Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Second Year M. Tech. Electrical (Power Systems Engineering) Sem - III to IV

AY 2020-21

Title of the Course: Dissertation Phase I 3PS690, Dissertation Phase II	L	Т	Р	Cr
3PS691, Dissertation Phase II 3PS692			24	10

Pre-Requisite Courses:-

Textbooks: -

References:

Proceedings of Reputed National and International journals in Power Systems (Electrical Engineering) [a. IEEE Transactions on - Power Delivery, Power Apparatus and Systems, Power Electronics, Circuits and systems, Control systems technology, Automatic Control etc. b. IEEE magazines/ newsletters/ proceedings on- Power and Energy magazine, Industrial electronics magazine, Control systems magazine etc. c. IET Proceedings/ journals/ magazines on - Power Engineer magazine, Electrical power applications, Renewable power generation, Generation, transmission and distribution etc. d. Elsevier journals and magazines on-Electrical and Electronics Engineering - Power systems, Electrical power systems research, Electrical power, Energy etc. e. Electrical power components and systems journal, f. Cogeneration and distributed generation journal g. Journal of Institution of Engineers India- Electrical Engineering h. The Journal of the Institute of Electrical Engineers of Japan, i. Circuits, Systems & Signal Processing -Springer, j. Energy Efficiency – Springer k. Mathematics of Control, Signals, and Systems – Springer l. Engineering with Computers · An International Journal for Simulation-Based Engineering – Springer m. Journal of Control Theory and Applications –Springer n. Journal of Dynamical and Control Systems – Springer o. Journal of Real-Time Image Processing - Springer] Proceedings of Reputed National and International Conferences [a. National Power Systems Conference b. IEEE Power Engineering Society Conference c. Other Conferences sponsored by IEEE/ IET/ Elsevier.]

Course Objectives :

The M. Tech. Dissertation is aimed at training the students to analyze independently any problem in the field of Electrical Engineering or interdisciplinary. The Dissertation may be analytical, computational, experimental or a combination of three. The Dissertation report is expected to show clarity of thoughts and expression, critical appreciation of the existing literature and analytical, experimental, computational aptitude. The student progress of the dissertation work shall be evaluated in stage I and II in semester III and in stage III and IV in semester IV.

	Course Learning Outcomes:								
CO	After the completion of the course the student should be able to		n's Cognitive						
		level	Descriptor						
	Defend the objectives of the discortation by grasping and analyzing	2	Understand						
CO1	Defend the objectives of the dissertation by grasping and analyzing through an extensive literature review in the area of study.	4	Analyze						
	unough an extensive interature review in the area of study.	5	Evaluate						
CO2	Formulate the methodology and Execute the study through conduct of	4	Apply						
	analytical/Experimental work to achieve the objectives.	6	Create						
		3	Apply						
CO3	Analyze, interpret and critique the findings of the study.	4	Analyze						
		5	Evaluate						
	Defend the outcomes of the dissertation through self-learning and justify								
CO4	the project work as per appropriate standards of documentation and presentation.	5	Evaluate						

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			2	
CO2	2		3	3		
CO3				2	1	2
CO4		3			2	2

Assessments :

Teacher Assessment:

In Semester Evaluation (ISE) and End Semester Evaluation (ESE)

Assessment	Credits	Marks
Dissertation Phase I ISE	4	100
Dissertation Phase II ISE	2	100
Dissertation Phase II ESE	4	100

ISE for dissertation phase I is based on the efforts by the student for synopsis preparation. It shall be evaluated using the parameters extent of literature review, scope defined, objectives, and fundamental concepts, quality of presentation, and interaction during presentation, effort/work done, quality of report and interaction with guide.

ISE for dissertation phase II is based on the progress made during the semester for the objectives defined in the synopsis and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Dissertation Evaluation Committee (DEC).

ESE for dissertation phase II shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

ISE for dissertation phase III is based on the work done by the student during fourth semester. It shall be evaluated using the parameters extent of work done after phase II, quality of presentation, interaction during presentation, and interaction with guide.

ISE for dissertation phase IV is based on the work done during the semester and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Dissertation Evaluation Committee (DEC).

ESE for dissertation phase IV shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

Course Contents:

The third semester is completely devoted to dissertation work which is defined based on the interest of the students to specialize in a particular area.

Student is expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, formulation of the research problem, development/fabrication of experimental set-up (if any/required) and testing, and analysis of initial results thus obtained. In fourth semester, the student continues his/her dissertation work. It is expected that the student has completed most of the experimental/computation works and analyzed the results so obtained as proposed in the synopsis. The work should be completed in all respects in this semester. The student is required to submit the dissertation work in the form of report as per

the institute rule.

Professional Elective (Theory)

Second Year M. Tech. Power System Engineering Curriculum for 2020-21

Title of the Course: Modern Power Electronics	L	Т	Р	Cr
Course Code: 3PS611	3			3

Pre-Requisite Courses: Power Electronics

Textbooks:

1. M. H. Rashid, "Power Electronics: circuits devices and applications", Pearson Education, Third edition.

References:

- 1. B. K. Bose, "Modern Power Electronics and AC drives", PHIPL, New Delhi.
- 2. M. B. Patil, V. Ramayanan and V. T. Ranganathan, "Simulation of Power Electronics circuits", Narosa publication.
- 3. Remus Teodorescu, Marco Liserre and Pedro Rodrigues, "Grid- Converters for Photovoltaic and Wind Power Converters, A john wiley and sons Ltd., first edition 2011.
- 4. IEEE Transaction papers.

Course Objectives :

- 1. It is aimed to impart skills of analysis for different types of advanced converters and shunt active power filters.
- 2. Make the students acquainted with control strategies of different types of advanced converters and shunt active power filters.
- 3. To make aware of research avenues in the field of power electronics.

Course Learning Outcomes:

CO	After the completion of the course the student will be able to	Bloom	n's Cognitive
		level	Descriptor
CO1	Interpret configuration and working of various Power Electronic	3	Applying
	converters.		
CO2	Analyze various Power Electronic converters and systems.	4	Analyzing
CO3	Evaluate various power electronic systems using power electronic	5	Evaluating
	converters.		

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1			1			
CO2				1		
CO3				2		1

Assessment:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment, ora	l, seminar, test (surprise/declared/quiz), and group

discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents: Module 1: PWM rectifiers Hrs. Advantages & disadvantages of three phase thyristor converter, PWM converters working, 6 types, Control of PWM rectifiers, analysis and application. **Module 2: Multilevel inverters** Hrs. Three phase two level inverter, Multilevel inverter, Types: Diode clamp multilevel inverter, flying capacitor multilevel inverter, cascaded multilevel inverter, applications of multilevel inverters, comparison of multilevel inverter. Control method: sinusoidal PWM, selective 6 harmonic elimination, carrier PWM, space vector PWM. Module 3: Resonant pulse inverters Hrs. Series resonant inverter with unidirectional and bi-directional switches, parallel resonant inverters, voltage control of resonant inverters, zero current and zero voltage switching 8 resonant converters, two-quadrant ZVS resonant converters, resonant DC link inverters. **Module 4: Photovoltaic Inverters** Hrs. Photovoltaic Inverters structures derived from H bridge topology such as H5 inverter, Heric inverter, REFU inverter, full bridge inverter with DC bypass, inverter structures derived from 6 NPC topology such as neutral point clamped half bridge inverter, conergy NPC inverter, three phase PV inverter. Module 5: Matrix Converters and Z source inverters Hrs. Topology, working and control methods of Matrix converters, Various circuit topologies and 6 control of Z source inverter, Application of Z source in induction motor control **Module 6: Active power filters** Hrs. Power Quality Issues due to power Electronics, Introduction to active power filter, types of active power filters overall control of shunt active power filter, harmonic compensation & 6 reactive power compensation. Module wise Measurable Students Learning Outcomes: After completion of the course students will be able to: 1. Demonstrate working of PWM converters, their advantages & applications. 2. Interpret control the multilevel inverters. 3. Analyze resonant converters. 4. Analyze photovoltaic inverters. 5. Analysis of z-source inverter.

6. Verify performance of active filter for non-linear load.

THE OF THE CO	urse: HVD	C Transn	nission				L	Т	Р	Cr
Course Code: 3PS612 3										3
Pre-Requisite	Courses: Po	wer Electi	ronics, Pov	wer System	Engineeri	ng				
Textbooks:										
1. K.R. Pad	liyar, "H.V.I	D.C. Powe	r Transmis	ssion", Wil	ey Eastern	New Delhi	i.			
2. E.W. Kii	nbark, "Dire	ect Current	t Transmis	ssion", Win	publisher.					
References:										
1. J. Arrilla			,							
2. S.Rao, "		& H.V.D.0	C. Transm	ission", Kh	anna Publi	shers.				
Course Object										
1. It is aime	-		-						•	tem.
	strate use of			-		in HVDC t	ransm	ission	system.	
3. It provid			DC transm	nission syst	em.					
Course Learni	the complet		oourse th	o atudant :	will be abl	o to		Plaam	n's Cogn	itivo
CO Alter	the complet	ion of the	course in	le student	will be abi	e 10	-	level	Descri	
CO1 Invest				d mucho oti i		a fan III				-
	igate appro		ontrol and	a protectio	on scheme	es for HV	/DC	3	Applyi	ng
	nission system				• •			4	A	·
	oret perform					systems.		4	Analyz	
	aise recent tr	ends in H	VDC trans	smission sy	stems.			5	Evalua	ting
CO-PO Mappi	ing:	DOA	DOA	DOA	DOA		D			
		PO1	PO2	PO3	PO4	PO5	PC)6		
	C01				3					
	CO2			3						
	CO3						2	2		
Assessment:										
	sment:									
Teacher Asses		nester Eva	aluation (I	SE), One I	Mid Semes	ster Examin	nation	(MSE) and or	ne Enc
Teacher Asses Two componer	nts of In Ser							(MSE) and or	ne Enc
Teacher Asses Two componer	nts of In Ser	E) having 2				respectively		(MSE) and or	ne Enc
Teacher Asses Two componer	nts of In Ser ination (ESI	E) having 2 ment				espectively Ma	/.	(MSE) and or	ne End
Teacher Asses Two componer	nts of In Ser ination (ESH Assess ISE MS	E) having 2 ment 1 E				espectively Ma 1	/. irks	(MSE) and or	ne Enc
Teacher Asses Two componer	nts of In Ser ination (ESI Assess ISE MS ISE	E) having 2 ment 1 E 2				espectively Ma 1 3 1	7. urks 0 0 0	(MSE) and or	ne Enc
Teacher Asses Two componer Semester Exam	nts of In Ser ination (ESH Assess ISE MS ISE ESI	E) having 2 ment 1 E 2 E	20%, 30%	and 50% v	veightage r	espectively Ma 1 3 1 5	7. urks 0 0 0 0 0			
Teacher Asses Two componer Semester Exam	nts of In Ser ination (ESH Assess ISE MS ISE ESI SE 2 are ba	E) having 2 ment 1 E 2 E E sed on a	20%, 30%	and 50% v	ninar, test	espectively Ma 1 3 1 5 (surprise/c	7. urks 0 0 0 0 1eclar	ed/quiz), and {	group
Teacher Assess Two componer Semester Exam ISE 1 and IS discussion. [O	nts of In Ser ination (ESH Assess ISE MS ISE ESI SE 2 are ba ne assessme	E) having 2 ment 1 E 2 E ased on a nt tool per	ssignment ISE. The	and 50% v	ninar, test	espectively Ma 1 3 1 5 (surprise/c for ISE 1 s	7. urks 0 0 0 0 declare hall n	ed/quiz), and {	group
Teacher Asses Two componer Semester Exam ISE 1 and IS discussion. [O MSE: Assessr	nts of In Ser ination (ESH Assess ISE MS ISE EST SE 2 are ba ne assessme nent is based	E) having 2 ment 1 E 2 E sed on a nt tool per l on 50% o	ssignment ISE. The of course c	and 50% v	ninar, test t tool used rmally first	espectively Ma 1 3 3 1 5 (surprise/c for ISE 1 s t three mod	7. urks 0 0 0 0 declaro hall no lules)	ed/quiz ot be us), and greated for Is	group SE 2]
Teacher Assess Two componer Semester Exam ISE 1 and IS discussion. [O MSE: Assess ESE: Assessr	nts of In Ser ination (ESH Assess ISE MS ISE ESH SE 2 are ba ne assessme nent is based nent is based	E) having 2 ment 1 E 2 E ased on a nt tool per l on 50% o d on 100%	ssignment ISE. The f course co	and 50% v	ninar, test t tool used rmally first	espectively Ma 1 3 3 1 5 (surprise/c for ISE 1 s t three mod	7. urks 0 0 0 0 declaro hall no lules)	ed/quiz ot be us), and greated for Is	group SE 2]
Teacher Asses Two componer Semester Exam ISE 1 and IS discussion. [O MSE: Assess ESE: Assess last three mod	nts of In Ser ination (ESF Assess ISE MS ISE EST SE 2 are ba ne assessme nent is based nent is based ules) covere	E) having 2 ment 1 E 2 E ased on a nt tool per l on 50% o d on 100%	ssignment ISE. The f course co	and 50% v	ninar, test t tool used rmally first	espectively Ma 1 3 3 1 5 (surprise/c for ISE 1 s t three mod	7. urks 0 0 0 0 declaro hall no lules)	ed/quiz ot be us), and greated for Is	group SE 2]
Teacher Assess Two componer Semester Exam ISE 1 and IS discussion. [O MSE: Assessr ESE: Assessr last three mod Course Conter	nts of In Ser ination (ESH Assess ISE MS ISE ESI SE 2 are ba ne assessme nent is based nent is based ules) coveren its:	E) having 2 ment 1 E 2 E ased on a nt tool per l on 50% c d on 100% d after MS	ssignment ISE. The of course co course co E.	and 50% v	ninar, test t tool used rmally first 70-80% we	espectively Ma 1 3 3 1 5 (surprise/c for ISE 1 s t three mod	7. urks 0 0 0 0 declaro hall no lules)	ed/quiz ot be us), and g sed for I ent (nor	group SE 2] mally
discussion. [O MSE: Assessn ESE: Assessn	nts of In Ser ination (ESF Assess ISE MS ISE EST SE 2 are ba ne assessme nent is based nent is based ules) coverents: troduction t	E) having 2 ment 1 E 2 E ased on a nt tool per l on 50% of d on 100% d after MS	ssignment ISE. The of course co E. Transmis	and 50% v	ninar, test t tool used rmally first 70-80% we	espectively Ma 1 3 1 5 (surprise/c for ISE 1 s t three mod eightage for	7. urks 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1	ed/quiz ot be us se cont), and g sed for Is ent (nor	group SE 2]

components of HVDC transmission system.	
Module 2: Analysis of HVDC converter	Hrs.
Different modes of valve operation, o/p voltage waveforms and D C voltage in rectification, and	(
inverter operation, valve voltages, equivalent electrical circuit, converter charts.	6
Module 3: HVDCTS control features	Hrs.
Control modes, control schemes and their comparisons, energization and de-energization of	6
bridges, starting and stopping of D C link.	6
Module 4: Faults and over-voltages	Hrs.
Converter mal-operations, commutation failure, over-voltages in HVDCTS, protection of	6
converters, D C reactor and damper circuits.	6
Module 5: Harmonics and their suppression in HVDCTS	Hrs.
Harmonic analysis, filter design, minimum cost tuned A C filters, reactive power requirements.	6
Module 6: Multi terminal HVDCTS	Hrs.
Series and parallel MTDCTS, their control, introduction to HVDC light, recent trends in	6
HVDCTS.	6

Module wise Measurable Students Learning Outcomes :

After completion of the course students will be able to:

- 1. Explain need of HVDC and layout
- 2. Analyze HVDC converters, and derive its equivalent circuit. They will be able to prepare and read converter charts of HVDCTS.
- 3. Interpret different control modes of HVDCTS, and will be able to compare these to control schemes. They will be able to explain energization and de-energization and starting and stopping procedures for HVDC links.
- 4. Study various faults and causes of over-voltages. They will be able to suggest various methods to protect HVDCTS.
- 5. Assess causes of harmonics and will be able to design cost effective filter for harmonics suppression which will meet reactive power requirements of the system as well.
- 6. Classify different types of Multi terminal HVDC system and compare them. They will be able to understand various control aspects of MTDC system

Title of	the Course: High	Voltage I	Engineeri	ng			L	Т	Р	Cr
	Code: 3PS613	U	0	U			3			3
Pre-Req	uisite Courses: P	ower Syste	em Engine	ering						
Textboo	oks:									
	E. Kuffel & W.S. Z M.S. Naidu & V. K									
Referen	ces:									
	C.L. Wadhwa, ' <i>Hig</i>									
2. E	E. Kuffel & Abdulla	ah ' <i>High V</i>	oltage En	gineering',	1 st Edition	, PPO, 198	31.			
	Objectives:									
	The course covers the			-	-					
	Methods of generat llso covered.	ion and m	easuremen	nt of nigh v	/oltage, imj	pulse volta	ige and	a impu	ise curr	ent a
	This course lays a f	oundation	for higher	studies in	high voltag	e engineer	ing			
	Learning Outcom						0			
CO	After the complet	ion of the	course th	e student s	should be a	ble to	Bloc	om's Co	ognitive	
							level		criptor	
CO1	Summarize break	kdown me	echanisms	in gaseou	ıs, liquid	and solid	2	Unc	lerstand	ing
	insulations.									
CO2	Analyze the HV g	eneration e	equipment	and their a	pplication.		3 8	z Ana	lyzing	&
	v 8		1 1		11		4		lying	
CO3	Design and constr	ruct a sim	ple HV ga	dget/ mode	1.		6		ating	
	Mapping:			0					0	
		PO1	PO2	PO3	PO4	PO5	PC)6		
	CO1			2						
	CO2				3					
	CO3	2	2							
Assessm	ients :									
Teacher	Assessment:									
	mponents of In Ser			<i>, , , , , , , , , ,</i>			nation	(MSE) and or	ne Er
Semeste	r Examination (ES		20%, 30%	and 50% v	veights resp	•				
	Assess						arks			
	ISE						0			
MSE					30					
						0				
ICE 1	ES		······································		:-/ac		50			
	Ind ISE 2 are based	-		-			1.1)			
	Assessment is based				•				ant (m c 11-
	Assessment is based ee modules) covere			ment with	50-70% We	igniage Io	cours	se conto	ent (nor	many
last un	ce modules) covere		יבו.							

Course Contents:	
Module 1: Breakdown In Gaseous Medium	Hrs.
Townsend mechanism of breakdown in gases, streamer (kanal) mechanism of breakdown in gases, derivation of breakdown criterion for Townsend and streamer mechanisms. Paschen's law for breakdown voltage in gases, effect of pressure and gap distance on breakdown voltage	6
voltage. Module 2: Procledown In Liquid and Solid Ingulation	IJma
Module 2: Breakdown In Liquid and Solid InsulationComparison of pure and commercial liquids for insulation, breakdown in pure liquids, effect of hydrostatic pressure on breakdown strength.Breakdown in commercial liquids - suspended particle theory, cavitation and bubble theory, thermal breakdown, stressed oil volume theory.Types of breakdown mechanisms in solids - intrinsic, electromechanical, treeing and tracking, thermal breakdown, electrochemical, breakdown due to internal discharges. Breakdown in composite dielectrics, applications of solid dielectrics like paper, mica, glass and ceramics.Module 3: Generation Of High VoltagesGeneration of high D.C. voltages by rectifiers, voltage doubler and multiplier circuits, electrostatic machines - Van de Graaff generator, electrostatic generator.	Hrs. 6 Hrs. 7
Generation of high A.C. voltages by cascade transformer set, resonant transformer, Tesla coil for generation of high frequency A.C. voltage. Module 4: Generation Of Impulse Voltage and Current	Hrs.
Standard impulse wave shape, analysis of model and commercial impulse generation circuits, wave shape control, Marx circuit, tripping and control of impulse generation. Generation of switching surges, generation of impulse current.	7
Module 5: Measurement Of High Voltage and Current	Hrs.
 Peak voltage measurement by Chubb - Fortescue method, spark gaps, sphere gap, uniform field gap, rod gap, electrostatic voltmeter, measurement of high voltage by an ammeter in series with high impedance, use of rectifier and voltage divider. Measurement of high A.C., D.C. and impulse currents by resistive shunts- Hall generator, current transformer with electro-optical signal converter, squirrel-cage shunt, Rogowski coil. 	8
Module 6: High Voltage Testing and Partial Discharges	Hrs.
 High voltage testing of - insulators, bushings, circuit breakers, cables, transformers, lightning arrestors and power capacitors. Phenomenon of partial discharges (PD), internal and surface discharges, effects of PD, equivalent circuit of PD phenomenon, measurement of apparent charge. PD detection - straight detection method, wide band and narrow band detection circuits. Bridge detection method, calibration of PD detectors. 	6
 Module wise Measurable Students Learning Outcomes: After completion of the course students will be able to: Module 1:CO1- Explain and compute the breakdown strength of gas-filled insulation systems with s geometries. Module 2:CO1- Summarize the breakdown mechanisms of pure & contaminated liquids and solids. Module 3:CO2 & 3- Design & demonstrate the principles behind generating DC and AC at high volt Module 4:CO2 & 3- Differentiate various methods of high impulse voltages & current generating 	tages.

Second Year M. Tech. Power System Engineering Curriculum for 2020-21

design a simple impulse voltage generator.

Module 5:CO2- Analyse various techniques for measurement of high voltages & currents. **Module 6:CO1-** Distinguish methods of testing for HV equipment.

EVEN Semester

Professional Core (Lab) Courses

Title of the Course: Dissertation Phase III 3PS693, Dissertation Phase	L	Т	Р	Cr
IV 3PS694 and Dissertation Phase IV 3PS695			32	16
Pre-Requisite Courses:-				

Textbooks: -

References:

Proceedings of Reputed National and International journals in Power Systems (Electrical Engineering) [a. IEEE Transactions on - Power Delivery, Power Apparatus and Systems, Power Electronics, Circuits and systems, Control systems technology, Automatic Control etc. b. IEEE magazines/ newsletters/ proceedings on- Power and Energy magazine, Industrial electronics magazine, Control systems magazine etc. c. IET Proceedings/ journals/ magazines on - Power Engineer magazine, Electrical power applications, Renewable power generation, Generation, transmission and distribution etc. d. Elsevier journals and magazines on-Electrical and Electronics Engineering – Power systems, Electrical power systems research, Electrical power, Energy etc. e. Electrical power components and systems journal, f. Cogeneration and distributed generation journal g. Journal of Institution of Engineers India- Electrical Engineering h. The Journal of the Institute of Electrical Engineers of Japan, i. Circuits, Systems & Signal Processing -Springer, j. Energy Efficiency – Springer k. Mathematics of Control, Signals, and Systems – Springer l. Engineering with Computers · An International Journal for Simulation-Based Engineering – Springer m. Journal of Control Theory and Applications –Springer n. Journal of Dynamical and Control Systems – Springer o. Journal of Real-Time Image Processing – Springer] Proceedings of Reputed National and International Conferences [a. National Power Systems Conference b. IEEE Power Engineering Society Conference c. Other Conferences sponsored by IEEE/ IET/ Elsevier.]

Course Objectives :

The M. Tech. Dissertation is aimed at training the students to analyze independently any problem in the field of Electrical Engineering or interdisciplinary. The Dissertation may be analytical, computational, experimental or a combination of three. The Dissertation report is expected to show clarity of thoughts and expression, critical appreciation of the existing literature and analytical, experimental, computational aptitude. The student progress of the dissertation work shall be evaluated in stage I and II in semester III and in stage III and IV in semester IV.

Course Learning Outcomes:

CO	After the completion of the course the student should be able to	Bloom's Cognitive		
		level	Descriptor	
CO1	Defend the objectives of the discontation by granning and analyzing	2	Understand	
	Defend the objectives of the dissertation by grasping and analyzing through an extensive literature review in the area of study.	4	Analyze	
	through an extensive interature review in the area of study.		Evaluate	
CO2	Formulate the methodology and Execute the study through conduct of	4	Apply	
	analytical/Experimental work to achieve the objectives.	6	Create	
		3	Apply	
CO3	Analyze, interpret and critique the findings of the study.		Analyze	
		5	Evaluate	
	Defend the outcomes of the dissertation through self-learning and justify			
CO4	the project work as per appropriate standards of documentation and presentation.	5	Evaluate	

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2			2	
CO2	2		3	3		
CO3				2	1	2
CO4		3			2	2

Assessments :

Teacher Assessment:

In Semester Evaluation (ISE) and End Semester Evaluation (ESE)

Assessment	Credits	Marks
Dissertation Phase III ISE	4	100
Dissertation Phase IV ISE	4	100
Dissertation Phase IV ESE	8	100

ISE for dissertation phase I is based on the efforts by the student for synopsis preparation. It shall be evaluated using the parameters extent of literature review, scope defined, objectives, and fundamental concepts, quality of presentation, and interaction during presentation, effort/work done, quality of report and interaction with guide.

ISE for dissertation phase II is based on the progress made during the semester for the objectives defined in the synopsis and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Dissertation Evaluation Committee (DEC).

ESE for dissertation phase II shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

ISE for dissertation phase III is based on the work done by the student during fourth semester. It shall be evaluated using the parameters extent of work done after phase II, quality of presentation, interaction during presentation, and interaction with guide.

ISE for dissertation phase IV is based on the work done during the semester and the report submitted by the students. It shall be evaluated through progress seminar(s) at the end of the semester. The parameters for evaluation include extent of work done, results and discussion/publication efforts, quality of presentation, quality of report, interaction during presentation and interaction with guide.

ISE shall be conducted by Dissertation Evaluation Committee (DEC).

ESE for dissertation phase IV shall be conducted at the end of semester by a duly constituted examination panel composed of Chairman, internal examiner (guide) and external examiner.

Course Contents:

The third semester is completely devoted to dissertation work which is defined based on the interest of the students to specialize in a particular area.

Student is expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, formulation of the research problem, development/fabrication of experimental set-up (if any/required) and testing, and analysis of initial results thus obtained. In fourth semester, the student continues his/her dissertation work. It is expected that the student has completed most of the experimental/computation works and analyzed the results so obtained as proposed in the synopsis. The work should be completed in all respects in this semester. The student is required to submit the dissertation work in the form of report as per

the institute rule.

This is Last Page

Second Year M. Tech. Power System Engineering Curriculum for 2020-21