Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Second Year M. Tech. Electrical (Control Systems Engineering) Sem - III to IV

AY 2020-21

Title	of	the	Course:	Dissertation	Phase	I,	II	(ISE)	and	II	L	Т	Р	Cr
(ESE)	3 C	S690,	3CS691 a	nd 3CS692									20	10

Pre-Requisite Courses:-

Textbooks: -

References:

Proceedings of Reputed National and International journals in Control Systems (Electrical Engineering)

[a. IEEE Transactions on – Automatic control systems, Power Electronics, Circuits and systems, Control systems technology, Automatic Control etc. b. IEEE magazines/ newsletters/ proceedings on- Control systems, Industrial electronics magazine, etc. c. IET Proceedings/ journals/ magazines on – Control Theory and Control Systems etc. d. Elsevier journals and magazines on- Electrical and Electronics Engineering, Circuits and systems, Advance process control, Dynamics and control etc. e. Journal of Institution of Engineers India- Electrical Engineering f. The Journal of the Institute of Electrical Engineers of Japan, g. Circuits, Systems & Signal Processing –Springer, h. Energy Efficiency – Springer i. Mathematics of Control, Signals, and Systems – Springer j. Soft Computing– Springer k. An International Journal for Simulation-Based Engineering – Springer 1. Journal of Control Theory and Applications –Springer m. Journal of Dynamical and Control Systems – Springer

Proceedings of Reputed International Conferences organized by IFAC, IEEE in association with IITs and NITs, Elsevier and Springer conferences and IET conferences.

Course Objectives :

The M. Tech. Dissertation is aimed at training the students to analyze independently any problem in the field of Electrical Control Systems Engineering and applications of control theory. The Dissertation may be analytical, computational, experimental or a combination of three. The Dissertation report is expected to show clarity of thoughts and expression, critical appreciation of the existing literature and analytical, experimental, computational aptitude.

The student progress of the dissertation work shall be evaluated in stage I and II in semester III and in stage III and IV in semester IV.

CO	After the completion of the course the student should be able to	Bloom's Cognitive		
		level	Descriptor	
	Defend the objectives of the discortation by graphing and analyzing	2	Understand	
CO1	Defend the objectives of the dissertation by grasping and analyzing through an extensive literature review in the area of study.		Analyze	
	unough an extensive interature review in the area of study.	5	Evaluate	
CO2	Formulate the methodology and Execute the study through conduct of	4	Apply	
CO2	analytical/Experimental work to achieve the objectives.	6	Create	
		3	Apply	
CO3	Analyze, interpret and critique the findings of the study.		Analyze	
		5	Evaluate	
	Defend the outcomes of the dissertation through self-learning and justify			
CO4	the project work as per appropriate standards of documentation and presentation.	5	Evaluate	

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			2	
CO2	2		3	3		
CO3				2	1	2
CO4		3			2	2

Assessments :

Teacher Assessment:

In Semester Evaluation (ISE) and End Semester Evaluation (ESE)

Credits	Marks
4	100
2	100
4	100
4	100
4	100
8	100
	Credits 4 2 4 4 4 4 4 8

ISE for dissertation phase I is based on the efforts by the student for synopsis preparation. It shall be evaluated using the parameters extent of literature review, scope defined, objectives, and fundamental concepts, quality of presentation, and interaction during presentation, effort/work done, quality of report and interaction with guide.

ISE for dissertation phase II is based on the progress made during the semester for the objectives defined in the synopsis and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Departmental Post-Graduate Committee (DPGC).

ESE for dissertation phase II shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

Course Contents:

The third semester is completely devoted to dissertation work which is defined based on the interest of the students to specialize in a particular area.

Student is expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, formulation of the research problem, development/fabrication of experimental set-up (if any/required) and testing, and analysis of initial results thus obtained. In fourth semester, the student continues his/her dissertation work. It is expected that the student has completed most of the experimental/computation works and analyzed the results so obtained as proposed in the synopsis. The work should be completed in all respects in this semester. The student is required to submit the dissertation work in the form of report as per the institute rule.

Professional Elective (Theory) Courses

Second Year M. Tech. in Control System Engineering Curriculum for 2020-21

Title of the Course: Modern Power Electronics	L	Т	Р	Cr
Course Code: 3CS611	3			3

Pre-Requisite Courses: Power Electronics

Textbooks:

1. M. H. Rashid, "Power Electronics: circuits devices and applications", Pearson Education, Third edition.

References:

- 1. B. K. Bose, "Modern Power Electronics and AC drives", PHIPL, New Delhi.
- 2. M. B. Patil, V. Ramayanan and V. T. Ranganathan, "Simulation of Power Electronics circuits", Narosa publication.
- 3. Remus Teodorescu, Marco Liserre and Pedro Rodrigues, "Grid- Converters for Photovoltaic and Wind Power Converters, A john wiley and sons Ltd., first edition 2011.
- 4. IEEE Transaction papers.

Course Objectives :

- 1. It is aimed to impart skills of analysis for different types of advanced converters and shunt active power filters.
- 2. Make the students acquainted with control strategies of different types of advanced converters and shunt active power filters.
- 3. To make aware of research avenues in the field of power electronics.

Course Learning Outcomes:

CO	After the completion of the course the student will be able to	Bloom	i's Cognitive
		level	Descriptor
CO1	Interpret configuration and working of various Power Electronic	3	Applying
	converters.		
CO2	Analyze various Power Electronic converters and systems.	4	Analyzing
CO3	Evaluate various power electronic systems using power electronic	5	Evaluating
	converters.		

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			1			
CO2				1		
CO3				2		1

Assessment:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment, oral	l, seminar, test (surprise/declared/quiz), and group

discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1: PWM rectifiers	IIma
	Hrs.
Advantages & disadvantages of three phase thyristor converter, PWM converters working,	6
types, Control of PWM rectifiers, analysis and application.	TT
Module 2: Multilevel inverters	Hrs.
Three phase two level inverter, Multilevel inverter, Types: Diode clamp multilevel inverter,	
flying capacitor multilevel inverter, cascaded multilevel inverter, applications of multilevel	
inverters, comparison of multilevel inverter. Control method: sinusoidal PWM, selective	6
harmonic elimination, carrier PWM, space vector PWM.	
Module 3: Resonant pulse inverters	Hrs.
Series resonant inverter with unidirectional and bi-directional switches, parallel resonant	
inverters, voltage control of resonant inverters, zero current and zero voltage switching	8
resonant converters, two-quadrant ZVS resonant converters, resonant DC link inverters.	
Module 4: Photovoltaic Inverters	Hrs.
Photovoltaic Inverters structures derived from H bridge topology such as H5 inverter, Heric	
inverter, REFU inverter, full bridge inverter with DC bypass, inverter structures derived from	
NPC topology such as neutral point clamped half bridge inverter, conergy NPC inverter, three	6
phase PV inverter.	
Module 5: Matrix Converters and Z source inverters	Hrs.
Topology, working and control methods of Matrix converters, Various circuit topologies and	
control of Z source inverter, Application of Z source in induction motor control	6
Module 6: Active power filters	Hrs.
Power Quality Issues due to power Electronics, Introduction to active power filter, types of	
active power filters overall control of shunt active power filter, harmonic compensation &	6
reactive power compensation.	Ū
Module wise Measurable Students Learning Outcomes:	
After completion of the course students will be able to:	
1. Demonstrate working of PWM converters, their advantages & applications.	
 Interpret control the multilevel inverters. 	
 Analyze resonant converters. 	
 Analyze photovoltaic inverters. 	
 Analysis of z-source inverter. 	
-	
6. Verify performance of active filter for non-linear load.	

The of the co	urse: Robot	tics and A	I				L	Т	Р	Cr
Course Code: 3CS612 3 Pre-Requisite Courses: Electrical Machines, Instrumentation, Control System Engin										3
Pre-Requisite	Courses: El	ectrical M	achines, Ir	nstrumentat	tion, Contro	ol System E	ngine	ering		
Textbooks:										
1. Robotics		tal Concep	ts and An	alysis by A	shitava Gh	osal, Oxfor	d Univ	versity	Press,	2nd
Edition, 2		her D MG4	the and TN	Iconath MC		tions 2017				
2. Robotics References:		l by <u>K.iviit</u>	<u>ne</u> and <u>i n</u>	agram, M	JH Publica	uons, 2017.				
1. Introduct	ion to Robo	tics: Mech	anics and	Control, by	y Craig, 3 rd	Ed.Oxford	Unive	rsity	Press, 2	008.
Course Object					<u> </u>			<u>v</u>	,	
	rse provides									
2. It provide	es the metho	dology of	modeling	and contro	l the robot.					
S. It also pr	ovides the de		arious type		controllers	•				
	the complet		course tl	he student	will be ab	le to	F	Bloom	i's Cogi	nitive
	F							evel	Descri	
CO1 Analy	ze various n	nodels of r	obots and	their dyna	mics.			4	Analy	-
	ze problem			-		ed loop ro	bot	4	Analy	-
contro	l system.									
CO3 Desig	n various co	nventional	and adva	nced contro	ollers for ro	obotics.		6	Creati	ng
CO-PO Mappi	ng :									
		1		1						
		PO1	PO2	PO3	PO4	PO5	PO	6		
	CO1				2					
	CO2			2	2		1			
	CO3			2			1			
A agoggmonta										
	sment•									
Feacher Assess		nester Eva	luation (I	SE). One I	Mid Semes	ter Examin	ation (MSE) and o	me Er
Feacher Assess Fwo componen	ts of In Ser		,				ation ((MSE) and o	one En
Feacher Assess Fwo componen	ts of In Ser		,		veights resp		ation ((MSE) and o	one Er
Feacher Assess Fwo componen Semester Exam	ts of In Ser		,	and 50% v	veights resp		ation ((MSE) and o	one En
Feacher Assess Fwo component Semester Exam Assessment	ts of In Ser		,	and 50% v Mar	veights resp		ation ((MSE) and o	one En
Feacher Assess Fwo componentSemester ExamtAssessmentISE 1	ts of In Ser		,	and 50% v Mar 10	veights resp		ation ((MSE) and o	ne En
Feacher AssessTwo componentSemester ExamtAssessmentISE 1MSE	ts of In Ser		,	and 50% v Mar 10 30	veights resp		ation ((MSE) and o	ne En
Teacher AssessTwo componentSemester ExamtAssessmentISE 1MSEISE 2ESEISE 1 and ISE	tts of In Ser ination (ESF 2 are based	E) having 2	20%, 30%	and 50% v Mar 10 30 10 50 ared test/qu	veights resj ks iz/seminar	etc.		(MSE) and o	one En
Feacher AssessTwo componentSemester ExamtAssessmentISE 1MSEISE 2ESEISE 1 and ISEMSE: Assessment	tts of In Ser ination (ESF 2 are based nent is based	E) having 2 on assign l on 50% c	20%, 30%	and 50% v Mar 10 30 10 50 ared test/qu content (No	veights resj ks iz/seminar rmally first	etc. t three modu	ıles)	· 		
Feacher AssessTwo componentSemester ExamAssessmentISE 1MSEISE 2ESEISE 1 and ISEMSE: AssessESE: Assess	ts of In Ser ination (ESF 2 are based nent is based nent is based	E) having 2 on assign l on 50% c l on 100%	20%, 30%	and 50% v Mar 10 30 10 50 ared test/qu content (No	veights resj ks iz/seminar rmally first	etc. t three modu	ıles)	· 		
Feacher Assess Two componentSemester ExamAssessmentISE 1MSEISE 2ESEISE 1 and ISEMSE: AssessESE: Assesslast three mode	ts of In Ser ination (ESF 2 are based nent is based nent is based ules) covered	E) having 2 on assign l on 50% c l on 100%	20%, 30%	and 50% v Mar 10 30 10 50 ared test/qu content (No	veights resj ks iz/seminar rmally first	etc. t three modu	ıles)	· 		
Teacher AssessTwo componentSemester ExamAssessmentISE 1MSEISE 2ESEISE 1 and ISEMSE: AssessESE: Assesslast three modeCourse Conter	ts of In Ser ination (ESF 2 are based nent is based nent is based ules) covered ts:	E) having 2 on assign l on 50% c l on 100%	20%, 30%	and 50% v Mar 10 30 10 50 ared test/qu content (No	veights resj ks iz/seminar rmally first	etc. t three modu	ıles)	· 	ent (no	rmally
ISE 1 MSE ISE 2 ESE ISE 1 and ISE MSE: Assessm ESE: Assessm	ts of In Ser ination (ESF 2 are based nent is based nent is based ules) covered ts: troduction	E) having 2 on assign l on 50% c l on 100% d after MS	20%, 30% ment/decla of course co course co E.	and 50% v Mar 10 30 10 50 ared test/qu content (No ntent with 7	veights resj ks iz/seminar rmally first 70-80% we	etc. t three modu	ıles) course	e cont	ent (nor	

parameters, Examples of D-H parameters and link transforms.	
Module 2: Elements of robots joints, links, actuators, and sensors	Hrs.
Different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor. Types of transmissions, Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge based force-torque sensors, proximity and distance measuring sensors, and vision.	6
Module 3: Kinematics of robots	Hrs.
Introduction, Direct and inverse kinematics problems, Examples of kinematics of common serial manipulators, workspace of a serial robot, Inverse kinematics of constrained and redundant robots. Degrees-of-freedom of parallel mechanisms and manipulators, Active and passive joints, Constraint and loop-closure equations, Direct kinematics problem, Mobility of parallel manipulators, Closed-from and numerical solution, Inverse kinematics of parallel manipulators and mechanisms.	6
Module 4: Velocity and statics of robot manipulators	Hrs.
Linear and angular velocity of links, Velocity propagation, Manipulator Jacobians for serial and parallel manipulators, Velocity ellipse and ellipsoids, Singularity analysis for serial and parallel manipulators, Mass and inertia of links, Lagrangian formulation for equations of motion for serial and parallel manipulators.	6
Module 5: Motion planning and control	Hrs.
Joint and Cartesian space trajectory planning and generation, Classical control concepts using the example of control of a single link, Independent joint PID control, Control of a multi-link manipulator, Non-linear model based control schemes, Simulation and experimental case studies on serial and parallel manipulators, Control of constrained manipulators, Cartesian control, Force control and hybrid position/force control, Advanced topics in non-linear control of manipulators.	6
Module 6: AI in Robotics	Hrs.
Models of flexible links and joints, Kinematic modeling of multi-link flexible robots, Dynamics and control of flexible link manipulators. Advanced control using AI techniques, Fuzzy control, Neural control, Adaptive control and implementation issues.	6
Module wise Measurable Students Learning Outcomes : After the completion of the course the	e student
 will be able to: 1. Describe model the Robot Control system. 2. Evaluate performance of robot system by conventional techniques. 3. Analyze the dynamics of robot process. 4. Analyze the kinematics of robot process. 5. Analyze the AI based controllers for robot control 6. Design advance digital controller based on model of the process. 	
After the completion of the course the student should be able to:	
This course is designed to facilitate students from different programs to understand the ba advanced topics of robotics and AI.	isics and

EVEN Semester

Professional Core (Lab) Courses

Second Year M. Tech. in Control System Engineering Curriculum for 2020-21

Title of the Course: Dissertation Phase III, IV(ISE) and IV (ESE)	L	Т	Р	Cr
3CS693, 3CS694 and 3CS695			32	16

Pre-Requisite Courses:-

Textbooks: -

References:

Proceedings of Reputed National and International journals in Control Systems (Electrical Engineering)

[a. IEEE Transactions on – Automatic control systems, Power Electronics, Circuits and systems, Control systems technology, Automatic Control etc. b. IEEE magazines/ newsletters/ proceedings on- Control systems, Industrial electronics magazine, etc. c. IET Proceedings/ journals/ magazines on – Control Theory and Control Systems etc. d. Elsevier journals and magazines on- Electrical and Electronics Engineering, Circuits and systems, Advance process control, Dynamics and control etc. e. Journal of Institution of Engineers India- Electrical Engineering f. The Journal of the Institute of Electrical Engineers of Japan, g. Circuits, Systems & Signal Processing –Springer, h. Energy Efficiency – Springer i. Mathematics of Control, Signals, and Systems – Springer j. Soft Computing– Springer k. An International Journal for Simulation-Based Engineering – Springer 1. Journal of Control Theory and Applications –Springer m. Journal of Dynamical and Control Systems – Springer

Proceedings of Reputed International Conferences organized by IFAC, IEEE in association with IITs and NITs, Elsevier and Springer conferences and IET conferences.

Course Objectives :

The M. Tech. Dissertation is aimed at training the students to analyze independently any problem in the field of Electrical Control Systems Engineering and applications of control theory. The Dissertation may be analytical, computational, experimental or a combination of three. The Dissertation report is expected to show clarity of thoughts and expression, critical appreciation of the existing literature and analytical, experimental, computational aptitude.

The student progress of the dissertation work shall be evaluated in stage I and II in semester III and in stage III and IV in semester IV.

Course	Course Learning Outcomes:							
CO	After the completion of the course the student should be able to	Bloom's Cognitive						
		level	Descriptor					
CO1	Defend the objectives of the dissertation by grasping and analyzing	2	Understand					
	through an extensive literature review in the area of study.	4	Analyze					
	through an extensive interature review in the area of study.	5	Evaluate					
CO2	Formulate the methodology and Execute the study through conduct of	4	Apply					
	analytical/Experimental work to achieve the objectives.	6	Create					
CO3	Analyze, interpret and critique the findings of the study.		Apply					
			Analyze					
		5	Evaluate					
CO4	Defend the outcomes of the dissertation through self-learning and justify							
	the project work as per appropriate standards of documentation and presentation.	5	Evaluate					

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			2	
CO2	2		3	3		
CO3				2	1	2
CO4		3			2	2

Assessments :

Teacher Assessment:

In Semester Evaluation (ISE) and End Semester Evaluation (ESE)

Assessment	Credits	Marks
Dissertation Phase I ISE	4	100
Dissertation Phase II ISE	2	100
Dissertation Phase II ESE	4	100
Dissertation Phase III ISE	4	100
Dissertation Phase IV ISE	4	100
Dissertation Phase IV ESE	8	100

ISE for dissertation phase III is based on the work done by the student during fourth semester. It shall be evaluated using the parameters extent of work done after phase II, quality of presentation, interaction during presentation, and interaction with guide.

ISE for dissertation phase IV is based on the work done during the semester and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Departmental Post-Graduate Committee (DPGC).

ESE for dissertation phase IV shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

Course Contents:

The third semester is completely devoted to dissertation work which is defined based on the interest of the students to specialize in a particular area.

Student is expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, formulation of the research problem, development/fabrication of experimental set-up (if any/required) and testing, and analysis of initial results thus obtained. In fourth semester, the student continues his/her dissertation work. It is expected that the student has completed most of the experimental/computation works and analyzed the results so obtained as proposed in the synopsis. The work should be completed in all respects in this semester. The student is required to submit the dissertation work in the form of report as per the institute rule.

This is Last Page

Second Year M. Tech. in Control System Engineering Curriculum for 2020-21