Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Second Year B. Tech. (Computer Science and Engineering) Sem - III to IV

AY 2020-21

ODD Semester

Professional Core (Theory) Courses

Title of th	Fitle of the Course: Probability Theory and Statistics																
Course C	ode: 5N	ode: 5MA201											L	Т	Р		Cr
													2	0	0		2
Desirable	Desirable requirements:																
Textbooks:																	
Textbooks:																	
1.																	
Reference	References:																
1.	l. Course Objectives:																
Course O	Course Objectives:																
Course Learning Outcomes:																	
CO After the completion of the course the student should be able to Bloom's Cognitive																	
	After the completion of the course the student should be able to Bloom's Cognitive																
	level Descriptor											r					
CO1																	
CO2																	
005																	
CO-PO M	CO-PO Mapping :																
00101																	
	DO										_						
	PO	1	7	3	4	5	9		8	6	10	11	12	01	03		
	and PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSG	PSC		
	CO1																
	CO2																
	CO3																
						1: [Low, 2:	Mediun	n, 3: Hig	h						_	
							,		<i>,</i> 0								
Assessme	nts :																
Teacher A	Assessn	nent:															
Two com	onents	of In	Seme	ster E	valua	tion (I	(SE), (One N	/lid Se	emeste	er Exa	minat	ion (N	ASE)	and or	ne E	nd
Semester	Examin	ation	(ESE)) havi	ng 20 ^o	%, 30	% and	1 50%	weig	hts res	specti	vely.	,	,			
								_									
ISE 1 and	ISF 2 a	re has	ed on	assion	ment/c	leclare	d test/	auiz/e	emina	r/oral 4	etc						
MSE: As	MSE: Assessment is based on 50% of course content (Normally first three modules)																
ESE: Ass	sessment	t is bas	sed on	100%	cours	e conte	ent wit	th 70-8	30% w	reighta	ge for	course	e conte	ent (no	rmally	/ last	
three mod	lules) co	vered	after M	MSE.							-			` <u> </u>			
Course C	ontents	3:															
			T1.	(C		c		1	·			1 C		0 21			
	SY B.Tech. (Computer Science and Engineering) Curriculum for 2020-21																

Madula wisa Maasurahla Studants Laarning Outgamas .	
Moune wise measurable Students Learning Outcomes.	
•	

Title of	the Cou	rse:	Discr	ete Ma	athema	atics										
Course	Code: 5CS202													Т	Р	Cr
													0	0	3	
Desirab	le require	men	ts: M	athema	atics-(s	set the	ory, Bo	oolean	operati	ions, l	ogical	operat	tions)		
Textbooks:																
1. J.P. T	remblay &	kR.	Manoł	nar , ''l	Discret	te Mat	hemati	cal str	ucture	with a	pplicat	ions to	o con	nputer	", McGr	aw
Hill,1 ^s	t Edition	n, 20	001													
2. Liu, '	2. Liu, "Elements of Discrete Mathematics", Tata McGraw Hill,3 rd edition 2008															
3. Kenne	eth Rosen	, "D	iscrete	Math	ematic	s & its	applic	ation"	McGr	aw Hi	$11,7^{\mathrm{th}}\mathrm{e}$	dition	2012	2.		
Referen	ices:															
1. K.D	Joshi, "Fo	ound	ation of	of Disc	rete M	lathem	atics"	New	Age In	ternati	ional L	.td,1st	editi	on,201	.4	
2. Seym	our Lipscl	hutz	, Mar	c Lipso	on "Di	screte	Mather	natics:	Schau	m's O	utlines	Series	", Sc	haum'	s outlin	e
serie	s.,3 ^{ra} edit	tion,	2009													
Course	e Objectives : This subject enhances one's ability to reason and ability to present a coherent															
and mat	thematically accurate argument. About 30% of the course time will be spent on logic, set theory,															
counting	g techniq	ues a	and rea	mainir	1g 60%	6 of th	e cour	se tim	e will l	be dev	voted to	o func	tion	s, relat	ions, alg	gebraic
structur	structures, graph theory, permutation and combination. Objectives of this course are as follows:															
1. Deliv	er basic co	once	pts of	Logic	theory	to sol	ve real	life pi	oblem	S.						
2. Introd	luce graph	ıs, tr	ees an	d algel	braic s	tructur	e and	develo	p an att	titude	to solv	e prot	olems	s based	on these	e topics.
4. To gi	ve deep 1	nsigi	nt into	discre	te prot	bability	y and c	ombin	atorics	•						
Course	Learnin	<u>g Oi</u>	utcom	les:	0.1									DI		•.•
CO	Aft	er ti	ie com	pletio	n of th	e cour	se the	studen	t shoul	d be a	able to			Bloom	i's Cogn	itive
													le	vel	Desci	riptor
CO1	Explain	logi	cal not	tation t	o defii	ne and	reasor	n about	funda	menta	ıl		,	2	Underst	anding
	mathema	itical	l conce	epts of	logic	theory	, set th	eory, r	elation	s, proł	bability	/,				-
	counting	tech	nnique	s.												
CO2	Demons	trate	e knov	vledge	and sk	ills ob	tained	to inv	estigate	e and s	solve			3.	Applyin	g
	problems	s of l	POSE	Г, Has	se diag	gram, g	groups,	semi g	group a	and mo	onoid.					
CO3	Analyse	con	cepts a	and alg	orithm	s of g	raph th	eory a	nd elen	nentar	ry		4	4.	Analysi	ng
	combinatorial processes such as permutations and combinations.															
CO-PO	Mappin	g :														
																_
	DO]

PO and PSO	P01	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-	1	-
	1: Low, 2: Medium, 3: High													

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10

ESE	0					
ISE 1 and ISE 2 are based on quiz/assignments.						
MSE: Assessment is based on 50% of course content (Normally first three modules)						
ESE: Assessment is based on 100% course content with 70-80% weightage for course	content (normally last three					
modules) covered after MSE.						
Course Contents:						
Module 1 Mathematical Logic & Set Theory	6 Hrs.					
Introduction, Statement and Notation, Connectives, statements formulas and truth t	ables, well-					
formed formulas, Tautologies Equivalence of formulas, Tautologies, other connecti	ves, Normal &					
Principal Normal forms. Basic concepts of set theory, Venn Diagram, set operation	, algebra of sets.					
Module 2 Relations and Functions	7 Hrs.					
Relations, Pictorial representation of Relations, Properties of binary relation, Equiv	alence Relations,					
partition and covering of set, POSET and Hasse Diagram, Functions - types, Inverse and composition of functions, lattice.						
Module 3 Algebraic structures	6 Hrs.					
Introduction, Operations, semigroups, Groups, subgroups, Rings, monoid.						
Module 4 Graph theory and its applications	7 Hrs.					
Basic terminology, multigraphs and weighted graphs. Paths and Shortest path in we	highted graphs.					
Hamiltonian and Eulerian Paths and Circuits, Factor of a graph, Planner Graph.						
Module 5 Directed graphs	6 Hrs.					
Trees, Rooted Trees, Path lengths in rooted trees, Prefix codes, Binary search trees,	Spanning trees					
and cut sets, Minimal spanning trees, Kruskal's algorithm and Prim's algorithms, V	Varshall's					
algorithm for transitive closure.						
Module 6 Permutation, Combination and Discrete Probabilities	7 Hrs.					
Basic counting techniques – inclusion and exclusion, Rules of sum and product,	permutations,					
combinations, generation of permutations and combinations, Introduction to Discre	te Probability,					
entropy and mutual information, recursion.						
Module wise Measurable Students Learning Outcomes :						
After the completion of the course the student should be able to:						
Module 1:						
 Able to construct and explain logical proofs as logic plays a major role in for hardware and software. 	mal languages and in					
Module 2:						
Grasp concepts of relations and functions and demonstrate skills to solve relations	ated problems.					
Module 3:						
Identify different algebraic structures						
Module 4:						
• Apply graph application in computer domain- e.g. finding shortest path in ne	tworking etc.					
Module 5:	C					
• Analyse concepts of trees, minimum cost spanning trees using different type	s of algorithms.					
Module 6:	-					
• Solve problems on permutation, combination and probability.						
Tutorials: Group work solutions for Problems based on:						
1. CNF, DNF, set theory, Venn Diagrams.						
2. Equivalence relation, binary relation.						
3. POSET and HASSE diagrams.						
4. Algebraic structures.						
	-					

- 5. Graph, Shortest path in weighted graphs ,Hamiltonian and Eulerian Paths and Circuits
- **6.** Real Time Application of graph theory.
- 7. Warshall's Algorithm, prims and Kruskal's algorithm
- 8. Finding out optimal solution based on graph theory and trees.
- **9.** Permutation and combination.

Title of the Course: Data StructuresLTCourse Code: 5CS203LT													Cr				
Course	coue. 5C5205										3	1	0		0	3	
Dosira	esirable requirements: Programming in C including pointers and File Handling																
Desira	bie requirement	LS. FI	ograi	IIIIII	gmc	meru	lung	pointe		u File	пащ	unig					
Textbo	Dishard E Cille		-1	- A T	7	"	Data	Cturne	h			ada A		1- V	Weth C	" C an ao ao	
1.	Learning Secon	rg, Б d Edi	tion (Z A. I 2014	orou	zan,	Data	Struc	tures,	A PS	eudoc	ode F	арргоа	ach v	viin C	,Cengage	
2	S Linschutz "D	ata St	ructu	res So	haun	1's" O	nıtline	es Ser	ies T	ata M	cGray	v-Hil	1 201	3			
2. 3.	Ellis Horowitz, S	S. Sah	ni. D	. Meh	ta. "F	Fundai	menta	ls of	Data S	Struct	ures i	n C+-	+". G	algot	ia Boo	k Source.	
	New Delhi, 2008	3	,		,							-	, -	0			
Refere	Xeferences:																
1.	1. Yashavant Kanetkar, "Understanding pointers in C", BPB Publication, 4th Edition, 2009																
2.	2. N. B. Venkateshwarlu, E. V. Prasad, "C and Data Structures", S. Chand and Company, 2010																
3.	3. Jean-Paul Tremblay, Paul. G. Soresan, "An introduction to data structures with Applications", Tata Mc-																
~	Graw Hill Intern	ation	al Edi	tions,	2nd e	dition	, 1984	4									
	e Objectives :	1		L	£. 7	٩		· . ·		1 5	•	•	4 1	. T	Ч	•	
I nis co	ourse is one of t	ne co	re su	oject	10r C	omp	uter S	scienc	e and	u Eng	ineer	ing s	uden	ts. T	ne cou	irse main	
The in	s on introducing	vari	Jus II	near	and 1		d sor	uala S	ache	iques,	uieir		ho other	sucs	and a	pprication	
apply s	uitable techniqu	e for	differ	is sca cent a	nolice	ig all	u soi	ung		iques	Cilau	nes u	lie sit	iuem	.5 10 10	Jenniny al	
1 appry 8	To make the stur	dents	under	stand	elem	entary	,. v line:	ar and	non-	linea	data	struct	tures «	and c	oncent	s of	
1.	ADTs.	aemos	under	Stund	ciem	entur.	y mie	ur une	non	meu	uutu	Struct	ures t		oneept	.5 01	
2.	To develop and	impro	ve log	gical	thinki	ng an	d to n	nake t	he stu	idents	capa	ble of	f apply	ying	approp	riate data	
	structure for mo	dellin	g a gi	ven p	roble	m.					•						
3.	3. To provide a foundation to analyse and compare various searching and sorting techniques and to select																
	appropriate technique to solve the problem.																
Course	e Learning Out	come	s:										1 = 4				
CO	After the comp	letion	of th	e cou	rse th	e stud	dent s	hould	be al	ble to			Bloc	om's	Cognit	ive	
<u>CO1</u>		. 1							•	1			leve	1	Desci	riptor	
	Explain the full	lata u	ental (ince	pts of	struc	turing	g, mar lata st	naging	g and	th AT	T_{a}	2		Under	rstanding	
	write recursive	uata u algor	ithms	and e	anu i vnlai	n vari		iata si earch [:]	ing ar	ics wi	ting	J15,					
	techniques	aigoi	i i i i i i i i i i i i i i i i i i i	ana c	лріаі	ii vaii	1045 5	caren	ing an	iu 301	ing						
CO2	Choose suitable	e data	struc	ture t	o be ı	ised a	nd ap	plv it	to so	lve th	e vari	ous	3		Apply	ving	
	problems						I	r J								U	
CO3	Compare and	Analy	ze va	rious	algor	ithms	, sear	ching	and s	orting	g metl	hods	4		Analy	zing	
	based on inhere	ent pro	operti	es of	data s	tructu	ires ai	nd the	com	plexit	y of						
	algorithms.																
СО-РС) Mapping :				1	1		1	1	1		1					
	DO	_	2	~	+	10	9	~	~	6	0	1	10	Η	5		
	PO and DCO	0	0	0	Õ	0	ō	0	õ	0	01	01	01	SO	SO		
	and PSO	Р	Ρ	Р	Р	Р	d	P	Р	d	Р	PC	PC	Å	P		
	COI	2															
		2	-	-	-	-	-	-	-	-	_	-	-	2	-		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $																
	1: Low. 2: Medium. 3: Hiah																
Assess	Assessments :																
Teache	er Assessment:																
Two co	omponents of In	Seme	ster I	Evalu	ation	(ISE)), One	e Mid	Sem	ester	Exan	ninati	on (M	ISE)	and or	ne End	
Semest	ter Examination	(ESE) havi	ing 20	<u>)%, 3</u>	0% a	nd 50)% we	eights	resp	ective	ely.					
	As	ssessn	nent					Marks									
	ISE 1									10							

MSE	30						
ISE 2	10						
ESE	50						
ISE 1 and ISE 2 are based on declared test/quiz/seminar							
MSE: Assessment is based on 50% of course content (Normally first three modules)							
ESE: Assessment is based on 100% course content with	n 70-80% weightage for course content (normally l	ast					
three modules) covered after MSE.							
Course Contents:							
Module 1: Introduction		6 Hrs.					
Basic Concepts: Algorithm, Pseudocode, ADT, Data	Structure, Algorithmic Efficiency						
Recursion: Direct and Indirect recursion analysis	of recursive functions e.g. Towers of Hanoi						
Ackerman's function, etc.							
Module 2. Linked Lists							
Concept of linked organization, Singly linked li	st, doubly linked list and dynamic storage						
management, circular linked list, Operations such a	s insertion, deletion, inversion, concatenation,						
computation of length, traversal on linked list, Rep	resentation and manipulations of polynomials						
using linked lists.							
Module 3: Stacks and Queues		6 Hrs.					
Fundamentals stack and queue as ADT, Representa	ation and Implementation of stack and queue						
using sequential and linked organization, Circular	r queue: representation and implementation,						
Application of stack for expression evaluation and for	or expression conversion, Backtracking, Stacks						
and Recursion, Priority queue Doubly Ended Queue.							
Module 4: Trees		7 Hrs.					
Basic terminology, binary trees and its representati	on, binary tree traversals (recursive and non-						
recursive), operations such as copy, equal on binary tree, expression trees, AVL Tree, Binary							
Search Trees, Heaps and its operations, Introduction to Multiway Trees.							
Module 5: Graphs		5 Hrs.					
Terminology and Representation of graphs using adja	cency matrix, adjacency list and adjacency						
Multilist, Traversals Depth First and Breadth First, M	inimum Spanning Tree.						
Module 6: Searching & Sorting Technique		9 Hrs.					
Search: Importance of searching, Sequential, Binary,	Fibonacci search algorithms						
Sorting: Internal and External Sorts, Insertion, Shell,	Heap, Quick sort, Merge sort, Radix sort,						
Two-way merge sort							
Hashing: Hashing functions, overflow handling with	and without chaining, open addressing: linear,						
quadratic, double, renasting	-1						
Trachainers hashed in dense. Tracking and the	File Operation for expected): Indexing						
Linked argonizations	File Organizations: Sequential, Random and						
Linked organizations.							
Module wise Measurable Students Learning Outo	comes :						
After the completion of the course the student sho	buid be able to:						
• Explain AD1, build logic to solve the problem	, write algorithms and think recursively.						
Module 2:							
• Apply concept of linked list and use of ADTs to solve the problem							
Moune 3: • Choose data structures such as steaks and success as the presentations' test to salve sort 1-							
• Choose data structures such as stacks and queu	es as the programmers' tool to solve problems.						
Module 4:	is successful and the feature of the state						
• Apply non-linear data structure, tree and its bas	sic operations and use it to solve the problem.						
Module 5:							
• Explain and use graph as a data structure to sto	re and manipulate data for various applications						
Moaule 6:							
Explain nashing, file organizations and compare	e various searching and sorting techniques.						

Title of the Course: Data Communication				
Course Code: 5CS204	L	Т	Р	Cr
	3	0	0	3
Desirable Requirements : Nil				

Textbooks:

- 1. Behrouz A. Forouzan, "Data communication and Networking", Tata McGraw-Hill, 4th/5th Edition, 2017.
- 2. William Stallings, "Data and Computer Communications", Prentice Hall(PHI), 8th/9th Edition, 2010/2011

References:

1. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", Pearson Education,5th /7th edition, 2012/2016

Course Objectives: The objective of the course is to provide a foundation and clear understanding of various concepts of data communication which will form basis of computer networking. Objectives are further divided as:

- 1. To elaborate various features and operations of data communication.
- 2. To inculcate protocol functions and issues related to Data Link layer.
- 3. To introduce the design and configuration of various networking techniques.

Course	Course Learning Outcomes:								
CO	OAfter the completion of the course the student should be able toBloom's Cognitive								
		level	Descriptor						
CO1	Describe fundamental concepts of data communication system.	2	Understanding						
CO2	Interpret various concepts related to data link layer protocols.	3	Applying						
CO3	Differentiate and analyze various data communication techniques	4	Analyzing						

CO-PO Mapping :

PO and PSO	P01	P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	P011	P012	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	-	-
CO2	1	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	-	-	1	-	-	-	-	-	-	-	-	-	-	-

1: Low, 2: Medium, 3: High

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							
ESE	50							
ISE 1 and ISE 2 are based on assignment/declared test/q	ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.							

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

M	odule 1: Introduc	tion							4 Hrs.
Α	Communications	Model,	Data	Communications,	Networks,	The	Internet-An	Example	

Configuration. Data communication Concepts and Terminology: Analog and Digital Data	
Transmission, Transmission Impairments, Channel Capacity. Media: Guided Transmission Media,	
Wireless Transmission, Wireless Propagation, Line-of-Sight Transmission Types of electronics	
communication, Electromagnetic spectrum, Bandwidth, Signal Types, Noise: internal, External,	
Noise calculation.	
Module 2: Encoding techniques	8 Hrs.
Digital Data- Digital Signals, Digital Data- Analog Signals, Analog Data- Digital Signals,	
Analog Data- Analog Signals. Digital data communication techniques:- Asynchronous and	
Synchronous Transmission, Types of Errors, Error Detection & Correction, Hamming Code,	
CRC, Checksum, Line Configurations, Numerical problems on encoding.	
Module 3: Multiplexing	8 Hrs.
Frequency Division Multiplexing, Synchronous Time Division Multiplexing, Statistical Time	
Division Multiplexing, Pulse code modulation, Delta modulation, Adaptive delta modulation,	
Differential PCM, PAM. Spread Spectrum: The Concept of Spread Spectrum, Frequency-Hopping	
Spread Spectrum, Direct Sequence Spread Spectrum, Code Division Multiple Access.	
Module 4: Switching techniques	8 Hrs.
Switched Communications Networks, Circuit-Switching Networks, Circuit-Switching Concepts,	
Soft switch Architecture, Packet-Switching Principles, X.25, and Frame Relay. Introduction to	
Asynchronous Transfer mode protocol Architecture, Logical Connections, ATM Cells, Routing in	
Arpanet.	
Module 5: Congestion control	5 Hrs.
Effects of Congestion, Congestion Control, Traffic Management, Frame Relay Congestion Control.	
Cellular wireless network: Principles of Cellular Networks, First-Generation Analog Second-	
Generation CDMA, Third-Generation Systems.	< •••
Module 6: Flow Control and Internet Reference Models	6 Hrs.
Framing –Fixed, Variable error control, Flow control, Simplest Protocols, Stop & Wait	
Protocols, GO Back N & Selective Repeat Sliding window protocols, Numerical problems on	
flow control techniques, other Protocols. Internet and Reference models-OSI, TCP/IP.	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1 :	
• Describe Data Communication model and various media for communication	
Module 2 :	
 Differentiate different encoding techniques. 	
Apply error control techniques.	
Module 3 :	
• Differentiate and analyze various multiplexing techniques.	
Module 4 :	
• Distinguish between different switching techniques.	
Module 5 :	
 Identify and describe congestion control mechanisms and cellular wireless network. 	
Module 6 :	
Describe and differentiate various flow control techniques.	

Title of the Course: Computer Organization and Architecture Course Code : 5CS205	L	T	P	Cr
	3	0	0	3
Desirable requirements: Basic Electronics Engineering				

Textbooks:

- 1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Pearson Education, 8th Edition/10th Edition, 2010/2016
- 2. Ramesh S. Gaonkar, "Microprocessor architecture, programming & applications", Penram International publications (India) Pvt. Ltd, 6th edition, 2013
- 3. N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford Higher Education, 1st Edition, 2012

References:

- 1. David A. Patterson and John L. Hennessy "Computer Organization and Design: The Hardware/Software Interface", Elsevier, 5th Edition, 2013
- Ram, "Fundamentals of Microprocessors and Microcontrollers", Dhanpat Rai Publications, 1st edition, 2012
- 3. ARM Based Development course, NPTEL(https://nptel.ac.in/courses/117106111/)

Course Objectives: The main objective of this course is to introduce and provide insights regarding different organizations and architectures of computer. The objectives are further divided as:

- 1. To introduce organization and architecture of computer.
- 2. To provide a foundation to write an 8 bit microprocessor program using assembly language.
- 3. To infuse understanding of usefulness X-86 microprocessor family and other processors and fundamental principles of ARM processors.

Course	Learning Outcomes:			
СО	After the completion of the course the student should be able to	Bloom's Cognitive		
		level	Descriptor	
CO1	Describe basic concepts of the organization and architecture of computer	2	Understanding	
	and interfacing with external devices.			
CO2	Illustrate the knowledge gained about the data representation, internal	3	Applying	
	organization, addressing modes, instruction set of 8085, 8086 and ARM			
	processor for assembling language programming.			
CO3	Analyze the working of processors like 8085,8086,ARM and interfacing	4	Analyzing	
	of external devices like memory and I/O.			

CO-PO Mapping :

PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO1	3	1	-	-	-	-	-	-	-	-	-	-	2	-
CO2	2	2	2	-	-	-	-	-	-	-	-	-	3	-
CO3	3	2	2	-	-	-	-	-	-	-	-	-	3	-
					1.	104 2.	Modium	2. Liah						

1: Low, 2: Medium, 3: High

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

	MSE	30	
	ISE 2	10	
	ESE	50	
	ISE 1 and ISE 2 are based on assignment/declared test	/quiz/seminar etc.	
	MSE: Assessment is based on 50% of course content (Normally first three modules)	
	ESE: Assessment is based on 100% course content wi	th 70-80% weightage for course content (normal	ly last
	three modules) covered after MSE.		
	Course Contents:		
	Module 1: Introduction to Computer Organization		6Hrs.
	Introduction to Computer Organization and architectur	re, A brief history of computers, Von Neumann	
	Architecture, designing for performance, Multicore,	MICs and GPGPUs, Two Laws that Provide	
	Insignt: Amount's Law and Little's, Basic Measured Linear Execution Execution Pate Ton level view of (res of Computer Performance: Clock Speed,	
	Components Computer Function Interconnection S	tructures Bus Interconnection Point-to-Point	
	Interconnect PCI Express	directores, bus interconnection, ront-to-ront	
	Module 2. Data Representation and Computer Ar	ithmetic	6Hrs
	The Arithmetic and Logic Unit Integer Repres	centation Integer Arithmetic Floating-Point	01115.
	Representation, Floating-Point Arithmetic, Programma	able Logic Devices.	
	Module 3: 8085 Microprocessor		8Hrs.
	CPU organization. Microprocessors. Machine	language, Assembly Language, Computer	0111.00
	classification, Microprocessor Architecture, microco	omputer systems; Single chip microcomputer:	
	Microcontrollers, The 8085 microprocessor, machine	cycles, 8085 Programming model, Instruction	
	classification, Instruction Data format and storage,	8085 Instructions: Data transfer operations,	
	Arithmetic operations, Logic operations, Branch opera	tions.	
	Module 4: X-86 microprocessor Family		7Hrs.
	Microprocessor Architecture -8086, Register organiza	tion of 8086, Signal descriptions of 8086 chip,	
	Physical Memory organization, Introduction to Maxim	num and Minimum mode operation, Addressing	
	Modes, Co-processor configuration, interfacing of Co-	processor with 8086.	7 11
	Module 5: Interfacing of Memory & Input / Output	It Devices	/Hrs.
	Interfocing of interrupt controllor with 8085 Progr	coung, interfacing of memory chips with 8085.	
	Memory Access (DMA) Stacks and subroutines	annhable interrupt Controller (8239A). Direct	
	Module 6: Introduction to ARM Processor		6Hrs.
	Arm core dataflow model. Registers. Current program	n status register. Pipeline, Exception, interrupt	UIII 5
	and vector table. Core extensions, Arm processor fami	lies. Data processing instruction and Arithmetic	
	instruction.		
N	Iodule wise Measurable Students Learning Outcom	nes :	
A	fter the completion of the course the student should	d be able to:	
N	Iodule 1:		
	• Describe different computer components.		
	Illustrate Basic Measures of Computer Performa	ance and its use.	
N	Iodule 2:		
	• Illustrate computer arithmetic with examples.		
I	100uie 5:	the second between the second in the second second	4
	• Describe the basics of microprocessors and anal assembly language of a computer.	yze unterence between the machine language and	u
	• Describe the peculiarities of the instructions as t	to their category, word size, machine cycles for	
	execution, addressing mode etc.		
N	Iodule 4:		
	Illustrate the basics of X-86 family microproces components	sors and describe the functions of each of its	
N	Iodule 5:		

• Describe the interfacing between microprocessor and various peripherals.

Module 6:

• Illustrate ARM processor family using assembly instructions and their formats and usage.

Title of the Course: Software Engineering	L	Т	Р	Cr
Course Code: 5CS206	3	0	0	3
Desired requirements:				
Textbooks:				

- 1. Pankaj Jalote, "An Integrated Approach to Software Engineering", Narosa Publishers, 3rd Edition, 2005.
- 2. Ian Sommerville, "Software Engineering", Addison-Wesley, 7th Edition, 2004.
- 3. James Rumbaugh, "Object Oriented Modeling and Design with UML", Pearson, 2nd Edition, 2004.

References:

- 1. Roger S. Pressman, "Software Engineering: Practitioner's Approach", McGraw Hill, 7th Edition, 2010.
- 2. Jawadekar W.S., "Software Engineering: principles and practices", Tata McGraw Hills, 1st Edition.
- 3. Gillies A.C. and Smith p., "Managing Software Engineering: CASE studies and solutions", Chapman and Hall, London.

Course Objectives :

- 1. To unleash the orientation & importance of engineering approach to software development.
- 2. To infuse the knowledge of software processes & models practiced at IT industries.
- 3. To acquaint students with the SDLC phases in detail.
- 4. To emphasize on Design aspect with UML technology.
- 5. To inculcate the importance of software quality by virtue of software testing methods.

Course Learning Outcomes:

CO	After the completion of the course the student Learner be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Grasp industry processes on software development to become IT industry-savvy.	2	Understanding		
CO2	Prepare with the spirit of team-working and importance of using artifacts at SDLC phases.	3	Applying		
CO3	Distinguish and evaluate procedural & OO based development practices.	4	Analyzing		
CO4	Integrate expertise on CASE tools usage especially for design and testing of software to undertake industrial strength software projects.	6	Creating		

CO-PO Mapping :

PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	P07	PO 8	9 O 4	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	-	3	-	-	-	-	-	-	-	3	2	3	-
CO2	-	-	1	2	-	-	-	3	3	3	-	-	-	-
CO3	-	-	-	-	2	-	-	-	-	-	-	-	-	-
CO4	-	-	2	-	-	-	-	-	-	-	-	2		3
	•			•	1:	Low, 2	: Mediu	im, 3: I	High	•				

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on pedagogy such as brainstorming, role play, quiz, presentations etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Software Processes	6 Hrs.				
Need of software engineering approach, ETVX model, project management process, software development process & models, configuration management process, process management process.					
Module 2: Software Quality & Project Planning	6 Hrs.				
Quality objectives, software quality factors, PAF Model, quality standards, project management plan, cost estimation, project scheduling, personnel planning with WBS, risk management.					
Module 3: Software Requirement Analysis & Function Oriented Design	7 Hrs.				
Software requirement process, need and characteristics of SRS artifact, design principles, module level concepts, design notation and specifications, structured					

Module 4: Object Oriented Design with UML & Continual Integration	8 Hrs.
UMI model UMI diagrams: Use-case Class Activity State-chart Interaction	
Sequence Collaboration Component Deployment Continual integration with Agile	
model process frameworks.	
Module 5: User Interface Design & Coding	4 Hrs.
UI rules, UI analysis and steps in UI design, best programming practices such as TDD	
& pair programming, verification.	
Module 6: Software Testing	8 Hrs.
Testing purpose and concepts, test process, levels of testing, regression testing, test	
case design for functional testing & structural testing. Study of Open-source Tools.	
Aodule wise Measurable Students Learning Outcomes :	
'he student should be able to:	
Aodule 1: Software Processes	
• Awareness of Software processes & Models used at IT.	
Aodule 2: Software Quality & Project Planning	
• Grasp quality parameters and standards such as PAF.	
• Know & prepare project planning phases and responsibilities with WBS.	
Module 3: Software Requirement Analysis & Function Oriented Design	
• As per SDLC phase understand requirement process and need of SRS artifact. Under	stand
functional & non-functional requirements as well. Realize the importance of design a	spects,
concepts & methodology. Practices to learn how to draw DFD on requirements.	
Module 4:Object Oriented Design with UML & Continual Integration	
• Building capability to draw & distinguish various UML diagrams on requirements. A	rticulating
usage of Continual integration with Agile model process frameworks.	
Module 5: User Interface Design & Coding	
• Know the UI aspect of interactive design for enterprise applications.	
• Learn best coding standards/practices such as TDD, pair programming and how to ve	rify code.
Module 6: Software Testing	
• Integrate expertise on how testing helps in quality of software. Know testing concepts,	levels of
testing. Learn and practice Black & white box testing along with test case generation	s using oper
4 1	

ODD Semester

Professional Core (Lab) Courses

Title of th	e Cours	e: Pr 5251	ogra	mmir	ng La	ab 1						,	٢.	т	р	Cr
Course Co		5251										()	0	2	1
Desirable	Require	ement	ts: I	ntrodu	ictio	n to ar	iv Pro	ogram	min	g Lang	guage			-		
Textbooks	<u>s:</u>						5	0								
1. Herbert	Schildt, '	The C	Comp	lete R	efere	nce: C	C++"	Tata N	AcG	raw-H	11, 4 th	Editi	on, 20	010		
2. E Balagu	uruswam	y, "Ol	bject	Orient	ted P	rogran	nming	g with	C++	- ", Tat	a Mc	Graw-	Hill,	4^{tn} Ec	lition,	2008
3 .Kenneth	1 Lamber	rt, "Fi	indan	nental	s of .	Pytho	n: Fir	st Pro	grar	ns "Co	ourse	Tech	nolog	gy, Ce	ngage	
Deference	ig.zna ec	ntion,	, 2017													
1. Stanley 1	s. B. Lippr	nan . "	C++]	Prime	r" Pe	arson	. 4th E	dition	. Jar	n 2010						
Course O	biective	s :				aison	,	antion	, o ui	12010						
The course	e covers	funda	ment	als of	obje	ct orie	ented	conce	pts	using (C++ &	& Pytl	hon p	rogra	mmin	g with
syntax and	l exampl	es. Co	ourse	objec	tives	of thi	s cou	rse ar	e as	follow	vs:	•		C		
1. To provi	ide in-de	pth co	overa	ge of	objeo	ct-orie	ented	progr	amn	ning pr	incip	les an	d tec	hniqu	es usi	ng C++
and Python	n.							~~~								
2. To incul	cate the a	advan	ced pi	rograr	nmin	g cono	cepts i	in C+-	+ and	d Pytho	on.					
Course La	arning	Oute	omes	•												
Course Le	COAfter the completion of the course the student should be able toBloom's Cognitive															
	Bioom s Cognitive															
CO1 F	CO1 Explain the features of object oriented programming using C++ and 2 Understanding															
	Python Explain the features of object oriented programming using C++ and 2 Understanding															
CO2 De	emonstra	ate the	e solu	tion to	o real	world	l prob	lems	using	g C++	and			3	Ap	plying
Ру	thon						-			-					-	
СО-РО М	lapping	:														
Г		1	1	1		-	1	1		-	1	1		1		
	PO	H	5	e	4	5	9	7	×	6	01	11	12	1	5	
	and	PO	00	0	0	Q	0	0	0	Od	0	0	0	SC	SC	
	PSO										Ч	Ч	Ч	1	1	
	CO1	-	-	-	-	-	-	-	-	-	-	-	-	1	-	
	CO2	-	-	-	-	2	-	-	-	-	-	-	-	2	-	
						1.1 0		odium	ാപം	h						
						1.L0	W, Z.IVI	ealulli,	з.піуі	11						
Assessmer	nts:															
Lab Asses	sment:															
There are f	four com	poner	nts of	lab a	ssess	ment,	LA1	, LA2	, LA	A3 and	Lab l	ESE.				
IMP: Lab	ESE is a	separ	ate h	ead of	f pass	sing.										
A		D				C	1	11		C l.	-4:		[] (n		Maulaa
Assessmen	11	Bas Lab a	ctiviti	26		Con	ducted	u by	Г	<u>Uning</u>	Week	$\frac{1}{1}$ to V	larks : Veek	<u>5ubiiii</u> 4	ssion	Marks
LA1	att	endan	ce, jo	urnal	Ι	Lab Co	ourse I	Facult		Submiss	sion at	the e	nd of	Week	5	25
τ Δ 2		Lab a	ctiviti	es,	т	ah Co	urso I	Focult	, I	During	Week	5 to V	Veek	8		25
LAZ	att	endan	ice, jo	urnal	1			acun	y S	Submiss	sion at	the e	nd of	Week	9	23
LA3	o44	Lab a	ctiviti	es,	I	Lab Co	ourse I	Facult	۲ L	Juring	Week	10 to	Week	t 14 Waala	14	25
	att Lab	Perfo	rman	urnal				•	<u>з</u>	Juring	sion al Week	$\frac{15 \text{ to}}{15 \text{ to}}$	iiu OI Week	<u>weeк</u> : 18	14	
Lab ESE	relat	ted do	cumei	ntatior	n []	Lab Co	ourse t	faculty		Submise	sion at	the e	nd of	Week	18	25
·																- .
Week 1 in	dicates s	tarting	g wee	k of S	Seme	ster.										

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents:	
Module 1: Introduction to object oriented programming	5 Hrs.
Introduction to properties of object oriented programming, Beginning with c++ programs,	
operators, control structures, loops, examples with class and objects, Functions in c++, function	
overloading, Constructors, Destructors, operator overloading, static class members.	
Experiments:	
1. Program based on creating Class and Object.	
2. Program based on constructor and destructor.	
Module 2: Properties of object oriented programming	6 Hrs.
Inheritance and its types, pointers, virtual functions, Polymorphism. File Handling, Exception	
Handling, Templates, and Namespace fundamentals. Overview of Stream classes	
Experiments:	
1. Implementation of Inheritance and polymorphism.	
2. Working with files.	
3. Use of template, generic template and function.	
4. Creation of namespaces.	
Module 3: Introduction and getting started with python programming	4 Hrs.
Running Code in the Interactive Shell, Input, Processing, and Output, Editing, Saving, and	
Running a Script, Behind the Scenes: How Python Works.	
Data Types and expressions: Numeric Data Types and Character Sets, Integer, Floating-Point	
Numbers, Character Sets, Arithmetic Expressions, Functions and Modules.	
Experiments:	
1. Introduction and getting started with python programming: running code in the	
interactive shell	
2. Program based on expression, data type, functions	
Module 4: Features of python programming	4 Hrs.
Loops and selection statements. String Lists and dictionaries: List Literals and Basic Operators	
List Methods for Inserting and Removing Elements. Dictionary Literals	
Experiments:	
Programs based on implementation of loops strings lists and dictionaries	
rograms cused on imprementation of roops, sumgs, nots and distribution	
Module 5: Design with Classes	4 Hrs.
Getting Inside Objects and Classes, A First Example: The Student Class, Graphical User Interfaces,	
Coding Simple GUI-Based Programs, Windows GUI components.	
Experiments:	
Programs based on Graphical user interface design using python.	
Module 6: Multi-Threading, Exception handling and File handling using python	3 Hrs.
Multi-threading, Exception handling, file handling.	
Experiments:	
1. Programs related to Multi-threading, Exception handling, file handling.	

		r	r	1	
Title of	f the Course: Data Structures Lab	_			~
Course	e Code: 5CS253	L	T	Р	Cr
		0	0	2	1
Desira	ble requirements: Programming in C including pointers and File H	andling			
Textbo	ooks:				
1.	Richard F. Gilberg, Behrouz A. Forouzan, "Data Structures, A Pseud Learning Second Edition 2014	locode Ap	pproach '	With C", O	Cengage
2	S. Linschutz "Data Structures" Schaum's Outlines Series. Tata McC	Fraw-Hill	2013		
2. 3	Ellis Horowitz S Sahni D Mehta "Fundamentals of Data Structure	es in C^{++2}	, 2013 "Galgot	tia Book S	ource
5.	New Delhi, 2008	Jo m C + +	, Guigo	ilu Dook S	ouree,
Refere	nces:				
1.	Yashavant Kanetkar, "Understanding pointers in C", BPB Publicatio	n, 2009			
2.	N. B. Venkateshwarlu, E. V. Prasad, "C and Data Structures", S. Cha	and and C	Company	, 2010	
Course	a Objectives: This laboratory course focuses on practicing various	linger on	d nonlin	oor data	
course	res introduced in the Data Structure theory course. The assignment	list mair	lu nomin lu empl	ical uala	
ovplain	the sinucced in the Data Structure theory course. The assignment	. 11st man	ny empi		
1	To develop and improve skills in programming in a systematic way a	• Ind prepa	ring the s	students fo)r
1.	advanced computer science courses	inu propa	ing the a		/1
2	To make the students understand the concept of ADT recursion vari	ious searc	hing and	lsorting	
	algorithms along with their performance comparisons and to use app	ropriate d	lata struc	ture for m	odelling
	given problem.	r			
3.	To inculcate theoretical and practical knowledge of various linear and	d nonline	ar data si	tructures t	o solve
	real world problems.				
Course	e Learning Outcomes:				
CO	After the completion of the course the student should be able to		Bloom's	Cognitive	
		F	level	Descript	or
CO1	Demonstrate the concept of recursion, abstract properties of variou	S	3	Applyin	g
	linear and nonlinear data structures, searching and sorting methods				
	through implementation.				
CO2	Identify suitable data structure to be used to solve the various probl	ems.	4	Analyzi	ng
CO3	Select appropriate searching, sorting method on the basis of its		5	Evaluati	ng
	performance while developing application.				

CO-PO Mapping :

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
TA1	Lab activities,	Lab Course Feeulty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
1 4 2	Lab activities,	Lab Course Feeulty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
1 4 3	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25
LAJ	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lob ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

List of Experiments:

Assignments based on topics covered in course 4CS203

- 1. Program based on structures and pointers in C
- 2. Program based on arrays and pointers in C
- 3. File handling and command line arguments
- 4. Implementation of recursion
- 5. Developing ADT for singly linked list and its applications
- 6. Developing ADT for Doubly linked list and its applications
- 7. Developing ADT for circular linked list and its applications
- 8. Developing ADT for stack and queue and their applications
- 9. Implementation of double ended queue
- 10. Implementation of recursive and non-recursive tree traversals

11. Binary search tree and application

- 12. Implementation of graph, DFS, BFS
- 13. Implementation of searching : linear search, binary search, Fibonacci search
- 14. Sorting Methods: Insertion sort, shell sort, heap sort, quick sort, merge sort, radix sort etc.

15. Implementation of hashing

Title of the	Course:	Con	npute	er Or	ganiz	ation	And	Arc	hitect	ture l	Lab						
Course Co	de: 5CS2	55											L	T		P	Cr
			_										0	0		2	1
Desirable 1	requirem	ents:	Prog	ramm	ing b	y usii	ng ass	sembl	y lan	guage	e						
Textbooks 1. William Educatio 2. Ramesh publicati 3. N. Senth Higher E	xtbooks: William Stallings, "Computer Organization and Architecture: Designing for Performance", Pearson Education, 8 th Edition/10 th Edition, 2010/2016 Ramesh S. Gaonkar, "Microprocessor architecture, programming & applications", Penram International publications (India) Pvt. Ltd, 6 th edition, 2013 N. Senthil Kumar, M. Saravanan, S. Jeevanathan, S. K. Shah, "Microprocessors and Interfacing", Oxford Higher Education, 1 st Edition, 2012																
References 1. David A Interface 2. Ram, "Fu 3. ARM Bas	ferences: David A. Patterson and John L. Hennessy "Computer Organization and Design: The Hardware/Software Interface", Elsevier, 5th Edition, 2013 Ram, "Fundamentals of Microprocessors and Microcontrollers", Dhanpat Rai Publications, 2012																
Course Ob The ma components 1. To infuse 2. To demo assembly 3. To demo	jectives: in objective and archive e skills of nstrate blow language nstrate the	ve of t tectur drawi ock tra progu e worł	this co res of ng flo ansfer rams. cing o	ourse comp owcha o, arith	is to c outer. art by ametic M pro	demor The o using cal, lo	nstrate bjecti asser gical or.	e insig ves a nbly l opera	ghts re re furf angua tions	egardi ther d age pr and c	ng wo ivideo ograr ode co	orking 1 as: nming onver	g of di g. sion n	fferen	nt org d by	ganizati using	ons,
Course Le	arning O	utcon	nes:														
CO Af	ter the con	npleti	ion of	the c	ourse	the st	tuden	t shou	ıld be	able	to			Blo	om's	Cognit	ive
													1	evel		Descri	ptor
CO1 Gr	asp the	func	lamer	ntals	of a	assem	bly a with	level	pro	grami	ming	usin	g	2	U	Indersta	inding
CO2 De mo and	Demonstrateprogrammingproficiencyusingthevariousaddressing3ApplyingDemonstrateprogrammingproficiencyusingthevariousaddressing3Applyingand code conversionmethod)of 8085 and X-86microprocessoraddressing3Applying							ing									
CO-PO Ma)-PO Mapping :																
	PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2		

2 - - - 1: Low, 2: Medium, 3: High 2

-

-

-

-

-

-

-

-

-

-

-

-

_

Assessments :

Lab Assessment:

CO1

CO2

2

-

-

-

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing SY B.Tech. (Computer Science and Engineering) Curriculum for 2020-21

3

-

-

3

-

2

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks	
IA1	Lab activities,	Lab Course Feeulty	During Week 1 to Week 4	25	
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23	
1 4 2	Lab activities,	Lab Course Feeulty	During Week 5 to Week 8	25	
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23	
I 4 2	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25	
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23	
Lob ESE	Lab Performance and	Lab Course fegulty	During Week 15 to Week 18	25	
Lau LSE	related documentation	Lab Course faculty	Submission at the end of Week 18	25	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Assignments based on topics covered in course 4CS252

Write assembly language programs

- 1. Introduction to digital fundamental circuit design.
- 2. Study of the design combinational and sequential circuit.
- 3. Introduction of Microprocessors and Study of 8085 Microprocessor and instruction set.
- 4. Write a program to perform 8-bit block transfer.
- 5. Write a program to perform 8-bit and 16-bit addition /subtraction/multiplication/division.
- 6. Write a program to find largest /smallest number in an array of data.
- 7. Write a program to find smallest no in an array of data.
- 8. Write a program to find 16 bit 2's complement no of 4340H
- 9. Write a program to transfer 16 bytes of data stored in location at C250 to C25F to new memory locations starting from C300 on words.
- 10. Write a program to transfer a block of data. The data is stored in memory from C550 H to C555F H. The data is to be stored from C570 H to C57F H in reverse order.
- 11. Write a program to arrange 10 bytes data in ascending /descending order. The data is stored in memory as an array starting from C100 H onwards.
- 12. Write Convert a binary number to a BCD number.
- 13. Write a program to square of number using lookup table.
- 14. Write X86/64 ALP to perform basic arithmetic operation.
- 15. Write X86/64 ALP to count number of positive and negative numbers from the array.
- 16. 16. Write X86/64 ALP to perform multiplication of two 8-bit hexadecimal numbers. Use successive addition and add and shift method (Use of 64-bit registers is expected).
- 17. Write X86/64 ALP to convert 4-digit Hex number into its equivalent BCD number and 5-digit BCD number into its equivalent HEX number.
- 18. Case study: ARM Processor.

ODD Semester

Minor Specialization Courses

Title of	f the Course	: Data	Stru	cture	es												
Course	code: 1CSN	101												L	Т	Р	Cr
														3	0	0	3
Pre-Re	equisite Cou	rses: Pi	rogra	mmii	ng ii	n C	incl	udiı	ng p	oin	ters a	nd Fi	ile Ha	andling			
Textbo	oks:																
1.	Richard F. G C",Cengage	lilberg, l Learnin	Behr ıg, Se	ouz A cond	A. Fo Ed	oro itio	uzan m, 20	, "E)14	Data	Str	uctur	es, A	Pseu	idocode A	Approach	With	
2.	S. Lipschutz	, "Data	Struc	tures	,Scł	nau	m's"	Ou	tline	es S	eries	, Tata	a Mc	Graw-Hil	1, 2013		
3.	Ellis Horowi Source, New	tz, S. Sa Delhi,	ahni, 2008	D. M	leht	a, ''	Func	lam	enta	als o	of Da	ta Sti	ructu	res in C+	+", Galgo	otia Book	
Refere	nces:																
1.	Yashavant K	lanetkar	, "Uı	ders	tand	ing	g poii	nter	s in	C"	, BPF	8 Pub	olicati	ion, 4 th E	dition, 20)09	
2.	Jean-Paul Tr	emblay,	, Pau Intori	l. G.	Sore	esai Edii	n, "A	n 11	ntroo	duc	t_{100} to 108	o dat 4	a stru	ictures w	ith Applic	cations",	
3	N R Venka	teshwar	lu E	V F	ras	ad	"C a	nd	Data	a St	ructu	+ res"	S C	hand and	Company	v 2010	
Course	e Objectives	:	1u, L	1	1450	iu,	Cu	.nu i	Dau	1 51	luciu	105 ,	J. C.		Compan	y, 2010	
1.	To impart ba	asic con	cepts	s of E	Data	Str	uctu	re a	nd a	nal	vse e	fficie	encv o	of algorit	hm		
2.	To make the	student	s unc	lersta	nd e	eler	nent	ary	line	ar a	ind no	on-lir	near c	lata struc	tures and	make the	students
	capable of ap	oplying	appro	opria	te da	ata	struc	cture	e for	m	odelli	ng a	giver	n problem	1.		
3.	To provide a	founda	tion	to ana	alys	e ai	nd ap	ply	var	iou	s sear	chin	g and	l sorting t	echnique	s.	
Course	e Learning (Dutcom	les:												1		
СО	After the co	ompletio	on of	the c	our	se t	the st	tude	ent s	shou	uld b	e able	e to		Bloom'	s Cognitive	2
															level	Descript	tor
CO1	Explain the	fundan	nenta	l con	cept	s o	f var	ious	s lin	ear	and r	non-l	inear	data	2	Understa	anding
	structures w	with AD	Ts ar	nd wr	ite r	ecu	irsive	e alg	gori	thm	ıs.						
CO2	Identify sui	table da	ta sti	uctur	es t	o b	e use	ed a	nd a	ppl	y it to	o solv	ve the	e various	3	Applying	B
	problems.																
CO3	Compare ar	nd analy	vse va	rious	s sea	ırcł	ning	and	sort	ting	g metl	nods	based	l on	4	Analyzir	ng
	inherent pro	operties	of da	ita sti	ructi	ure	s and	l the	e coi	mpl	exity	of al	lgorit	hms.			
CO-PC) Mapping :		-								10			DCOL			
		PO	1	2 3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
		CO1	3	_													
		CO2	3	3	2									3			
		003	5	5	2									3			
Assess	ments :																
Teache	er Assessmei	nt:		Б			(10		0							1	.
Two co	mponents of	t In Sen	neste	r Eva	alua	t101	n(IS)	E),	One		11d Se	emes	ter E		on (MSE	and one	End
Semest	er Examinati	ion (ES	E) ha	aving	; 20	%,	30%	an		J%	weig	nts re	espec	ctively.			
Assess	sment									Mai	rks						
ISE I MSE										10 20							
ISE 2									•	$\frac{50}{10}$							
ESE										50							
ISE 1 :	and ISE 2 are	based or	n ass	ignme	ent/c	lecl	lared	test	/qui	z/se	emina	r etc.					
MSE: Assessment is based on 50% of course content (Normally first three modules)																	
ESE:	Assessment is	s based o	on 10	0% c	ours	e co	onten	nt wi	ith 7	0-8	0% w	eight	tage f	or course	content (1	normally la	st
three n	nodules) co	fred after	hMS	bomp	ute	: So	cienc	e a	nd E	Eng	ineer	ing)	Curr	iculum fo	or 2020-2	21	

Course Contents:	
Module 1 Introduction	Hrs. 5
Basic Concepts: Algorithm, Pseudocode, ADT, Data Structure, Algorithmic Efficiency	
Recursion: Direct and Indirect recursion, Recursive solution of Towers of Hanoi.	
Module 2 Linked Lists	Hrs. 7
Concept of linked organization, Singly linked list, doubly linked list and dynamic storage	
management, circular linked list, Operations such as traversal, Searching, insertion and deletion,	
Representation of polynomials using linked lists	
Module 3 Stacks and Queues	Hrs. 8
Fundamentals stack and queue as ADT Representation and Implementation of stack and queue	
using sequential and linked organization. Insert and Delete operations. Circular queue:	
representation and implementation. Priority queue	
Topresentation and implementation, Thomy queue	
Module 4 Trees	Hrs 7
Resigner transmission binary trace and its representation binary trace traversals AVI Trace Binary	1115. /
Search Trees Heaps and its operations	
Search Trees, Treaps and its operations	
Module 5 Graphs	Hrs. 5
Terminology and Representation of graphs using adjacency matrix, adjacency list and adjacency	
matrix, Traversals Depth First and Breadth First, Minimum Spanning Tree	
Module 6 Searching & Sorting Technique	Hrs. 7
Search: Importance of searching, Sequential, Binary, Fibonacci search	
Sorting: Importance of sorting, Insertion, Heap, Quick sort, Merge sort	
Hashing: Introduction Hash functions.	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1:	
• Explain the fundamental concepts and write recursive algorithms.	
Module 2:	
• Demonstrate concept of linked list and use of ADTs to solve the problem	
Module 3:	
• Discuss theoretically and use data structures like stacks and queues as the programmers' tool	to develop
the solution.	-
Module 4:	
• Explain non-linear data structure tree and its basic operations.	
Module 5:	
• Discuss and implement graphs using various representations.	
Module 6:	
• Explain and compare various searching and sorting techniques.	

EVEN Semester

EVEN Semester

Professional Core (Theory) Courses

Title of t	he Cour	se: A	pplie	d Mat	thema	atics f	or Co	mput	er Sci	ience	and						
	~ ~	E	ngine	ering								Ι		T	P		Cr
Course C	Code: 50	CS221											3	0	0		3
Desirable	e requir	emen	ts: Er	nginee	ring N	Mathe	matic	s I and	l Engi	neerii	ng Ma	thema	tics I	Ι			
Textbook	ks:																
Textbook	KS:	(T •			1	• ,	1		C	Ŧ		₄ th	1	201			
I. Gilber	t Strang	, "Lin	ear A	lgebra	and 1	its app		ons",	Cenga	ige Le	earning	g, 4‴€ a ∧ mm	ditio	n, 201	4 Dooma	- 10	
2. George	ication Services Pvt. Ltd., 4 th edition, 2017																
3 Timot	nothy C. Urdan, "Statistics in Plain English", Routledge-Taylor and Fransis Group, 3 rd																
Edition	lition, Volume 1, 2010.																
4. Alice	Alice Zheng, "Evaluating Machine Learning Models" O'Reilly Media, 2015																
Referenc	ierences:																
2. Seymo	eymour Lipschutz and Mark Lipson,"Schaum's outlines of Theory and Problems of Linear Algebra",																
Tata M	Fata McGraw Hill, 3rd Edition, 2007.																
3. Willia	m Stein,	"Eler	nenta	ry Nu	mber	Theor	y: Pri	mes,	Congr	uence	es, and	Secre	ets", S	pring	er, 1st	t Edi	tion,
2008.	NI *					6.1.		•	. 1 •	11 0	1 /	·	1	•	11		
Course C	Jojectiv	es: If	a = M	in obje		or thi	S COU	rse 1s	to Dul	10 a 10	Solont	10n 10	or solv	ing pi	Crunt	ns in	l abu
etc. The c	objective	such s are	as ivia furthe	r divi	ded av	ning, . 	AIIII		nemg	ence,	Sciem		ompu	ung, v	стури	Jgraj	piry
$2 T_{\rm c}$	o infuse	an iin	dersta	nding	of th	s. e matl	nemat	ical th	eorv	of Lin	ear A	lgebra	Eva	luatio	n met	rics f	for
2. IX	omputer	sciend	ce eng	ineer	, or en 5.	e man	ioiiia	ioui ti	leory			.9001u	, _ , u	iuuio			
3. To	o provid	e a fo	undati	ion to	solve	pract	ical p	roblen	ns in c	crypto	graph	y, data	a scie	nce ar	nd ma	chine	e
le	arning.					•				• 1	0 1						
4. To	o give in	sights	s abou	t the j	proper	rties, c	operat	ions a	nd rel	ations	s on Fi	ızzy s	ets.				
Course L	Learning	g Out	comes	5:									1 = 4				
CO A	After the	comp	letion	of the	e cour	se the	stude	nt sho	uld be	able	to		Blo	om's (Cognit	ive	
													leve	el	Descr	iptor	
CO1 I	llustrat	e the	conc	ept of	f Line	ear A	lgebra	a and	Fuzz	y sets	s with	case	2		Under	rstan	ding
S	tudies.																
CO2 A	Apply va	rious e	valuat	$\frac{1}{1}$	etrics	for res	ult ana	alysis		1	• •	1.	3		Apply	ving	
	olve ma lgebra a	tnema nalysi	tical p s eval	roblen	ns usir metri	ig tool	s from	i matn er theo	ematic	area	as, incl	luaing	3		Apply	ing	
CO-PO N	Mapping 1	g:	3, e (u	uution	mouri	es una	nume		<i></i>								
		5															
	PO		~ ~							_	0	_	2	_	61		
	and	01	0 2	03	7 C	0.5	9 C	01	80	60) 1(1) 1	0	õ		
	PSO	P(Ρ	Ρ	Ρ	P	Ρ	Р	P	P	PC	PC	PC	PS	P		
	CO1	2															
		4	- 2	_	-	-	_	-	-	-	-	-	-	-	-		
	$\frac{CO2}{CO3}$	-	5	2	-	-	-	-		-	-	-	-	2	-		
		4	-	3	_	1.1	-	- Modiu~		 h	-	-	-	5	-		
	1: Low, 2: Medium, 3: High																

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

MSE	30	
ISE 2	10	
	50	
LSE ISE 1 and ISE 2 are based on assignment/declared test/g	uiz/seminar/oral etc	
MSE: Assessment is based on 50% of course content (N	ormally first three modules)	
FSE: Assessment is based on 100% course content with	70-80% weightage for course content (normally 1	ast
three modules) covered after MSF	170-0070 weightage for course content (normany i	asi
Course Contents:		
Modulo 1 Voctor Spaces		6 Urc
Introduction Vector spaces Linear combinations	Spanning gate Subanaga Lingar dependence	0 111 5.
introduction, vector spaces, Linear combinations,	Column areas Devision Devis Real Nullity	
and independence, Basis and dimension, Null space	e, Column space, Row space, Rank-Nullity	
theorem.		
Module 2 Advanced Concepts in Linear Algebra		7 Hrs.
Vector dot product, Inner product space, Ler	ngth and orthogonality, Orthogonal sets,	
Orthonormal sets, Orthogonal projections, Gram	-Schmidt Process, Least square problems,	
Applications and significance of Eigen values and E	Eigen vectors.	
Module 3 Fuzzy Sets		7 Hrs.
Introduction to characteristics functions, First	decomposition theorem, Fuzzy relations,	
examples, Fuzzy equations, Operations on Fuzzy se	ts.	
Module 4 Exploratory Data Analysis		6 Hrs.
Discrete and continuous random variables, PDF, C	CDF, percentile. Inter quartile range, central	
tendency (mean, mod, median, dispersion, skewn	ess, kurtosis), variance, standard deviation.	
Mean Absolute Deviation (MAD) Standardization	(Z-score) Normalization	
Module 5 Evaluation metrics		6 Hrs
Intersection over union (IoII) Inception score Free	chet Incention distance BIEU METEROR	0 111 5.
Pough CIDEP score Confusion Matrix El Score	Pagell or Sonsitivity, Goin and Lift Charts	
Kolmogorov Smirnov Chart AUC BOC L	a Loss Cini Coofficient Concordent	
Discondent Datio Doot Maan Squared Error	Jg Loss, Onn Coentelent, Concordant –	
Madula (Number theory)		7 II
Module o Number theory		/ H rs.
Primality Testing: Primality Tests, Pseudo prim	es, Fermat's pseudo primes, Factorization	
techniques, Multiplicative inverse. Euclidean algor	rithm, Chinese remainder theorem, Fermat's	
little theorem, Wilson's theorem, Primitive roots, Q	uadratic residues.	
Module wise Measurable Students Learning Outc	omes :	
After the completion of the course the student sho	uld be able to:	
Module 1:		
• Solve the problems on vector spaces.		
Module 2:		
• Apply the core concept of Linear Algebra to 1	real life applications	
Module 3.		
 Illustrate the knowledge of fuzzy set and syst. 	em through set theory	
Modulo 4.	eni unough set meory.	
Viewelize and understand the different date fr	om spinnes and angineering domains using ste	tistics
• Visualize and understand the different data in	on science and engineering domains using sta	uistics
loois. Madada 5.		
		4 1
• Make use of appropriate evaluation mentics in	n the analysis of simple datasets or proposed r	netnod.
Module 6:		
• Identify how number theory is related to and	used in cryptography.	

T1 (1			1		
Title (of the Course: Formal Language and Automata Theory	т	T	П	Cr
Cours	e code: 5CS222	L	1	P	Cr
		3	1	0	4
Desira	able requirements: Discrete Mathematics				
Textb	ooks:				
1.	John C. Martin, "Introduction to Languages & Theory of Computati 2009	on", Tata	a McGra	w-Hill, 3	3 rd Ed.,
2.	John E.Hopcraft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction Languages and Computations", Pearson Edu., 3 rd Ed., 2009	to Auton	nata The	eory,	
3.	Daniel I. A. Cohen, "Introduction to Computer Theory", Wiley, 2 nd	Ed., 2008	8		
Refer	ences:				
1.	J.P.Tremblay & R.Manohar, "Discrete Mathematical Structures with Science", Tata McGraw-Hill, 2008	n Applica	tions to	Compute	r
2.	K.L.P. Mishra & N. Chandrasekaran, "Theory of Computer Science"	", PHI, 2 ⁿ	nd Ed., 2	2002	
3.	Vivek Kulkarni, "Theory of Computation", Oxford University Press	, 1 st Ed.,	2013		
Cours	se Objectives :				
This c	ourse is one of the core subjects for Computer Science and Engine	ering stud	dents wl	hich deal	s with the
theory	related to the practical aspects of computation. The main emphasized	s is on so	lving pi	oblems u	universally
encou	ntered in designing a language translator, regardless of source or ta	rget mac	hine.		·
1.	To explain basic terminologies related to formal languages and A	utomata	theory.		
2.	To provide foundation to critically analyze grammars, regular exprelationship.	pressions	, langua	ges, and	their
3.	To inculcate theoretical knowledge to design Automata/Machine recognizer.	as a lang	uage de	scriptor a	and

Course Learning Outcomes:

СО	After the completion of the course the student should be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Explain the fundamental concepts related to string, language, grammar	2	Understanding		
	and their properties				
CO2	Examine and Construct different grammars, regular expressions and relate	3	Applying		
	the languages defined by different grammars and regular expressions.				
CO3	Design Finite Automata, PDA, Turing Machine to recognize different	6	Creating		
	languages.				

CO-PO Mapping :

PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	P07	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	3	-	2	-	-	-	-	-	-	-	-	3	-
CO3	3	3	-	2	-	-	-	-	-	-	-	-	3	-
					1.1	ow 2.1	/ledium	3 [.] Hio	ıh					

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks								
ISE 1	10								
MSE	30								
ISE 2	10								
ESE 50									
ISE 1 and ISE 2 are based on assignment/declared test	/quiz/seminar								
MSE: Assessment is based on 50% of course content (Normally first three modules)								
ESE: Assessment is based on 100% course content wi	th 70-80% weightage for course content (norma	ally last							
three modules) covered after MSE.									
Course Contents:									
Module 1		6 Hrs.							
Types of Proofs, Mathematical Induction and Re	cursive definitions, Regular expressions &								
corresponding regular languages, examples and	its applications, unions, intersection &								
complements of RL, Pumping Lemma for RL.									
Module 2		10 Hrs.							
Deterministic finite automata definition and represent transitions, Equivalence of DFAs, NFAs and NFA-^s	ntation, Nondeterministic F.A., NFA with ^ s. Kleene's theorem & proofs, minimum state								
FA for a regular language, minimizing number of state	es in an FA.								
Module 3		6 Hrs.							
Definition and types of grammars and languages, derive CFL's., Union, Concatenation and Kleene's operations Pumping Lemma & examples	a, Intersection and complements of CFLs,								
Module 4		6 Hrs							
Definition deterministic PDA types of accentance at	ad conversions to each other CEGs & PDAs	0 111 5.							
Top-Down & Bottom-up parsing	id conversions to each other, er es & r DAs,								
Module 5		1 Hrs							
BNE CNE and GNE notations. Eliminating A pro-	duction and unit productions from a CEG	7 111 5.							
Eliminating useless variables from a Context Free Gra	mmar								
Modulo 6	iiiiiai.	7 Hrs							
Models of computation definition of TM as Langue	age Acceptors Combining Turing Machines	/ 1115.							
computing a function with a TM. Variations in TM, TI more than one tape. Nondeterministic TM and University	Ms with doubly-infinite tapes, sal TM.								
Module wise Measurable Students Learning Outcom	nes :								
After the completion of the course the student should Module 1:	d be able to:								
• Explain basic terminologies related to theory of	computation and construct regular expressions								
recognising regular languages	computation and construct regular expressions								
Module 2.									
• Explain finite state system and design finite auto	omata for regular languages								
Module 3.	onnaa for regular languages.								
• Evalain language syntax grammar construct co	ntext free grammars for languages								
Module 4.	next nee granniars for languages.								
• Design push down automata and demonstrate di	fferent persing techniques								
• Design push down automata and demonstrate di	merent parsing techniques.								
Module 5:									
• Explain different normal forms and their applica	ations.								
Module 6:									
Design Turing machines for different formal lar	nguages and illustrate variants of Turing machin	e.							
Tutorial:									
Based on the syllabus, 15 assignments will be given t	o the students focusing on problem solving ap	proach.							

Title of the Course: Operating Systems Course Code: 5CS223	L	Т	Р	Cr
	3	0	0	3

Desirable requirements:

Textbooks:

- 1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, "Operating System Concepts", John Wiley, 10th Edition. 2018
- 2. D. M. Dhamdhere, "Operating Systems A Concept-Based Approach", McGraw-Hill, 3rd edition, 2012 **References:**
- 1. Charles Crowley, "Operating System A Design Oriented Approach", McGraw-Hill Education Pvt. Ltd., 2001
- 2. Achyut S. Godbole, Atul Kahate "Operating System with Case Studies in Unix, Netware and Windows NT", Tata McGraw Hill,3rd edition, 2010
- 3. D.M.Dhamdhere, "System Programming and Operating Systems", Tata McGraw Hill, 2nd Edition, 1999

Course Objectives: A successful student will be able to understand the basic components of a computer operating system, and the interactions among the various components. The course will cover an introduction on the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems.

- 1. To introduce students with basic concepts of operating system, system software, threads and their communication
- 2. To familiarize the students with various views and management policies adopted by O.S. as pertaining with processes. Deadlock. memory. File and I/O operations.
- 3. To provide the knowledge of basic concepts towards process synchronization, Mutual exclusion algorithms and deadlock detection algorithms and related issues.
- 4. To inculcate importance of memory management, storage management and I/O device management in OS design.

Course	e Learning Outcomes:					
CO	After the completion of the course the student should be able to	Bloom's Cognitive				
		level	Descriptor			
CO1	Describe the primitive concepts of Operating System services and system software functionality.	2	understanding			
CO2	Illustrate Process management, Memory management, Storage management and I/O management core techniques in effective execution of processes.	3	applying			
CO3	Assess various algorithms of Process, Memory, Storage & I/O management for performance and quality criterion.	5	evaluating			

CO-PO Mapping :

PO and PSO	POI	P02	P03	P04	PO5	P06	P07	PO8	604	PO10	PO 11	P012	PS01	PSO2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	2	-
CO3	2	3	-	-	-	-	-	-	-	-	-	-	3	-

Assessments:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks

ISE 1 10										
MSE	30									
ISE 2	10									
ESE	50									
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.										
MSE: Assessment is based on 50% of course content (Normally first three modules)										
ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally 1s										
three modules) covered after MSE.	, , , , , , , , , , , , , , , , , , ,									
Course Contents:										
Module 1 : Overview of Operating System		6Hrs.								
Notion of operating systems Operating system service	es user operating system interface system calls	0111.00								
types of windows and UNIX system calls system	em programs operating system design and									
implementation operating system structure Virtual Mac	hines									
Case Study · Windows and UNIX Operating System	Annes									
Module 2 · System Softwares		6Hrs								
Notions of editors Macro processors Compilers Assen	nblers loaders & linkers Multiprogramming and	01115.								
time sharing	noters, toaders & mikers, whitiprogramming and									
Modulo 3 · Process Management		7Urs								
Process Concent :		/1115.								
Process concept : Process concept process scheduling operation on process	ass inter process communication anomalo of IPC									
sustems and communication in client conver systems	ss, inter-process communication, example of if C									
Broossa Schoduling										
Pasia concenta, scheduling criteria, scheduling algorithm	a algorithm avaluation									
Madule 4: Process Coordination		7U ma								
Supervised to a second		/ n rs.								
Synchronization: Declarge and the aritigal section much lam Detension's colu	ution armahannization handware companyang									
alassia problems of Supebronization	ution, synchronization nardware, semaphores,									
Deedlock										
Deaulock : System model deadlock characterization methods for h	andling doublooks, doublook provention									
deadlock avoidance, deadlock detection	and mg deadlocks, deadlock prevention,									
Madula 5 - Mamary Management		OTTma								
Module 5: Memory Management		onrs.								
Rechargement strategies:	paging structure of the page table. Segmentation									
Virtual Momory Monogement	pagnig, subcture of the page table, Segmentation.									
Pasteround demand nacing conv on write nace realed	amont algorithms allocation of frames									
Thushing	cement algorithms, anocation of frames,									
Madula (. Store as Management		5TT-ng								
File Strateme		SHIS.								
File sourcest access methods, directory and disk structure	a file system mounting file sharing protection									
File concept, access methods, directory and disk structur	e, me-system mounting, me snaring, protection.									
Module wise Measurable Students Learning Outcomes	S:									
Module 1:										
• Describe the basic functions of OS, its componen	ts and its working.									
Module 2:										
• Illustrate the basic terminologies of system softwa	ares like compiler, assembler.									
Module 3:										
• Describe the issues related to process management	it and solve the CPU scheduling problems.									
Module 4:										
• Describe different ways of process synchronization	on and handling deadlocks.									
Module 5:										
• Explain the issues related to memory management	t.									
Module 6:										
• Describe different ways of how logical view of Fi	ile system is provided to the users by OS.									

Title of the Course: Database Engineering Course Code: 5CS224	L	Т	Р	Cr
	3	0	0	3

Desirable requirements: Data Structures

Textbooks:

 Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", Mc-Graw Hill New York Publications, 6th Edition, 2011

References:

- 1. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Mc-Graw Hill New York Publications, 3rd Edition, 2003
- 2. Ramez Elmasri and Shamkant Navathe, Benjamin Cummings, "Fundamentals of Database Systems", 3rd Edition, 1999 / later

3. Bipin c. Desai "An Introduction to Database System", Galgotia Publications, 2nd revised edition

Course Objectives : Goal of this course is to elucidate basics of database design, provide bird view of data using ER- model, introduce relation model to depict relation between them, discussion of clause to manipulate, access data using Query language, apply normalization to remove redundancy, explain access control mechanism for security and introduce storage and indexing strategies. Course objectives are as follows,

- 1. To Impart various functional components of database design, manipulation and access language, redundancy issue, storage strategy, transaction and concurrency strategy and its security and recovery system
- 2. To Introduce an physical and logical database designs, database modeling, relational, hierarchical and network models
- 3. To Provide in depth understanding of relational model and the theoretical issues associated with relational database design.
- 4. To Exemplify various SQL clauses of Data manipulation, Data access and Data control.

				<u> </u>				/							
Course	e Learnir	ng Out	comes	:											
CO	After th	e com	oletion	of the	course	the stude	ent shou	ld be ab	le to		Bloor	n's (Cognitive	:	
											level]	Descripto	or	
CO1	Explair	n conce	epts of	concep	otual dat	abase de	esign, re	edundan	cy probl	em,	2	٦	Understa		
	storage system, transaction processing, concurrency control and													U	
	security	security in DBMS													
CO2	Apply t	Apply theoretical knowledge to design ER diagram, prepare relational											Applying		
	schema using appropriate constraints and normalization for a given												11 5 0		
	specification of the requirement														
CO3	Constru	uct SO	L quer	ies for	Open s	ource an	d Com	nercial			3		Applying		
0.00	DBMS	for a g	iven sr	pecifica	ation sch	nema to	fetch es	sential d	lata		-				
CO-PC) Mannii	ng:													
	/	-8.													
and	01	02	03	5	J 5	9C	1 C	S C	60	010		Ī	012	0	õ
	P	P	Р	Р	P(Р	Р	P	Р	PC		2	PC	PS	PS
$\frac{150}{001}$	2														
		-	-	-	-	-	-	-	-	-		-	-	-	-
CO2	3	2	3	-	-	-	-	-	-	-		-	-	2	-
CO3	-	-	2	- 1	-	-	-	-	-	-		-	-	-	-

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

1: Low, 2: Medium, 3: High

Assessment	Marke							
ISE 1	10							
ISE I MSE	20							
	10							
<u> </u>								
ESE ISE 1 and ISE 2 are based on assignment/declared t	SU Superior etc.							
MSE : Assessment is based on 50% of course conter	t (Normally first three modules)							
FSE: Assessment is based on 100% course content to	with 70,80% weightage for course content (no	ormally last						
three modules) covered after MSE	with 70-80% weightage for course content (in	Simally last						
Course Contents:								
Module 1: Introduction and Database Modelling	using ER Model	6 Hrs.						
Introduction: General introduction to database	systems its advantages and applications	U III St						
Database System Architecture, Database users a	nd Administrator. Data models. Database							
management system. Database languages. View of I	Database. Data Models.							
ER Model: Entity set. Entity types, attributes. Nota	tions. Relationship sets. Relationship types.							
Keys- super key, candidate key, primary key, Exter	nded Features of ER Model-Generalization,							
Specialization and aggregation	, ,							
Module 2: Relational Model and SQL		8 Hrs.						
Relational Model: Structure of Relational Databas	se, Reduction of ER model into Relational							
schemas, Schema-instance distinction, Referentia	l integrity and foreign keys, Relational							
algebra, Tuple relation calculus, Domain relational c	alculus, Example queries,							
SQL: Introduction to SQL, Data definition stater	nents with constraints, Insert, Update and							
Delete, Set Operations, Aggregate functions group	p by and having clauses, Nested Queries,							
Views, Complex Queries, Joins.								
Module 3: Relational Database Design		7 Hrs.						
Importance of a good schema design, Motivation for	or normal forms, Atomic domains and 1NF,							
Dependency theory - functional dependencies, Clo	sure of a set of FD's, Definitions of 2NF,							
3NF and BCNF, Decomposition algorithms and o	desirable properties of them, Multi-valued							
dependencies and 4NF, Join dependencies and	definition of 5NF, Temporal Functional							
Dependencies								
Module 4: Data Storage and Indexing		6 Hrs.						
File organization, Organization of records in files, D	ata Dictionary, Database Buffer, and							
Indexing: Concept, Ordered Indices-Primary, Second	dary, Multilevel, B+ Tree Index, Hashing,							
Hash Indices, Dynamic hashing, Multiple key access	s, Bitmap Indices.							
Module 5: Transaction Processing and Concurre	ency Control	7 Hrs.						
Transaction Processing: Concept, ACID properties	, Transaction states, Storage Structure,							
Implementation of atomicity, isolation and durability	y, Serializability, Testing for serializability.							
Concurrency Control: Lock-based protocols, Time	stamp - based Protocols, Validation - based							
Protocols, Multiple Granularities, Deadlock handling	g.							
Module 6: Database security and Recovery Syste	em	5 Hrs.						
Authentication, Authorization and access control, D	iscretionary Access Control (DAC),							
Mandatory Access Control (MAC) and Role of the I	Database Administrator (RBAC) models,							
Intrusion detection, SQL injection. Failure classifica	tion, Recovery and Atomicity, Log based							
recovery, Checkpoints, Shadow Paging, Buffer man	agement in crash recovery.							

Module wise Outcomes

At end of each module students will be able to

Module 1

• Explain the concept of database system and its applications, database system architecture and various database models, appropriate constraints, describes entity, attribute, relation, key, primary key, super key, candidate key, extended features specialization and generalization with notations.

Module 2

• Construction of ER- model, relation model to represent complex data in pictorial form for better design and extract information from the database by constructing SQL queries.

Module 3

• Illustrate and use the concept of functional dependency and various normal forms for "good" database design.

Module 4

• Describe file organization concepts and various indexing techniques.

Module 5

• Describe the concept of transaction and implement transactions and compare various concurrency control mechanisms and apply the concepts for hands-on experimentation.

Module 6

• Identify and define Authentication, Authorization and access control mechanisms for data security and recovery mechanisms using log based recovery, checkpoints, shadow paging, and Buffer management in crash recovery.

Title of	f the Cours	se: Co	mpu	ter N	letwo	ork												
Course	rse Code: 5CS225															T	P	Cr
															3	0	0	3
Desira	ble Requir	ements	s : D	ata C	Comr	nuni	catio	n										
Textbo	Textbooks:																	
1.	Behrouz A	. Forouz	zan, '	'Data	a con	nmur	nicati	on ai	nd No	etwo	rking	g", Ta	ita M	Gra	w-Hi	11, $4^{th}/5$	th edition	., 2017
2.	 witham Stanlings, Data and Computer Communications, Frentice Hall (PHI), 8 /9 edition, 2010/2011 Andrew S. Tanenbaum, "Computer Networks", Prentice Hall (PHI), 3rd /5th Edition, 2008/2010 																	
3. Andrew S. Tanenbaum, "Computer Networks", Prentice Hall (PHI), 3 rd /5 th Edition, 2008/2010 References:																		
References: 1. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach Featuring the																		
1.	I. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", Pearson Education,5 th /6 th edition, 2012/2013														.ne			
2.	 Thomas G. Robertazzi, "Computer Networks and Systems: Queueing Theory and Performance 														ce			
	Evaluation", Springer, 2 nd edition, 2000																	
Course	Course Objectives: The course is designed to give a clear view of computer networking by introducing														ing			
them to networking protocols, features and techniques. Objectives are divided as below:													_					
1.	1. To recall protocol functions and issues related to Data Link layer.																	
2.	 To explain the features and operations of various protocols in TCP/IP suite. 																	
3. To elaborate the design and configuration of various networking protocols.																		
Course	Course Learning Outcomes:																	
CO	After the completion of the course the student should be able to Bloom's Cognitive																	
	level Descriptor														r			
CO1	O1 Articulate networking basics and different layers in networking models 2 Understandi													nding				
CO2	2Examine the features and operations of protocols of data Link Layer,3Applying																	
Network layer, transport layer and Application Layer.																		
CO3	CO3Categorize and compare networking protocols.4Analyzing													g				
CO-PC) Mapping	;:	1			1	r –	r	r –	r –	r	r	r r					
		PO									_	0	_	2	1	2		
		and	0	0	O3	04	02	Õ	6	08	60	010	01	01)	00	Õ		
		PSO	Р	P	P	Ч	Р	P	P	Р	P	Ρ	Ρ	Ρ	ď	Å		
		CO1	1	-	-	-	-	-	-	-	-	-	-	-	-	-		
1		CO2	1	2	-	-	-	-	-	-	-	-	-	-	1	-		
		CO3	-	-	1	-	-	-	-	-	-	-	-	-	-	-		
						1.	: Low	, 2: M	lediur	n, 3: I	High							
Assess	ments :																	
Teache	er Assessm	ent:																
Two co	mponents	of In Se	emes	ter E	valu	atior	n (ISI	E), C	ne N	Aid S	Seme	ster]	Exam	inati	ion (I	MSE)	and one E	End
Semest	er Examina	ation (E	ESE)	havi	ng 20	0%,	30%	and	50%	wei	ghts	respe	ective	ly.		,		
		Asse	essme	ent							-	•		Ma	rks			
		I	SE 1											1	0			
		Ν	ЛSE											3	0			
		I	SE 2											1	0			
			ESE			/.1 - 1	o.u 1	4		· · ·	ou : 1			5	0			
ISE I a	and ISE 2 ar	e based	on a	ssign	ment	/decl	ared	test/q	u1Z/S	emin	ar etc). 	م م م م ا					
FSE:	Assessment	is based	1 on 1	00% (00%		uise (nten	t with	011118 070-9	111y 11 20% -	ust til weigt	nee II htage	for c	58) Miree	cont	ent (no	rmally lac	t I
three n	nodules) cov	vered af	ter M	SE.	cour		111011		i 70-0	5070	,, ergi	inuge	101 0	Jui 30	cont		inuny ius	-
	,,																	I
	S	Y B.Te	ech. (Com	pute	r Sci	ience	e and	Eng	inee	ring)	Cur	riculu	m fo	or 202	20-21		

Course Contents:	
Module 1: Networking Basics	4 Hrs.
Evolution of network, Introduction to Computer Networks, Types of Network, Physical & Logical	
Topology, Introduction to different types of network, internetworking, Intranet, Internet and revisit	
to Reference models-OSI, TCP/IP.	
Module 2:Data Link Layer	8 Hrs.
The Channel Allocation Problem-Static and Dynamic Allocation, Multiple Access Protocols- ALOHA, CSMA, CSMA/CD, WDMA, WLAN. Ethernet-cabling, coding, MAC Protocol, Binary exponential back off algorithm, performance, switched Ethernet, fast Ethernet, gigabit Ethernet. Wireless LANs-802.11 stack, physical layer, MAC, frame structure Bluetooth-architecture, application, protocol stack, Data Link Layer Switching- Bridge, hub, repeater, switch, router, gateways, VLAN.	
Module 3: The Network Layer:	7 Hrs.
Logical Addressing: IPv4 addresses , IPv6 addresses, internetworking, IPv4, IPv6, transition from IPv4 to IPv6, Address Mapping, ICMP, IGMP, Unicast and Multicast Routing, Numerical problems on logical addressing.	
Module 4: The Transport Layer:	7 Hrs.
Process-to-process delivery, user datagram protocol (UDP), TCP, SCTP, Socket Programming,	
Module 5: Congestion Control and Quality of Service	6 Hrs.
Congestion, congestion control, congestion control in TCP, introduction to queuing theory,	
quality of service, techniques to improve qos, integrated services, differentiated services.	
Module 6: Application Layer	7 Hrs.
Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP.	
Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to: Module1 : • Articulate the networking Basics.	
• Explain and examine wired and wireless communication with medium access control layer. Module3 :	
• Understand the working of network layer and compare the techniques for routing at network layer.	
Module4 :	
• Examine the services provided by transport layer.	
Module5 :	
 Compare techniques to improve QoS. and congestion control 	
Module6 :Articulate knowledge of various application layer protocols.	

EVEN Semester

Professional Core (Lab) Courses

Title of the Course: Database Engineering Lab	L	Т	Р	Cr
Course Code: 5CS274	0	0	2	1

Desirable requirements: Data Structures

Textbooks:

1. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, "Database System Concepts", Mc-Graw Hill New York Publications, 6th Edition, 2011

References:

- 1. Raghu Ramakrishnan and Johannes Gehrke, "Database Management Systems", Mc-Graw Hill New York Publications, 3rd Edition, 2003
- Ramez Elmasri and Shamkant Navathe, Benjamin Cummings, "Fundamentals of Database Systems", 3rd Edition, 1999 / later
- 3. Bipin c. Desai "An Introduction to Database System", Galgotia Publications, 2nd revised edition

Course Objectives : Main objective of this course is to practically demonstrate the ER- model for given specific requirement using open source or commercialized tool, show transformation of ER-model into Relation model on paper as well as on s/w tool, depict Relation model in table format on Open source or commercialized DBMS using query language and introduce advance topics to interact with DBMS like view, trigger, procedures and aspects of authorization.

- 1. To elaborate use of conceptual database designs to prepare database schemas, indexing, transaction processing, concurrency and recovery control issues associated with database management systems.
- 2. To make the students aware of various relational database systems and the systematic approach to apply theoretical knowledge to design practical applications to solve real world problems on the small scale.
- 3. To make the students understand SQL and to use it efficiently to retrieve data from the database.

Course Learning Outcomes:

CO	After the completion of the course the student should be able to	Bloom's Cognitive		
		level	Descriptor	
CO1	Interpret the problem statement of an enterprise, identify the need, analyse the problem and design ER diagram for the enterprise as well as prepare the relational database schema for the enterprise identifying integrity constraints for efficient design using modern tools.	3	Applying	
CO2	Apply systematically theoretical knowledge to design practical applications to solve real world database problems on the small scale and theoretically justify the design and use fundamental transaction processing, concurrency control etc. in real applications.	3	Applying	
CO3	Compare and use various ways of writing the queries for a given problem and extract required information from the database.	4	Analyzing	

PO and PSO	POI	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	-	2	2	2	2	-	-	-	-	-	-	-	3	-
CO2	-	-	-	2	3	-	-	-	-	-	-	-	3	-
CO3	-	-	-	3	-	-	-	-	2	-	-	-	3	-

1: Low, 2: Medium, 3: High

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
I A 1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25		
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23		
LA2	Lab activities,	Lah Course Feaulty	During Week 5 to Week 8	25		
	attendance, journal	Lab Course Faculty	Submission at the end of Week 9			
1.4.3	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25		
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23		
Lab ESE	Lab Performance and	Lab Course feaulty	During Week 15 to Week 18	25		
	related documentation	Lab Course faculty	Submission at the end of Week 18			

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Assignments to be carried out in any RDBMS like ORACLE//DB2/SQL-Server/PostgreSQL: Assignments include conceptual design using ER model, SQL and PL/SQL

- 1. Database Design using ER model
- 2. Database schema design
- 3. Database creation and applying integrity constraints
- 4. Study of DDL statements and data manipulation statements
- 5. Study of Basic SQL SELECT statement for displaying data from single table or multiple tables
- 6. Study of SQL constructs for aggregating data using group functions, sub-queries and complex queries
- 7. Study and Implementation of Triggers
- 8. Study and Implementation of Stored Procedures
- 9. Transaction isolation levels and Concurrency control
- 10. Few aspects of authorization such as creating and managing users, roles, granting and revoking of privileges
- 11. Implementation of B+ tree, hash index in C or C++

Title o Cours	Course: Computer Network Lab Course code: 5CS275											L 0	T 0	P 2	Cr 1
Desirable Requirements: Data Communication															
 Textbooks: 1. Richard Steven, "Unix network programming", for Socket Programming, Prentice Hall ,3rd edition, 2015 2. James F. Kurose and Keith W. Ross, "Computer Networking: A Top-Down Approach Featuring the Internet", Pearson Education,5th /6th edition, 2012/2013 															
Refer 1. 2.	 References: 1. Jeffery S. Beasley, "Networking", New Riders Press, 2nd edition, 2008. 2. Larry L. Peterson, Bruce S. Davie "Computer Networks: A Systems Approach", The Morgan Kaufmann Series in Networking, 5th edition, 2011. 														
protoc 1. 2. 3.	 Course Objectives: The course is designed to give the practical view of various networking concepts and protocols using tools and simulators. 1. To dig up theoretical and practical knowledge in computer networks. 2. To distinguish and show how to design and analyze different types of communication protocols. 3. To interpret basic skills needed to write network application using socket interface. 														
Cours	After	ing Oi the co	<u>itcome</u> mpleti	es: on of 1	the co	urse th	e stud	lent sh	ould h	e able	to	Blo	om's	Cogniti	ive
												1	.1		- 4
C01	Demo	nstrat	e the p	ractica	l aspec	ct of ne	etwork	ing rel	ated to	the		3		Applyi	ng
CO2	Simul	ate, co	nfigure	e and a	nalyze	e the ne	etwork	using	netwo	rking t	ools.	4		Analyz	zing
CO-P	O Mapp	ing :			v									•	
	PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O	PO 10	PO 11	PO 12	PS01	PS02
	CO1	1	-	-	2	-	•	-	-	-	-	-	-	1	-
	CO2	-	-	-	-	3	-	-	- Lliah	-	-	-	-	-	-
	1: Low, 2: Medium, 3: High														

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
I A 1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25		
LAI	attendance, journal	Lab Course Paculty	Submission at the end of Week 5			
LA2	Lab activities,	Lab Course Feeulty	During Week 5 to Week 8	25		
	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23		
1 4 3	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25		
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23		
Lab ECE	Lab Performance and	Lab Course feaulty	During Week 15 to Week 18	25		
LaU ESE	related documentation	Lab Course faculty	Submission at the end of Week 18			

SY B.Tech. (Computer Science and Engineering) Curriculum for 2020-21 Week 1 indicates starting week of Semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

At least 10 to 12 assignments should be conducted on following topics:

- 1. Study of Internetworking devices.
- 2. Study of basic networking commands and network configuration.
- 3. Study of packet capturing and analyzing tools on windows platform(e.g. Wireshark)
- 4. Wireshark Lab: Ethernet and ARP.
- 5. Wireshark Lab: 802.11
- 6. Configuration of network topology using packet tracer tool
- 7. Configuration of routing protocols
- 8. Configuration of IPv6 address using Packet Tracer
- 9. Capture and analyze TCP and UDP packet using Wireshark
- 10. Analyzing TCP connection and termination using Wireshark
- 11. Socket programming using TCP and UDP.
- 12. Wireshark Lab: HTTP, DNS

Title of the Course and Course code: Programming Lab 2				
Course Code: 5CS276	L	Т	Р	Cr
	0	0	2	1

Desirable Requirements: Object Oriented Paradigm, Object Oriented Concept and basic implementation in C++.

Textbooks:

- 1. Cay S. Horstmann, Gary Cornell "Core Java Fundamentals Volume –I" (The Sun Microsystems Press Java Series), 10th Edition, March 2016
- Cay S. Horstmann, Gary Cornell, "Core Java Volume II" (The Sun Microsystems Press Java Series), 10th Edition, April 2017

References:

- 1. Herbert Schildt, "Java Complete Reference", McGraw Hill Education, 10th Edition, November 2017
- 2. Kathy Sierra and Bert Bates, "Oracle Certified Associates JAVA Standard Edition 8 Programmer I Exam Guide", McGraw Hill Education (Oracle Press), May 2017
- 3. Kathy Sierra and Bert Bates, "Oracle Certified Associates JAVA Standard Edition 8 Programmer II Exam Guide", McGraw Hill Education (Oracle Press), July 2018

Course Objectives :

Summary: Java is widely used in every corner of world and of human life. Java is not only used in software's but is also widely used in designing hardware controlling software components. JAVA programming language provides variety of data types, methods and some of them are included in syllabus. Learning Java serves as a good introduction to software development. Main objectives are as follows-

- 1. To inculcate the understanding of JAVA programming environment, basic object oriented programming with JAVA (JAVA version 1.8 and above or the latest java version)
- 2. To introduce selection of appropriate concepts of java programming such as static and non-static classes and access modifiers, user defined classes, collection, interface, exception handling, multi-threading, packages like i/o, util, net, jdbc etc.
- 3. To infuse skills of integrating all components to build small java application for real world problem.

Course	Course Learning Outcomes:								
CO	After the completion of the course the student should be able to	Bloom's Cognitive							
		1 1							
		level	Descriptor						
CO1	Convert the real world problem using simple java programing domain and	2	Understanding						
	identify the required java object oriented concept								
CO2	Demonstrate small application using java as a programing language for socio	3	Applying						
	economic importance								

CO-PO Mapping :

PO and PSO	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PS01	PSO2
CO1	2	2	-	-	3	-	-	-	-	-	-	-	-	-
CO2	2	2	1	-	3	-	-	-	-	-	-	-	-	-

1: Low, 2: Medium, 3: High

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
I A 1	Lab activities,	Lab Course Feeulty	During Week 1 to Week 4	25		
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23		
1.4.2	Lab activities,	Lab Course Feeulty	During Week 5 to Week 8	25		
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9			
1 4 3	Lab activities,	Lab Course Feeulty	During Week 10 to Week 14	25		
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23		
Lab ESE	Lab Performance and	Lab Course fegulty	During Week 15 to Week 18	25		
LaU ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	25		

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Module 1 - An Introduction to Java 3 F Features of JAVA language, Java Programming Environment-JDK, JRE, JVM, Fundamental Programming Structures in Java, Comparison of Java with C++, classes and objects, Inheritance and Interfaces. Features of JAVA language, Java Program for Java with C++, classes and objects, Inheritance and Interfaces. Experiments: I. Installation of jdk package, understand the difference between jdk and jre folder, set environment variable PATH/CLASSPATH. 2. Simple hello word program for understanding – java structure, command and steps for executing java program. Also simple program for reading input from user using scanner class. 3. Implementation of different inheritance types, Multiple Inheritance using Interface Module 2 - Fundamentals of Java 5 H Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java 6 I Module 3 - I/O programming and util package 6 I Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 6 I Experiments: 1. Implemented class. 2. 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 6 I Module 3 - Multithreading in Java 3 I Experiments: 1. Implement exception related to IO and collection	
Features of JAVA language, Java Programming Environment-JDK, JRE, JVM, Fundamental Programming Structures in Java, Comparison of Java with C++, classes and objects, Inheritance and Interfaces. Experiments: 1. Installation of jdk package, understand the difference between jdk and jre folder, set environment variable PATH/CLASSPATH. 2. Simple hello word program for understanding – java structure, command and steps for executing java program. Also simple program for reading input from user using scanner class. 5 H 3. Implementation of different inheritance types, Multiple Inheritance using Interface 5 H Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java 5 H Use of keywords like final, static and abstract, Packages, String class, String Class, String Class implementation, basic operation, creating immutable and mutable string 3. Exception handling 6 J Module 3 - I/O programming and util package 6 J Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 6 J Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 6 J Multithreading - Classes support thread creation and execution Thread States & Synchronization of threads 3 J Multithreading - Classes support thread step for the sag	Hrs.
1. Installation of jdk package, understand the difference between jdk and jre folder, set environment variable PATH/CLASSPATH. 2. Simple hello word program for understanding – java structure, command and steps for executing java program. Also simple program for reading input from user using scamer class. 3. Implementation of different inheritance types, Multiple Inheritance using Interface Module 2 - Fundamentals of Java 5 H Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java 5 H Experiments: 1. Implementation of Package and access mechanism in package 2. 2. String class implementation, basic operation, creating immutable and mutable string 3. Exception Handling 6 Module 3 - I/O programming and util package 6 Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 6 Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 3. 2. Implement scuedt to IO and collection classes. 3. 3. Hubitithreading – Classes support thread creation and execution Thread States & Synchronization of threads 3. Module 4 - Multithreading in Java 3. Module 4 - Multithreadin	
 Simple hello word program for understanding – java structure, command and steps for executing java program. Also simple program for reading input from user using scanner class. Implementation of different inheritance types, Multiple Inheritance using Interface Module 2 - Fundamentals of Java Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java Experiments: Implementation of Package and access mechanism in package String class implementation, basic operation, creating immutable and mutable string Exception Handling Module 3 - I/O programming and util package Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map Experiments: Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. Implement exception related to IO and collection classes. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness Multithreading – display thread information. Multithreading – direct communication and synchronization of threads. 	
3. Implementation of different inheritance types, Multiple Inheritance using Interface Module 2 - Fundamentals of Java 5 H Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java 5 H Experiments: Implementation of Package and access mechanism in package String class implementation, basic operation, creating immutable and mutable string Exception Handling 6) Module 3 - I/O programming and util package 6) Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map The Experiments: Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. B Implement exception related to IO and collection classes. 3 Module 4 - Multithreading in Java 3] Multithreading – Classes support interad creation and execution Thread States & Synchronization of threads 3] 3] Multithreading – display thread information. Multithreading – treat during Thread and Runnable class. 3] Multithreading – treat communication and synchronization of threads. 4 4 Introduction to JDBC (Oracle Connectivity) DI	
Module 2 - Fundamentals of Java 5 H Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java 5 H Experiments: 1. Implementation of Package and access mechanism in package 2. String class implementation, basic operation, creating immutable and mutable string 3. Exception Handling 6 D Module 3 - I/O programming and util package 6 D Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 6 D Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 7 D 1. Implement collection related to IO and collection classes. 3 D 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness 3 D Module 4 – Multithreading in Java 3 D Multithreading – classes support thread creation and execution Thread States & Synchronization of threads 3 D Experiments: 1. Multithreading – display thread information. 3 Multithreading – thread communication and synchronization of threads. Module 5 - Java-Oracle database connectivity DDBC Oracle Connectivity 4 D	
Use of keywords like final, static and abstract, Packages, String class, StringBuilder/StringBuffer class, Exception handling in Java Experiments: 1. Implementation of Package and access mechanism in package 2. String class implementation, basic operation, creating immutable and mutable string 3. Exception Handling 61 Module 3 - I/O programming and util package 61 Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic 61 data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 7 2. Implement exception related to IO and collection classes. 3 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness 31 Multithreading – Classes support thread creation and execution 7 Thread States & Synchronization of threads 31 Multithreading – display thread information. 2 3. Multithreading – display thread information. 4 Multithreading – thread communication and synchronization of threads. 4 Module 5 - Java-Oracle database connectivity 1 <td>Irs.</td>	Irs.
Experiments: 1. Implementation of Package and access mechanism in package 2. String class implementation, basic operation, creating immutable and mutable string 3. Exception Handling Module 3 - I/O programming and util package 6. Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 6. Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 7. 2. Implement collection utility classes – list, set, map with their specific methods available in interface or inglemented class. 3. 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness 3. Module 4 - Multithreading in Java 3.1 Multithreading – Classes support thread creation and execution Thread States & Synchronization of threads 3. Experiments: 1. Multithreading – display thread information. 3. 3. Multithreading – display thread information. 4. Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connectivity 4	
Module 3 - I/O programming and util package 6 Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic 7 data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map 8 Experiments: 1 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 2. Implement exception related to IO and collection classes. 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness Module 4 - Multithreading in Java 31 Multithreading – Classes support thread creation and execution 7 Thread States & Synchronization of threads 3 Experiments: 1 1. Multithreading – display thread information. 3 2. Multithreading – thread communication and synchronization of threads. 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization 4	
Hierarchy of classes in I/O Package, Streams: Character oriented and Byte oriented, Reading basic Image: Character oriented and Byte oriented, Reading basic data types from keyboard, File handling in Java. Utility Methods for Arrays. The Collection Framework : List, Set, Map The Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 2. Implement exception related to IO and collection classes. 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness 3 Imultithreading – Classes support thread creation and execution Module 4 – Multithreading – display thread information. 2. Multithreading – display thread information. 3 Imultithreading – display thread information. 2. Multithreading – display thread information. 4 4 Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases Compatibility of Databases	Hrs.
Experiments: 1. Implement collection utility classes – list, set, map with their specific methods available in interface or implemented class. 2. Implement exception related to IO and collection classes. 3. Program to read basic data types from keyboard using Scanner and check the entered values data type for its appropriateness 31 Module 4 – Multithreading in Java 31 Multithreading – Classes support thread creation and execution 31 Thread States & Synchronization of threads 31 Experiments: 1. Multithreading – display thread information. 31 2. Multithreading – display thread information. 4 Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connecting to Databases 4 Introduction to JDBC (Dracel connecting to Databases 31 Output b D C (or the Connecting to Databases 4	
Module 4 – Multithreading in Java 3 : Multithreading – Classes support thread creation and execution 3 : Thread States & Synchronization of threads 5 : Experiments: 1. Multithreading – display thread information. 6 : Multithreading – create thread using Thread and Runnable class. 6 : Multithreading – thread communication and synchronization of threads. 4 : Module 5 - Java-Oracle database connectivity 4 : Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases 6 ::	
Multithreading – Classes support thread creation and execution Image: Construction of threads Thread States & Synchronization of threads Image: Construction of threads Experiments: Image: Construction of thread information. Multithreading – display thread information. Image: Construction of thread and Runnable class. Multithreading – create thread using Thread and Runnable class. Image: Construction of threads. Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases Connection and Connecting to Databases	Hrs.
Experiments: 1. Multithreading – display thread information. 2. Multithreading – create thread using Thread and Runnable class. 3. Multithreading – thread communication and synchronization of threads. 4 Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases 6	
1. Multithreading – display thread information. 2. Multithreading – create thread using Thread and Runnable class. 3. Multithreading – thread communication and synchronization of threads. Module 5 - Java-Oracle database connectivity 4 Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases	
3. Multithreading – thread communication and synchronization of threads. Module 5 - Java-Oracle database connectivity Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases	
Module 5 - Java-Oracle database connectivity4Introduction to JDBC (Oracle Connectivity)JDBC Drivers & InitializationCreating Connection and Connecting to Databases4	
Introduction to JDBC (Oracle Connectivity) JDBC Drivers & Initialization Creating Connection and Connecting to Databases	Hrs.
Creating Connection and Connecting to Databases	
CURD operation Using JDBC (Oracle Connectivity)	
Performing operations on specific row in oracle database using JDBC	
 Experiments: 1. Design Database program for Employee details and implement INSERT, SELECT, DELETE, and UPDATE queries. 2. Implement ResultSet class. 3. Implement RowSet class. 	

Module 6 - Graphical user interface in Java					
GUI Design in Java – User Interface					
Event Handling in Java - Event delegation model (MVC model)					
Introduction to Swing.					
Experiments:					
1. GUI design and Event handling					
2. GUI design using Swing package - a) Celsius to Fahrenheit conversion b) Login and Password					
Verification.					
3. Implement exception related to event handling, GUI design.					

Presentation and Report Writing (5CS277)

EVEN Semester

EVEN Semester

Mandatory Life Skill Courses

Environmental Sciences (5IC201)

EVEN Semester

Minor Specialization Courses

Title of the Course: Software Engineering (Minor)	L	Т	Р	Cr
Course Code: 1CSMO2	3	0	0	3
Desired requirements:				

Textbooks:

- 1. Pankaj Jalote, "An Integrated Approach to Software Engineering", Narosa Publishers, 3rd Edition, 2005.
- 2. Ian Sommerville, "Software Engineering", Addison-Wesley, 7th Edition, 2004.
- 3. James Rumbaugh, "Object Oriented Modeling and Design with UML", Pearson, 2nd Edition, 2004.

References:

- 1. Roger S. Pressman, "Software Engineering: Practitioner's Approach", McGraw Hill, 7th Edition, 2010.
- 2. Jawadekar W.S., "Software Engineering: principles and practices", Tata McGraw Hills, 1st Edition.
- 3. Gillies A.C. and Smith p., "Managing Software Engineering: CASE studies and solutions", Chapman and Hall, London.

Course Objectives :

- 1. To unleash the orientation & importance of engineering approach to software development.
- 2. To infuse the knowledge of software processes & models practiced at IT industries.
- 3. To acquaint students with the SDLC phases in detail.
- 4. To emphasize on Design aspect with UML technology.
- 5. To inculcate the importance of software quality by virtue of software testing methods.

Course Learning Outcomes:

CO	After the completion of the course the student Learner be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Grasp industry processes on software development to become IT industry-savvy.	2	Understanding		
CO2	Prepare with the spirit of team-working and importance of using artifacts at SDLC phases.	3	Applying		
CO3	Distinguish and evaluate procedural & OO based development practices.	4	Analyzing		
CO4	Integrate expertise on CASE tools usage especially for design and testing of software to undertake industrial strength software projects.	6	Creating		

CO-PO Mapping :

PO and PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	P07	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1			2								3	2	2	
CO2			1	2				2	2	3				
CO3					2									
CO4			2									2		3

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on pedagogy such as brainstorming, role play, quiz, presentations etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Software Processes				
Need of software engineering approach, ETVX model, Project management process,				
Software development process & models, Configuration management process, Process				
management process.				
Module 2: Software Quality & Project Planning	2 Hrs.			
Quality objectives, PAF Model, Quality standards CMM & ISO, Project management				
plan, Cost estimation using COCOMO, Risk management.				
Module 3: Software Requirement Analysis & Function Oriented Design	2Hrs.			
Software requirement process, Characteristics & Components of SRS.				
Design principles, Module level concepts.				
odule 4: Object Oriented Design with UML Diagrams	2 Hrs.			

UML model, UML diagrams: Use-case, Class, Activity, State-chart, Interaction, Sequence,	
Collaboration, Component, Deployment.	
Module 5: Coding	3Hrs.
Best programming practices such as TDD & pair programming, verification.	
Module 6: Software Testing	5Hrs.
Testing purpose and concepts, test process, Levels of testing, Black Box and White Box	
Testing.	
σ	
Module wise Measurable Students Learning Outcomes :	

The student should be able to:

Module 1: Software Processes

• Awareness of Software processes & Models used at IT.

Module 2: Software Quality & Project Planning

- Grasp quality parameters and standards such as PAF.
- Know & prepare project planning phases and responsibilities with WBS.

Module 3: Software Requirement Analysis & Function Oriented Design

• As per SDLC phase understand requirement process and need of SRS artifact. Understand functional & non-functional requirements as well. Realize the importance of design aspects, concepts & methodology. Practices to learn how to draw DFD on requirements.

Module 4:Object Oriented Design with UML & Continual Integration

• Building capability to draw & distinguish various UML diagrams on requirements. Articulating usage of Continual integration with Agile model process frameworks.

Module 5: User Interface Design & Coding

- Know the UI aspect of interactive design for enterprise applications.
- Learn best coding standards/practices such as TDD, pair programming and how to verify code.

Module 6: Software Testing

• Integrate expertise on how testing helps in quality of software. Know testing concepts, levels of testing. Learn and practice Black & white box testing along with test case generations using open- source tools.

This is Last Page