraise structural conditions by various techniques of SHM. CO2 Appraise structural conditions by various techniques of SHM. CO3 Assess civil engineering structures by SHM techniques and V valuating CO2 Appraise (Use 1, 2, 3 as Correlation Strengths) PO 1 2 3 2 2 CO2 Assessments: PO 1 2 3 2 2 CO2 1 2 3 2 2 CO2 1 2 3 2	References	5:								
Course Learning Outcomes:Bloom's Cognitive able toBloom's Cognitive LevelDescripted DescriptedApply knowledge of smart materials and techniques to SHMIIIApplyingCO2Appraise structural conditions by various techniques of SHM.IVAnalyzingCO3Assess civil engineering structures by SHM techniques and simulation.VEvaluatingCO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)PO123456CO112322CO2322Co32322CO3123456CO112322CO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)PO12322CO312322CO2322CO3322CO3322CO4322CO4322CO512322CO2322CO3322CO3322CO332<	CPWE 2. Handb Congre Course Ob 1. To imp 2. To illu 3. To pro	D, Govt. of Ind ook on Seiss ess in Associa ojectives: part knowledg strate principl ovide quantita	lia, 2002. mic Retrofittin tion with IIT, M e of smart mate es of structural tive means to	ng of Building <u>Madras, Narosa I</u> erials. health monitori assess the struc	s, Published b Publishing Hou	by CPV 1se, 20	WD & 08.	India	n Building	
Bloom's Cognitive able to CO After the completion of the course the student should be able to Bloom's Cognitive to CO1 Apply knowledge of smart materials and techniques to SHM III Applying CO2 Appraise structural conditions by various techniques of SHM. III Applying CO3 Assess civil engineering structures by SHM techniques and simulation. V Evaluating CO4 Assess civil engineering structures by SHM techniques and simulation. V Evaluating CO4 Assess civil engineering structures by SHM techniques and simulation. Q Evaluating CO5 Assess civil engineering structures by SHM techniques and simulation. V Evaluating CO4 1 2 3 4 5 6 CO1 1 2 3 2 2 2 CO3 1 2 3 2 2 2 CO4 1 2 3 2 2 2 CO5 1 2 3 2 2 2 CO3 1 2 3 2 2 2 <				us events.						
COAfter the completion of the course the student should be able toLevelDescriptonCO1Apply knowledge of smart materials and techniques to SHMIIIApplyingCO2Appraise structural conditions by various techniques of SHM.IVAnalyzingCO3Assess civil engineering structures by SHM techniques and simulation.VEvaluatingCO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)VEvaluatingPO12345PO12322CO23222CO30322CO31234Sessesments:322Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks					. 1 111		Bloo	m's Co	gnitive	
COISHMApplyingCO2Appraise structural conditions by various techniques of SHM.IIIApplyingCO3Assess civil engineering structures by SHM techniques and simulation.VEvaluatingCO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)VEvaluatingPO123456CO1123456CO212322CO212322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO312322CO31233<	CO		mpletion of the	e course the stude	ent should be	I			_	
CO2SHM.IVAnalyzingCO3Assess civil engineering structures by SHM techniques and simulation.VEvaluatingCO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)VEvaluatingPO12345CO112322CO23222CO33222Assessments:322Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	CO1		wledge of sma	art materials and	d techniques	to	III	Appl	ying	
CO3simulation.VEvaluatingCO-PO Mapping: (Use 1, 2, 3 as Correlation Strengths)PO123456CO112322CO23222CO31322CO311232CO312322CO3112322CO3322CO3322Teacher Assessment:Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	CO2		tructural condi	tions by variou	s techniques	of	IV	Analy	yzing	
PO123456CO112322CO232322CO303222Assessments: Teacher Assessments:Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	CO3		engineering st	ructures by SHN	I techniques ar	nd	V	Evalı	ating	
CO11232CO2322CO3322Assessments: Teacher Assessment:Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	СО-РО М	apping: (Use	1, 2, 3 as Corr	relation Strengt	hs)					
CO2322CO30322Assessments: Teacher Assessment:Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	РО	1	2	3	4		5		6	
CO3322Assessments: Teacher Assessment:Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively.Marks	CO1	1		2	3				2	
Assessments: Teacher Assessment: Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively. Assessment Marks	CO2			3	2				2	
Teacher Assessment: Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively. Assessment Marks	CO3				3		2		2	
Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and or End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively. Assessment Marks	Assessmen	its:								
End Semester Examination (ESE) having 20%, 30% and 50% weights, respectively. Assessment Marks	Teacher A	ssessment:								
Assessment Marks	Two comp	onents of In Se	emester Evalua	ation (ISE), One	Mid Semester	Exami	ination	(MSE)	and one	
	End Semes	ter Examination	on (ESE) havir	ng 20%, 30% and	l 50% weights	, respe	ctively	' .		
		Assessment	t		Μ	arks				
ISE I 10		ISE 1				10				
MSE 30		MSE				30				

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment	t/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of co	ourse content (Normally first three modules)	
ESE: Assessment is based on 100% cou (normally last three modules) covered at	rse content with 60-70% weightage for course content fter MSE.	
Course Contents:		
Module 1: Introduction to Smart Ma	terials and Their Applications	7 Hrs.
	g Piezo Sensors,SHM using Magnetstrictive s and other sensors Overview of Application	
coefficient, resonance/anti-resonance), sensor, actuator, figures of merit), M sensor, actuator, figures of merit), Sha	relation, unimorph, bi-morph, Electromechanical Electrostrictive materials (Constitutive relation, Magnetostrictive materials (Constitutive relation, pe Memory Alloys (Constitutive relation, transition duoelasticity, sensor, actuator), Optical Fiber (Fiber sensing).	
Module 2: Introduction to Structural	Health Monitoring (SHM)	6 Hrs.
and bio mimetic - analog between the r	M - a way for smart materials and structures, SHM nervous system of a man and a structure with SHM, Passive and Active SHM, NDE, SHM and NDECS, r sensor design.	
Module 3: Condition Survey & NDE		7 Hrs.
Planning, Inspection and Testing stage control of concrete structures - Definition	survey, stages of condition survey (Preliminary, es), possible defects in concrete structures, quality on and need,Quality control applications in concrete estructive Evaluation (NDE) of Concrete structures, n concrete structures,	
contexts, where NDT is needed, classif Cell electrical potential methods, Schmi electromagnetic methods, radiographic ground penetrating radar, radio isotope g		
Module 4: SHM of Composite Struct		7 Hrs.
failures. Various kinds of damage	applications in structural Industry. Learning from detection techniques. Repair & rehabilitation & amage assessment of composites structures, Case	
Module 5: Introduction to FE Simula	tions of Various SHM Techniques	6 Hrs.
Introduction to FE analysis of typica technique, case studies 1) Metallic struc	l smart materials. Applications of FE simulation tures 2) Composite structures.	

Module 6: Advanced Signal Processing	6 Hrs.
Methods for Data processing and Result interpretation, Wavelet, Neural networks, Vector support machine.	
Module wise Outcomes	
At end of each module students will be able to:	
1. Analyze Smart Materials in SHM.	
2. Apply principles of SHM.	
3. Appraise condition of civil engineering structures.	
4. Assess condition of composite Structures by SHM techniques.	
5. Apply FE simulations in SHM	
6. Analyze signal processing methods for data processing and result interpretation.	

Title of the	Course:				L	Т	Р	Cr
Profession	nal Elective	2 Advanced	Design of Rei					
Concrete	Structures (4	4 <u>ST515)</u>			3	-	-	3
Desirable (C ourses: Desi	gn of Concrete	e Structures I, De	sign of Concre	ete Str	uctures	s II	
Textbooks	:							
Edition 2. Shah V Publica 3. Punmia	n, 2010. V. and Karve ations, 4 th Edit	S., "Limit Sta ion, 2003. A. K. and Jair	nforced Concret ate Theory and n, A. K. "Limit S	Design of Re	inforc	ed Cor	ncrete",	Structures
References	:							
2004. 2. Pillai.			oncrete Structura					
	,	Γ, "Reinforced	Concrete Structu	ures", John Wi	iley an	d Sons	, 1975.	
 To imp To pro codes. 	oart advanced	knowledge for d knowledge	r analyzing diffe design of differe for detailing of	nt kinds of RC	C struc	tures u	sing IS	
	After the cor	npletion of the	course the stude	nt should be		Bloo	m's Co	gnitive
	After the completion of the course the student should be able toBloom's CognitiveLevelDescriptor						De	scriptor
СО		Analyze various reinforced concrete structures IV Analyzing						Ser-Pro-
CO CO1		ious reinforced	l concrete structu	res		IV	Allar	-
	Analyze var		l concrete structu f components of			IV V	Evalu	/zing
CO1	Analyze var Size up struc	ctural details of		structures	rs			zing nating
CO1 CO2 CO3 CO-PO Ma	Analyze var Size up struc Design the using codal p	ctural details of appropriate s provisions	f components of	structures ctural membe	rs	V	Evalu	zing ating
CO1 CO2 CO3 CO-PO Ma PO	Analyze var Size up struc Design the using codal p apping: (Use 1	ctural details of appropriate s provisions	f components of ection for struc relation Strengtl 3	structures ctural membe ns) 4	rs	V	Evalu	zing nating ing 6
CO1 CO2 CO3 CO-PO Ma PO CO1	Analyze var Size up struc Design the using codal p apping: (Use	ctural details of appropriate s provisions 1, 2, 3 as Corr 2	f components of ection for struc relation Strengtl	structures etural membe ns)	rs	V VI	Evalu	zing nating ing 6 2
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2	Analyze var Size up struc Design the using codal p apping: (Use 1	ctural details of appropriate s provisions 1, 2, 3 as Corr	f components of ection for struc relation Strengtl 3 3	structures etural membe ns) 4 2	rs	V VI 5	Evalu	/zing nating ing 6 2 2 2
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3	Analyze var Size up struc Design the using codal p apping: (Use 1 1	ctural details of appropriate s provisions 1, 2, 3 as Corr 2	f components of ection for struc relation Strengtl 3	structures ctural membe ns) 4	rs	V VI	Evalu	zing nating ing 6 2
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessmen	Analyze var Size up struc Design the using codal p apping: (Use 1 1 1 1 ts:	ctural details of appropriate s provisions 1, 2, 3 as Corr 2	f components of ection for struc relation Strengtl 3 3	structures etural membe ns) 4 2	rs	V VI 5	Evalu	vzing nating ing 6 2 2 2
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessmen Teacher As Two compo	Analyze var Size up struc Design the using codal p apping: (Use 1 1 1 ts: ssessment: onents of In Se	etural details of appropriate s provisions 1, 2, 3 as Corr 2 2 emester Evalua	f components of ection for struc relation Strengtl 3 3	structures etural membe ns) 4 2 2 Vid Semester	Exam	V VI 5 2	Evalu Creat	/zing nating ing 6 2 2 3
CO1 CO2 CO-PO Ma PO CO1 CO2 CO3 Assessmen Teacher As Two compo	Analyze var Size up struc Design the using codal p apping: (Use 1 1 1 ts: ssessment: onents of In Se	ctural details of appropriate s provisions 1, 2, 3 as Corr 2 2 emester Evalua on (ESE) havin	f components of ection for struct relation Strengtl 3 3 2 2	structures etural membe ns) 4 2 2 Mid Semester 50% weights.	Exam	V VI 5 2	Evalu Creat	/zing nating ing 6 2 2 3

ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment	nt/declared test/quiz/seminar etc.	
	ourse content (Normally first three modules)	
	urse content with 60-70% weightage for course content	Ţ
(normally last three modules) covered a		
Course Contents:		
Module 1: Flat Slab		7 Hrs.
Analysis and Design of Flat Slab, Grid Circular Slabs.	floors – Approximate method for small span grids,	
Module 2: Combined Footing		6 Hrs.
Design of Combined footing, (Rectangu	llar, Trapezoidal and strap footing).	
Module 3: Raft Foundation		6 Hrs.
Design of Raft foundation, Pile foundat	ion.	
Module 4: Water Tank		7 Hrs.
Analysis and Design of overhead wate Design of staging for wind and seismic	er tank- Rectangular and Circular with flat bottom, loads.	
Module 5: Retaining Wall		7 Hrs.
•	es of earth pressure, Stability of retaining wall, ntilever retaining wall, Counterfort retaining wall.	
Module 6: Bunkers and Silos		6 Hrs.
Pressure in silos, Airy's theory, Shallow	Square bunkers, Circular bunkers, Silos, Lateral v bins, Deep bins, Design examples.	
Module wise Outcomes		
At end of each module students will be		
 Analyze and design special types of Design and size up different types of 		
 Design and size up different types (Design and size up different types (
4. Design and size up overhead water	tanks with staging.	
5. Design and size up different types of	of retaining walls.	

Title of the	e Course:				L	Т	Р	Cr
		2 Advanced	Design of Ste	el	3	_	_	3
Structures	<u>(4ST516)</u>				U			
Desirable (Courses: Desi	ign of Steel Str	uctures					
Textbooks	:							
		nd Ratwani M	I. M., "Steel S	Structures and	Tim	ber Stu	ructures	", Khanna
	ners, Delhi.				1 77	D	11 •	
	· · · · · · · · · · · · · · · · · · ·	0	uctures – Vol. II A. K. "Design o			· ·		
References		A. K. and Jam	A. K. Design (<u>n Steel Struct</u>	105,1	newei	I WICUIA	
		atural Analyza	a and Dasian of	Tall Duildin ag	" MaC	morrile 1	1	
	-	•	s and Design of J., "Steel Skelet	Ũ	-			m"ELBS
		•	uctural Analysis				~ 196515	, n , LLD 5.
Course Ob	jectives:							
-		ledge of design	n of steel structu	res such as bri	dges, 1	nultist	ory buil	dings and
portal f 2. To imp		edge of cold fo	ormed sections a	nd composite b	100mg			
-		-	sign of steel frai	-	Jeanns.			
	arning Outco							
	_					Bloo	m's Co	gnitive
СО	After the con able to	mpletion of the	course the stud	ent should be				_
						Level		scriptor
CO1	Analyze var	ious types of s	teel structures.			IV	Analy	/zing
CO2	Size up strue	ctural members	s to carry design	loads.		V	Evalu	lating
CO3	Design vario	ous types of ste	el structures in t	field.		VI	Creat	ing
CO-PO Ma	apping: (Use	1, 2, 3 as Corr	relation Strengt	hs)				
РО	1	2	3	4		5		6
CO1			3	3				2
CO2				3		1		2
CO3				2		1		2
Assessmen Teacher As								
-			ntion (ISE), One ng 20%, 30% and				· ,	and one
	Assessment	t		Μ	arks			
	ISE 1				10			
	MSE				30			
					50			

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment	nt/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of c	ourse content (Normally first three modules)	
ESE: Assessment is based on 100% cou (normally last three modules) covered a	rrse content with 60-70% weightage for course content fter MSE.	ţ
Course Contents:		
Module 1: Foot Bridges		7 Hrs.
Analysis and design of foot bridges, Desystem.	ck of through type bridges, Flooring system, Bracing	
Module 2: Cold Formed Sections		6 Hrs.
Cold formed light gauge steel sections, Roof sheeting, Purlins, Flexure and colu	Various profiles, Stiffened and unstiffened sections, umn behavior, IS code provisions.	
Module 3: Composite Sections		7 Hrs.
1 0	etural steel and concrete, Composite beams, Shear ht gauge steel and concrete, Composite columns, IS	
Module 4: Introduction to Plastic An	alysis	6 Hrs.
	ic bending of beam, Plastic hinge, Shape factor of nethods of analysis, Plastic analysis and design of tinuous beams.	
Module 5: Multistory Buildings		8 Hrs.
Multistory buildings, Lateral load resis Inelastic analysis of multistory, multi-ba	ting systems, Types of bracing systems, Shear wall, ay frames.	
Module 6: Low Rise Portal Frames		7 Hrs.
Combination of mechanisms, Limit stat	gable portal frames, Various basic mechanisms, e design of frames, Haunches and column bases.	
Module wise Outcomes		
At end of each module students will be	able to:	
 Analyze and design foot bridge. Verify codal provisions for cold for Verify codal provisions for design of Apply plastic method for analysis a Analyze multistory building frames 	of composite sections. and design of various steel structures.	
	oortal frames, haunches and column bases.	

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment	nt/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of c	ourse content (Normally first three modules)	
ESE: Assessment is based on 100% (normally last three modules) covered a	course content with 60-70% weightage for course fter MSE.	content
Course Contents:		
Module 1: Bending of Circular Plates		6 Hrs.
moment-curvature relations, stress resul plates, various boundary conditions. Be	ge deflection theory of thin plates - assumptions, tants, governing differential Equation for bending of nding of Circular Plates: Symmetrical loading.	
Module 2: Bending of Rectangular Pl	ates	6 Hrs.
Rectangular Plates Navier's and Lo boundary conditions and subjected to va	evy's solutions for rectangular plates of various arious types of loads.	
Module 3: Finite Difference Method f	for Plates	8 Hrs.
for biharmonic form for a rectangula	E plate problems derivation of delta/ pattern/ stencil r mesh, two stage solutions, solution for various use of symmetry & anti-symmetry, extrapolation e Difference Technique.	
Module 4: Introduction to Shells		6 Hrs.
	geometry, thickness and loading. Thin shell theory, nts, stress-displacement relations, compatibility and	
Module 5: Analysis of Various Shells	by Membrane Theory	8 Hrs.
self-weight and live load, equations Spherical and cylindrical shells unde	ilibrium for synclastic and anticlastic shells under of equilibrium in rectangular co-ordinate system. r internal pressure, Cylindrical shells-equation of shells with closed ends. Cylindrical and Hyperbolic	
Module 6: Cylindrical Shell Roofs		6 Hrs.
Equation, resembling that for beam of Theory-Derivation of governing different equation, Characteristic equation. Schore	Irical Shell-Derivation of Governing Differential n elastic foundation, beam theory. Finsterwalder's ntial equation of 8 th order. D. K. J. Theory-Donnell's rer's theory-Derivation of differential equation.	
Module wise Outcomes	able to:	
	s under transverse loads. ates under transverse loads. erical method of Finite Difference Method. Ils by membrane and bending theories. ications.	

Title of the	Course:				L	Т	Р	Cr	
Finite Ele	ment Metho	od (4ST522)			3	-	-	3	
Desirable Courses: Mechanics of Structures									
Textbooks:	:								
 Reddy York, 2 Cook 1 	J. N., "An Iı 2006. Robert D., M		the Finite Elem S., Plesha Mich				-		
References	:								
 Chandren Prentic Zienkie 	rupatla T. R. e. ewicz. O. C. 8	and Belegun & Taylor. R. L.	nt Procedures in du A. D., "Intro , "The Finite El 1989, 4 th Editior	oduction to Fi ement Method	nite I	Elemen	t in Eng		
Course Ob	0		,						
	0	e of finite elem	ent method for 1	-D, 2-D,3-D e	lemen	its.			
2. To disc	cuss finite eler	nent method in	structural engir	eering.					
3. To illus	strate applicat	ions of FEM fo	or plates, shells a	and structural d	ynam	ics.			
Course Lea	arning Outco	mes:							
СО		npletion of the	course the stude	ent should be		Bloo	m's Co	gnitive	
co	able to]	Level	De	scriptor	
CO1	Implement D, 3-D probl		methodology for	solving 1-D, 2	2-	III	Apply	ving	
CO2	Analyze not	lal degrees of f	reedom and stre	ss resultants.		IV	Analy	zing	
CO3	Discuss finit Problems.	e element mod	el for solution o	f various field		V	Evalu	ating	
CO-PO Ma	apping: (Use	1, 2, 3 as Corr	elation Strengt	hs)					
PO	1	2	3	4		5		6	
CO1	1		3	3				2	
CO2			2	2				2	
CO3	1			1		2		2	
Assessmen Teacher As									
1			tion (ISE), One g 20%, 30% and				· ,	and one	
	Assessment	,		Ma	arks				
	ISE 1				10				

MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/	declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of cou	rse content (Normally first three modules)	
ESE: Assessment is based on 100% co (normally last three modules) covered after	ourse content with 60-70% weightage for course or MSE.	content
Course Contents:		
Module 1: 1-D Elements		8 Hrs.
incidences, displacement model, shape application to bars with constant and v Principle of minimum potential energy	element analysis, Discretization, nodes, element function, selection of order of polynomials, ariable cross sections subjected to axial forces. y, variation principle, development of element r for truss, beam and plane frame elements, tural engineering applications.	
Module 2: 2-D Elements		6 Hrs.
strain problems. Pascal's triangle, conver	and quadrilateral shapes for plane stress and plane gence requirements and compatibility conditions, nent aspect ratio, applications to a continuum.	
Module 3: 3-D Elements		6 Hrs.
-	nt stiffness matrix and nodal load vector for symmetric Elements - Development of element	
Module 4: Isoperimetric Elements		6 Hrs.
	, Natural coordinate systems, classification of etric elements, 1-D & 2-D isoperimetric elements,	
Module 5: Plate and Shell Elements		7 Hrs.
Plate and Shell Elements Formation of triangular and quadrilateral shapes, cylind	stiffness matrix for plate bending elements of rical thin shell elements.	
Module 6: Finite Element Applications	to Structural Dynamics	6 Hrs.
Finite Element Applications to Structura element mass matrices, evaluation of Eige Module wise Outcomes	al Dynamics Formulation, Hamilton's principle, n values and eigenvectors.	
At end of each module students will be ab	le to:	
 Implement FEM modelling to solve 1 Implement FEM modelling to solve 2 Implement FEM modelling to solve 3 Analyse 1-D and 2-D problems using Analyse problems on plates and shells Calculate dynamic quantities in vibration 	-D problems. -D problems. -D problems. isoperimetric element methodology. s by using finite element formulation.	

Title of the	Course:				L	Т	Р	Cr		
Finite Ele	lement Laboratory (4ST571)						4	2		
Desirable Courses: Finite Element Method										
Textbooks:										
1. Seshu P. N., "Finite Element Analysis", 2003.										
2. Reddy J. N., "An Introduction to the Finite Element Method", McGraw Hill, 3 rd Edition, New										
York, 2006. 2 Cook Robert D. Malkus David S. Blasha Mishael F. and Witt Robert I. "Concents and										
3. Cook Robert D., Malkus David S., Plesha Michael E., and Witt Robert J., "Concepts and Applications of Finite Element Analysis", 2003.										
References										
1. Bathe	Klaus-Jurgen.	, "Finite Eleme	nt Procedures in	Engineering	Analys	sis", 19	82.			
	0		du A. D., "Intr	0 0	-	<i>,</i>		gineering",		
			ed, 2002, 3 rd Ed					_		
		•	"The Finite Ele 1989, 4 th Edition		- Vol	I &Vo	l II Tata	a McGraw-		
Course Ob		pully Emilieu,	1707, 1 Luition	1.						
		ge to solve 1	-D, 2-D and 3	-D problems	by us	ing fir	nite eler	ment-based		
softwar										
	-	ninking and international	erpretation techi	nques.						
	arning Outco		El [,] software.							
Course Lea							10	•,•		
CO	After the con able to	mpletion of the	course the stude	ent should be		Level	m's Co De	scriptor		
	Analyze 1-D	D, 2-D and 3-D	problems using	software.		IV	Analy	-		
CO1	, i							U		
		-	structural quar			V	Evalu	ating		
CO2	displacemen		strains, a aral systems	and vibration under differe						
		l boundary con	•	unuer uniere	III					
CO3	Create finite	e element mode	el to solve struct	ural engineerii	ng	VI	Creat	ing		
	field problem			• `						
			elation Strengt			_				
PO	1	2	3	4		5		6		
CO1 CO2	1		3 2	2 2				2 2		
CO2 CO3	1		4	3		2		2		
Assessmen				J	1	-		-		
Teacher As										
There are for	our componen	ts of lab assess	ment, LA1, LA2	2, LA3 and La	b ESE					
IMP: Lab E	SE is a separa	ate head of pass	sing.							
	L	Ĩ	-							

Assessment	Based On	Conducted By	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course Contents:

List of Experiments: (Any six of the following)

- 1. Generation and solution of Truss model problems for various loadings.
- 2. Generation and solution of plane frame/continuous beam model problems.
- 3. Generation and solution of Plane stress/strain problems in engineering field.
- 4. Analysis of stress concentration phenomenon.
- 5. Evaluating displacements, stresses and strains in 3D engineering structures.
- 6. Evaluate Vibration characteristics of simple beams with different boundary conditions.
- 7. Evaluate Novel applications involving modern geometry and/or modern materials.

Title of the	Course	:					L	Т	Р	Cr
Structural Health Monitoring Laboratory (4ST572)							_	_	4	2
Desirable Courses: Structural Health Monitoring										
Textbooks:	:									
 Daniel Balageas, Claus - Peter Fritzenam I Alfredo Guemes, Structural Health Monitoring, Published by ISTE Ltd., U.K. 2006. Guidebook on Non-destructive Testing of Concrete Structures, Training course series No. 17, International Atomic Energy Agency, Vienna, 2002. Gandhi, M.V., Thompson B. D., Smart Materials and Structures, ISBN 978-0-412-37010-6. 										
References	•									
CPWD 2. Handbo	, Govt. o ook on	of Ind Seisi	ia, 2002. nic Retrofittii	ilitation of RCC ng of Building Aadras, Narosa I	s, Publi	shed b	y CPV	VD &		
 Congress in Association with IIT, Madras, Narosa Publishing House, 2008. Course Objectives: To impart knowledge of smart materials. To illustrate principles of structural health monitoring To provide quantitative means to assess the structural integrity loss a system undergoes after natural disasters and other hazardous events. Course Learning Outcomes: 										
	A ftor th		mplation of the	course the stud	ont chor	uld bo		Bloo	m's Co	gnitive
СО	able to		inpletion of the	course the stude		iiu be	I	Level		scriptor
CO1	Apply SHM	knov	vledge of sma	art materials and	d techn	niques t	0	III	Apply	ving
CO2	Appra SHM.	ise st	ructural condi	tions by variou	s techn	iques o	of	IV	Analy	zing
CO3	Assess simulat		engineering st	ructures by SHM	I techni	ques an	d	V	Evalu	ating
CO-PO Ma	apping:	(Use	1, 2, 3 as Corr	elation Strengt	hs)					
PO	1		2	3	4	4		5		6
C01	1			3		3				2
CO2	1					2	ļ	2		2
CO3	1				2	2		2		2
Assessmen Teacher As		nt•								
			ts of lab assess	ment, LA1, LA2	2 1 4 2	and Lak	FCE			
	-		te head of pass		2, LAJ	anu Lal	ν μομ.			
Assessm	ient	ł	Based On	Conducted H	By	Condu			larks	Marks
LA1	Submission Lab activities During Week 1 to Week 4						25			

LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Course Contents:

List of Experiments:

- 1. Determination and simulation of compressive strength of Concrete elements using "Rebound Hammer Test" and validation with destructive test results.
- 2. Determination and simulation of compressive strength of Concrete elements using "Ultrasonic Pulse Velocity Test" and validation with destructive test results.
- 3. Determination and simulation of compressive strength of Concrete elements by using concrete core test.
- 4. Determination and simulation of characteristics of ultrasonic guided waves using Piezo sensors in various materials a) Concrete b) metallic plate c) Composite plate d) HCSS plate.
- 5. Damage detection of following materials and simulationa) Concrete b) Metallic Plate c) Composite Plate d) HCSS Plate.
- 6. Determination of mode shapes for undamaged cantilever beams and simulation for following materials using accelerometers (piezo) a) Metallic Plate b) Composite Plate c) HCSS Plate.
- Determination of mode shapes for damaged cantilever beams and simulations for following materials using accelerometers (piezo) a) Metallic Plate b) Composite Plate c) HCSS Plate.
- 8. Determination of deflection and bending stresses of the simply supported concrete beam under static and dynamic loading and simulation using LVDT transducers and verification with theory.

Title of the	e Course:				L	Т	Р	Cr		
Profession	fessional Elective 3 Analysis and Design of Bridges							3		
<u>(4ST531)</u>			3	-	-	5				
Desirable	Courses: Des	ign of Concret	e Structures							
Textbooks	:									
 Krishna Raju N., "Design of Bridges, Oxford and IBH Publishing Co. Ltd.", New Delhi and Kolkata, 2001. Jagdeesh T. R., Jayaram M. A., "Design of Bridge Structures, Prentice hall of India Pvt. Ltd.", New Delhi, 2003. Johnson Victor, "Essentials of Bridge Engineering, Oxford and IBH Publishing Co. Ltd.", 5th Edition, 2001. 										
References	5:									
Mc Gra 2. Raina	aw Hill Publis V. K., "Conci hing Company	hing Company rete Bridge Pra	ctice: Constructi y, New Delhi. actice: Analysis,							
Course Ob										
1. To pro	vide knowledg	ge of loads and	analysis for diff	erent types of	bridge	es.				
-	-	e for design of	different types o	f bridges inclu	iding s	ubstru	ctures w	vith		
	nt codes.									
3. To pro	vide knowledg	ge for construc	tion, inspection a	and maintenan	ce of t	oridges	•			
Course Le	arning Outco	mes:								
CO	After the cor	npletion of the	course the stude	ent should be		Bloo	m's Co	gnitive		
CO	able to	I			I	Level	De	scriptor		
CO1	Illustrate typ bridge site	bes of bridges,	their components	and selection	of	III	Apply	ring		
CO2	Analyze vari methods	ous types of b	ridges with appro	opriate loads a	nd	IV	Analy	zing		
CO3	Design of brid	dges and bearing	gs along with reint	forcement detail	ls	VI	Creati	ng		
CO-PO M	apping: (Use	1, 2, 3 as Corr	elation Strengt	hs)	-					
PO	1	2	3	4		5		6		
CO1			2	3				2		
CO2			2	2		1		2		
CO3			2	2		1		2		
Assessmen										
Teacher A	ssessment:									
Two compo	onents of In Se	emester Evalua	tion (ISE), One	Mid Semester	Exam	ination	(MSE)	and one		
End Semes	ter Examinatio	on (ESE) havin	ng 20%, 30% and	1 50% weights	, respe	ctively	•			
	Assessment			Μ	arks					
Assessment										

10	
30	
10	
50	
nt/declared test/quiz/seminar etc.	
course content (Normally first three modules)	
arse content with 60-70% weightage for course content after MSE.	;
	5 Hrs.
oridge, Types of bridges, Selection of bridge type and Alignment, Drainage, Clearance, Road curb.	
	7 Hrs.
Design of RC Culvert, Pipe culvert, Box culvert.	
	8 Hrs.
o, T-beam bridge, Pigeaud's theory, Corbon's theory,	
ges	8 Hrs.
al aspects, Advantages, Design of pre-tensioned and	
ges	6 Hrs.
rced concrete slab on steel plate girder, Stiffeners,	
	5 Hrs.
er, Approach slab, Pile and well foundation. Bearings	
chla to:	
ding upon site conditions. rts. es using different theories subjected to IRC loading. ncrete bridges. lges.	
	30 10 50 nt/declared test/quiz/seminar etc. rourse content (Normally first three modules) irse content with 60-70% weightage for course content after MSE. oridge, Types of bridges, Selection of bridge type and Alignment, Drainage, Clearance, Road curb. Design of RC Culvert, Pipe culvert, Box culvert. Design of RC Culvert, Pipe culvert, Box culvert. p, T-beam bridge, Pigeaud's theory, Corbon's theory, ges al aspects, Advantages, Design of pre-tensioned and ges reed concrete slab on steel plate girder, Stiffeners, er, Approach slab, Pile and well foundation. Bearings able to: ling upon site conditions. rts. es using different theories subjected to IRC loading. herete bridges.

Title of the	Course:				L	Т	Р	Cr	
Profession	onal Elective 3 Design Optimization (4ST532)3-3								
Desirable (Courses: Eng	ineering Mathe	ematics, Structur	al Analysis and		gn			
Textbooks:									
 Singiresu S. Rao, "Engineering Optimization-Theory and Practice", New Age International Publishers, 2013, 4th Edition. Uri Kirsh, "Optimum Structural Design", McGraw Hill, 1988. R. Fletcher, "Practical Optimization", John Wiley & Sons, New York, 2nd Edition, 1987. References:									
 References: Edgar, Himmelblau and Lasdon, "Optimization of Chemical ProcessesMc", Graw Hill International Edition, 2nd Edition, 2001. M.S. Bazaraa, H.D. Sherali and C. Shetty, "Non-Linear Programming-Theory and Algorithms", John Wiley and Sons, New York, 1993. Richard Vinter, "Optimal Control", Springer, 2010. Course Objectives: To provide knowledge of optimization approach and significance of optimization. To impart knowledge of application of optimization tools required for analyzing and solving problems in structural and other engineering fields. 									
-	_		echniques of gl eld in general an	-		-	gn optin	nization of	
	arning Outco	0 0	end mi general an	a structurar chi	sincer	ing.			
						Bloo	m's Co	gnitive	
СО	After the con able to	mpletion of the	course the stude	ent should be	I	Level		scriptor	
1	CO1 Apply various optimization techniques for solution of linear, nonlinear and general optimization problems. III Applying								
CO1		1	-		of	III	Apply	ving	
CO1 CO2	linear, nonli	near and genera	-	roblems.		III IV	Apply	-	
	linear, nonlin Analyze va field.	near and genera	al optimization p ation problems	roblems. in engineerin	g al			zing	
CO2 CO3	linear, nonlin Analyze va field. Create optin and other complexity.	near and genera rious optimiza mized global e engineering	al optimization p ation problems	roblems. in engineerin gns of structura ving differer	g al	IV	Analy	zing	
CO2 CO3	linear, nonlin Analyze va field. Create optin and other complexity.	near and genera rious optimiza mized global e engineering	al optimization p ation problems ngineering desig facilities ha	roblems. in engineerin gns of structura ving differer	g al	IV	Analy	zing	
CO2 CO3 CO-PO Ma	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use	near and genera rious optimiza mized global e engineering 1, 2, 3 as Corr	al optimization p ation problems ngineering desig facilities ha relation Strengt	roblems. in engineerin gns of structura ving differen hs)	g al	IV VI	Analy	rzing	
CO2 CO3 CO-PO Ma PO	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1	near and genera rious optimiza mized global e engineering 1, 2, 3 as Corr	al optimization p ation problems ngineering desig facilities ha relation Strengt 3	roblems. in engineerin gns of structura ving differen hs) 4	g al	IV VI	Analy	vzing ing 6	
CO2 CO3 CO-PO Ma PO CO1	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1	near and genera rious optimiza mized global e engineering 1, 2, 3 as Corr	al optimization p ation problems ngineering desig facilities ha relation Strengt 3 2	roblems. in engineerin gns of structura ving differen hs) 4 3	g al	IV VI	Analy	rzing ing 6 2	
CO2 CO3 CO-PO Ma PO CO1 CO2	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1	near and genera rious optimiza mized global e engineering 1, 2, 3 as Corr	al optimization p ation problems ngineering desig facilities ha relation Strengt 3 2	roblems. in engineerin gns of structura ving differen hs) 4 3 2	g al	IV VI 5	Analy	zzing ing 6 2 2 2	
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1 1	near and genera rious optimiza mized global e engineering 1, 2, 3 as Corr	al optimization p ation problems ngineering desig facilities ha relation Strengt 3 2	roblems. in engineerin gns of structura ving differen hs) 4 3 2	g al	IV VI 5	Analy	zzing ing 6 2 2 2	
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1 1 ts: ssessment: onents of In Se	near and generations optimizations optimizations optimizations optimization optimiz	al optimization p ation problems ngineering desig facilities ha relation Strengt 3 2	roblems. in engineerin gns of structura ving differen hs) 4 3 2 2 Mid Semester	g al nt Exami	IV VI 5 2 nation	(MSE)	vzing ing 6 2 2 2 2 2	
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1 1 ts: ssessment: onents of In Se	near and generative optimization optimization optimization optimization optimization optimization optimization (ESE) having the sentement of the sentement optimization optizatio optimization optimization optimization optimization optimi	al optimization p ation problems ingineering desig facilities ha relation Strengt 3 2 1 1 ition (ISE), One	roblems. in engineerin gns of structura ving differen hs) 4 3 2 2 Mid Semester I 150% weights,	g al nt Exami	IV VI 5 2 nation	(MSE)	vzing ing 6 2 2 2 2 2	
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1 1 ts: ssessment: onents of In Se ter Examination Assessment	near and generative optimization optimization optimization optimization optimization optimization optimization (ESE) having the sentement of the sentement optimization optizatio optimization optimization optimization optimization optimi	al optimization p ation problems ingineering desig facilities ha relation Strengt 3 2 1 1 ition (ISE), One	roblems. in engineerin gns of structura ving differen hs) 4 3 2 2 Mid Semester I 1 50% weights, Ma	g al nt Exami respe arks	IV VI 5 2 nation	(MSE)	vzing ing 6 2 2 2 2 2	
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessment Teacher Ass Two compo	linear, nonlin Analyze va field. Create optin and other complexity. apping: (Use 1 1 1 ts: ssessment: onents of In Se ter Examinatio	near and generative optimization optimization optimization optimization optimization optimization optimization (ESE) having the sentement of the sentement optimization optizatio optimization optimization optimization optimization optimi	al optimization p ation problems ingineering desig facilities ha relation Strengt 3 2 1 1 ition (ISE), One	roblems. in engineerin gns of structura ving differen hs) 4 3 2 2 Mid Semester 1 1 50% weights, Ma	g al nt Exami respe	IV VI 5 2 nation	(MSE)	zzing ing 6 2 2 2 2	

ISE 2	10				
ESE	50				
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.					
Course Contents:					
Module 1: Classical Optimization Te	chniques	6 Hrs.			
fields of engineering, Introduction variables/constraints, Classification of Formulation of Various optimization pr	zation, Various optimization problems in different to optimization theory-objective function/design optimization problems and optimization techniques, roblems, linear programming and simplex algorithm, lultiplier with equality and inequality constraints.				
Module 2: Optimization of Trusses as	nd Structural Components	6 Hrs.			
Minimum weight criteria, fully stressed of truss, cable and arch structures, optim	d design and displacement constraints, optimization nization of beams and columns.				
Module 3: Constrained Optimization	and Multi-Objective Optimization	8 Hrs.			
1 1	ntial Quadratic Programming, Penalty Methods, ets of Multi-objective optimizations, Multi-objective				
Module 4: Optimization by Stochasti	c and Heuristic Algorithms I	6 Hrs.			
Constrained Optimization Problem,	tion, Computational Implementation, Solution of the <u>Ant Colony Optimization</u> , Basic Concept, Ant g and Pheromone, Updating, Pheromone Trail				
Module 5: Optimization by Stochasti	c and Heuristic Algorithms II	6 Hrs.			
solutions. <u>Response surface methodo</u> design, Central composite design, Doeh	gorithm, Features of the Method, Optimization <i>logy</i> , Three-level factorial design, Box–Behnken lert design, Desirability function, Examples.				
Module 6: Optimization by Evolution	nary and Fuzzy Algorithms	8 Hrs.			
Function and Constraints, Genetic Oper	f design variables, Representation of Objective ators, Algorithm flowchart, Design examples. <i>Fuzzy</i> ems, Computational Procedure, Numerical Example, aguchi Method.				
At end of each module students will be	able to:				
 Apply fundamentals of optimization Create and solve basic optimization Create optimized designs by different Analyze optimization design problem Analyze optimization design problem 	and important algorithms. problems in structural and other engineering fields. It techniques of constrained programming. ns with PSO and ACO.				

Title of the	e Course:				L	Т	Р	Cr
<u>Professio</u>	rofessional Elective 4 Advanced Prestressed Concrete							3
(4ST535)	<u>ST535)</u>							3
Desirable	Courses: Des	ign of Concret	te Structures I an	d II				
Textbooks	:							
1. Krishn 2014.	na Raju N., "I	Prestressed Co	ncrete", McGrav	w Hill Educat	ion (I	SE Edi	itions);	5 th Edition
Edition	n 2010.	0	ed concrete struc		-	•	C	npany, 17 th
Reference		riesuesseu co	oncrete designs",	rearson publi	cation	8, 2013		
Edition 2. Arthur 3. IS: 134 Course Ot 1. To illu 2. To imp 3. To pro	n, 2010. H. Nilson, "E 43 Indian stand ojectives: Istrate basic co part knowledg	Design of prestress dard code of prestressed ancepts and system of Prestressed ge for design o	n of prestressed ressed concrete", ractice for prestress stems of prestress d concrete struct f prestressed con	John Wiley p essed concrete sing. ures.	ublica BIS N	tions, 2 Iew De	2 nd Editi lhi.	on.
		11105.				Dlag	m'a Ca	anitivo
CO	After the con able to	mpletion of the	e course the stude	ent should be		Level		gnitive scriptor
CO1	Estimate los	sses of prestres	ss due to various	causes.		IV	A	nalyzing
CO2	• 11	1	n using flexure, essed concrete st	,	al	V	Ev	aluating
CO3	Design prest	ressed concret	e components ar	d structures.		VI	C	reating
СО-РО М	apping: (Use	1, 2, 3 as Cori	relation Strengt	hs)	-			
PO	1	2	3	4		5		6
CO1			3	3				2
CO2			2	2				2
CO3				3		1		2
Assessmen	nts:							
Teacher A	ssessment:							
Two comp	onents of In Se	emester Evalua	ation (ISE), One	Mid Semester	Exam	ination	(MSE)	and one
1			ng 20%, 30% and				. ,	
	Assessment Marks							
ISE 1 10								
	MSE				30			
	ISE 2				10			
ESE 50								

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content (Normally first three modules)	
ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.	t
Course Contents:	
Module 1: Introduction	6 Hrs.
Basics of pre-stressed concrete, stress concept, strength concept and load balancing concept, systems of prestressing, loss of prestress, Material properties: steel, allowable stresses, relaxation, fatigue.	
Module 2: Analysis of Sections	6 Hrs.
Analysis of rectangular sections under flexure at ultimate loads: equations of equilibrium and compatibility and constitutive models, stress block for concrete, solution procedure, minimum and maximum amount of prestressed reinforcement. Analysis of flanged sections under flexure at ultimate loads.	
Module 3: Design of Section	8 Hrs.
Design of Prestressed Concrete beams and slabs, Rectangular and I Sections. Choice of cross section: flexural efficiency; Determination of limiting zone; Post-tension in stress. Magnel's graphical method. Design based on ultimate loads. Detailing requirement.	
Module 4: Shear and Torsion	7 Hrs.
Analysis and Design for shear and torsion, Analysis for shear: principal stress trajectories of linear elastic beams crack Patters, modes of failure, component of shear resistance. Capacity for web shear cracking capacity for flexural shear cracking. Design of shear reinforcement detailing requirements, design steps. Analysis for torsion behavior of linear elastic beams, crack pattern. Modes of failure, components of torsion resistance.	
Module 5: Anchorage Zone Design	6 Hrs.
Calculations for deflection and crack-width, Pretensioned members: Hoyer effect, transmission length, bond length, development length, transverse tensile stresses, end zone reinforcement. Post-tensioned members: Bursting force, anchorage zone reinforcement, bearing stress, design of end block. Circular Prestressing design.	
Module 6: Design of Continuous Beams	7 Hrs.
Cantilever beams and Continuous beams, Cantilever beams: choice of cable profile, determination of limiting zone. Continuous beams: advantages and disadvantages, choice of cable profile, analysis for bending moment. Principle of linear transformation, principle of concordant cable.	
Module wise Outcomes	
 At end of each module students will be able to: Compute stresses and losses in prestressed concrete. Analyze flanged section under flexure. Design prestressed concrete rectangular & I section beams. Analyze and design prestressed concrete beams subjected to shear & torsion. Design end block in prestressed concrete beams. 	
6. Design continuous beams in prestressed concrete.	

Title of the	~							
	of the Course:				L	Т	Р	Cr
Professional Elective 4 Advanced Earthquake Engineering					3	-	_	3
<u>(4ST536)</u>	(<u>4ST536)</u>							5
Desirable	Courses: Dyna	amics of Struc	tures					
Textbooks	5:							
New I 2. Key I Londo 3. Paulay	Delhi, 3 rd Editic David, "Earth m,2 nd Edition, 2	on, 2006. Iquake Design 2006. estley, M.J.N	Earthquake Resis n Practice for . "Seismic Des 192.	Buildings",	Thom	as Te	lford F	Publication
Reference		<u> </u>						
Londo 2. Georg Spon, 3. FEMA Emerg Course Ol 1. To pro 2. To imp	n, 2 nd Edition, e G. Penelis ar 1997. A-356, "Prestan gency managen ojectives: ovide knowledg part the knowledg	2012. ad Andreas J. 1 adard and Com- nent Agency, 2 ge of various c edge of modell	oncepts of eartholing and analysis	uake Resistan Seismic Rehal quake resistant of structures f	t Conc pilitati design	rete St on of E	ructures Building uctures	s," E & FN s," Federa ed design.
structu	ires.		l codal provision	ns for design	of var	ious ea	urthqual	ke resistan
structu			l codal provision	ns for design	of var	ious ea	urthqual	ke resistan
structu	arning Outco	mes:	codal provision			Bloo	m's Co	gnitive
structu Course Le	rres. Parning Outco	mes:	-				m's Co	
structu Course Le	After the cor	mes: npletion of the e various co	-	ent should be		Bloo	m's Co	gnitive scriptor
structu Course Le CO	After the cor able to Differentiat design of stru Calculate	mes: npletion of the e various con uctures.	e course the stude ncepts of earth tructures for di	ent should be Iquake resista	nt	Bloo Level	m's Co De	gnitive scriptor yzing
structu Course Le CO CO1	After the cor able to Differentiat design of stru performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis	e course the stude ncepts of earth tructures for di	ent should be iquake resista splacement ar	nt nd	Bloo Level IV	m's Co De Analy	gnitive scriptor yzing uating
Course Le CO CO1 CO2 CO3	After the cor able to Differentiat design of stru- performance Design ear performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis	e course the stude ncepts of earth tructures for di	ent should be aquake resista splacement ar based on i	nt nd	Bloo Level IV V	m's Co De Analy Evalu	gnitive scriptor yzing uating
Course Le CO CO1 CO2 CO3	After the cor able to Differentiat design of stru- performance Design ear performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis	e course the stude ncepts of earth tructures for di	ent should be aquake resista splacement ar based on i	nt nd	Bloo Level IV V	m's Co De Analy Evalu	gnitive scriptor yzing uating
Structu Course Le CO CO1 CO2 CO3 CO-PO M	After the cor able to Differentiat design of stru- performance Design ear performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis 1, 2, 3 as Corr	e course the stude ncepts of earth tructures for di tant structures relation Strengt	ent should be aquake resista splacement ar based on i	nt nd	Bloo Level IV V VI	m's Co De Analy Evalu	gnitive scriptor yzing hating ing
structu Course Le CO CO1 CO2 CO3 CO-PO M PO	After the cor able to Differentiat design of stru- performance Design ear performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis 1, 2, 3 as Corr	e course the stude ncepts of earth tructures for di stant structures relation Strengt 3	ent should be quake resista splacement ar based on i hs) 4	nt nd	Bloo Level IV V VI	m's Co De Analy Evalu	gnitive scriptor yzing hating ing 6
Structu Course Le CO CO1 CO2 CO3 CO-PO M PO CO1	After the cor able to Differentiat design of stru- performance Design ear performance	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis 1, 2, 3 as Corr	e course the stude ncepts of earth tructures for di stant structures relation Strengt 3	ent should be equake resista splacement ar based on i hs) 4 3	nt nd	Bloo Level IV V VI 5	m's Co De Analy Evalu	gnitive scriptor yzing hating ing 6 2
Structu Course Le CO CO1 CO2 CO3 CO-PO M PO CO1 CO2 CO3 Assessmer	After the cor able to Differentiat design of strue Calculate re performance Design ear performance apping: (Use 1	mes: npletion of the e various co- uctures. esponse of st -based design. thquake resis 1, 2, 3 as Corr	e course the stude ncepts of earth tructures for di stant structures relation Strengt 3	ent should be iquake resista splacement ar based on i hs) 4 3 2	nt nd	Bloo Level IV V VI 5 1	m's Co De Analy Evalu	gnitive scriptor yzing hating ing 6 2 2 2
CO1 CO2 CO3 CO-PO M PO CO1 CO2 CO3 Assessmer Teacher A Two comp	After the cor able to Differentiat design of stru Calculate re performance Design ear performance apping: (Use 1 1 ssessment: onents of In Se	mes: npletion of the e various con- uctures. esponse of sta- based design. thquake resis 1, 2, 3 as Corri 2 emester Evalua	e course the stude ncepts of earth tructures for di stant structures relation Strengt 3	ent should be aquake resista splacement ar based on i hs) 4 3 2 3 Mid Semester	nt nt ts Exam	Bloo Level IV V VI 5 1 1 1	m's Co De Analy Evalu Creat	gnitive scriptor yzing hating ing 6 2 2 2 2

ISE 1	10				
MSE	30				
ISE 2	10				
ESE	50				
ESE: Assessment is based on 100% cou	ourse content (Normally first three modules) arse content with 60-70% weightage for course content	t			
(normally last three modules) covered a	Iter MSE.				
Course Contents:					
Module 1: Concepts of Earthquake R	lesistant Design	6 Hrs.			
1	design, performance-based design, seismic input mic design, comparative study of different national				
Module 2: Modelling and Analysis of	Structures for Displacement Based Design	6 Hrs.			
	nt models, estimation and modelling of stiffness, d masonry structures, nonlinear static and dynamic				
Module 3: Direct Displacement Based	l Design	8 Hrs.			
	formance levels and limit states; P-Delta effects;				
Torsion; Capacity design for direct disp					
Module 4: Performance Based Design	1	7 Hrs.			
1	ance, quantification of performance, performance				
evaluation of structures, services and equipment. Module 5: Overhead Water Tanks					
Modelling and analysis of overhead we earthquake resistant provisions.	water tanks, hydrostatic and hydrodynamic effects,	6 Hrs.			
Module 6: Cooling Towers		7 Hrs.			
design of hyperbolic cooling towers, a loads, analysis and design of short a compliance, codal provisions.	ng towers, chimneys and silos; Seismic analysis and axisymmetric bodies subjected to non-axisymmetric and tall stacks & chimney structures, foundation				
Module wise Outcomes					
At end of each module students will be					
1. Apply various concepts of earthqua	-				
2. Analyze structures by modelling fo					
_	ares for direct displacement-based design.				
4. Evaluate structural and non-structur	-				
	ad water tanks by applying codal provisions. ling towers, chimneys, silos by applying codal				