Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Third Year B. Tech. (Civil Engineering) Sem - V to VI

AY 2020-21

Title of the Course:	L	Т	Р	Cr
Soil Mechanics (4CV301)	2	1	0	3

Desirable Courses: Fluid mechanics

Textbooks:

- 1. Das B. M., "Principles of Geotechnical Engineering", Cengage Learning, 7th Edition, 2002.
- 2. Murthy, V. N. S., "Textbook of Soil Mechanics and Foundation Engineering Geotechnical Engineering Series", CBS publishing; 1st edition, 2007.
- 3. Ranjan Gopal and Rao A.S.R., "Basic and Applied Soil Mechanics", New Age International Publishers, 3rd Edition, 2016.

References:

- 1. Gulhati S. K. and Datta M., "Geotechnical Engineering", Tata McGraw-Hill, 1st Edition, 2005
- 2. Couduto, Donald P., "Geotechnical Engineering Principles and Practices", Prentice-Hall.,2nd Edition, 2017.
- 3. Muni Budhu, "Soil Mechanics and Foundations", John Wiley & Sons, Inc, 3rd Edition, 2011.

Course Objectives :

- 1. To provide the knowledge of engineering properties of soil and soil classification.
- 2. To prepare students for competitive examinations and higher studies in the field of geotechnical engineering.

Course Learning Outcomes:

	After	the c	omple	tion of	the co	ourse t	he stu	dent sł	nould	be	E	Bloom	's Cogni	tive	
CO	able		1								Le	vel	Descr	Descriptor	
CO1	Explain the index properties, engineering properties, concept of earth pressure and consolidation										Ι	Ι	Understanding		
CO2	Solve problems associated with term 'compaction, shear strength of soil and earth pressure'.										III		Applying		
CO3		Analyse soil properties based on shear strength, earth pressure, and degree of consolidation of soil.									IV		Analyzing		
СО-РО М	apping	g :													
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	3												2	3	
CO2		3											2	3	
CO3			3										2	3	
Assessmer	nts :														
Teacher A	ssessn	nent:													
Two comp End Semes												,	MSE) and	d one	

Assessment	Marks
ISE 1	10

	MSE	30	
	ISE 2	10	
	ESE	50	
ISE	1 and ISE 2 are based on assignment/declare	d test/quiz/seminar etc.	
MSE	E: Assessment is based on 50% of course con	tent (Normally first three modules)	
ESE	: Assessment is based on 100% course conte	nt with 60-70% weightage for course conten	t
(nor	mally last three modules) covered after MSE		
Cou	rse Contents:		
Mod	lule 1: Evolution, classification and prope	rties of soils	6 Hrs
E 1 b) S	Introduction: Origin, evolution of soils, App Engineering. Major soil deposits of India such ateritic soils, alluvial deposits and desert soil Soil Volume-Density Relationships and Stre yoid ratio, porosity, degree of saturation, spece	h as marine deposits, black cotton soils, s. ructure: Three and Two Phase soil system,	
I c) S I d) I	Density, Soil Structure. Soil Classification: Grain size and hydromet S soil classification system. Effective Stress Concept: Effective stress co effective stress computations.	er analysis, Atterberg limits, Unified and	
Mod	lule 2: Permeability and Seepage		4 Hrs
a F b) S	Permeability: Head, gradient and potential, I affecting permeability, laboratory methods fo permeability. Seepage: Seepage forces, quick sand condition construction and applications, Uplift Pressure	or determination of co-efficient of on, Laplace equation. Flow net – properties,	
	lule 3: Compaction of Soils		4 Hrs
I s b) (Theory of Compaction: Necessity of compa Laboratory Standard and modified compaction ide of OMC. Compaction behavior of sand. Compaction at Site: Equipment and measure specifications and control.	on test, field compaction on wet and dry	
	lule 4: Shear Strength of Soils		6 Hrs
c b) F t	Shear Strength Concept: Concept of shear a curve, peak and residual strength, Mohr-Coul Principle stress, derivation of relationship bet erms of shear strength parameters.	lomb's theory and failure envelope, ween major and minor principal stresses in	
r t	Laboratory Shear Tests: Box shear test, tria neasurement, unconfined compression test, I ests according to drainage conditions and sui	Lab. vane shear test, Classification of the	
	lule 5: Earth pressure theory		4 Hrs
b) I	Lateral Earth Pressure: Concept, Area of age factive and passive" conditions. Earth Pressure Theories: Rankine's theory computations with level backfill, surcharge lo backfill, stratified backfill. Critical depth of o	for earth pressure, Earth pressure bad on backfill, water table effect in	

Module 6: Compressibility and Consolidation of soils	4 Hrs.
a) Compressibility: Definition, compressibility of laterally confined soils. Compressibility of sand and clay.	
 b) Consolidation: Terzaghi's theory of one dimensional consolidation, laboratory consolidation test, e-p and e-log p curves, determination of coefficient of volume compressibility, compression index, coefficient of consolidation, degree of consolidation, time factor, Computations of duration and magnitude for consolidation settlement. 	
Module wise Outcomes	
At end of each module students will be able to:	
1. Explain the nature and analyze the engineering behavior of soil mass.	
 Develop flow-net and analyze for quick condition, evaluate seepage quantity / seepage force / uplift pressure. 	
3. Explain the Soil compaction methods and apply the laboratory results to interpret field compaction.	
4. Analyze and interpret the shear strength parameters for soil.	
5. Analyse the earth pressure magnitudes and the depth of unsupported excavation in soils.	
6. Analyse degree of consolidation.	
Tutorials:	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that studen properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz surprise test, declared test, seminar, final orals etc.	

Water Supp	Course]	L	Т	Р	Cr
	ly and T	reatm	ent Teo	chnolog	gy (4C	V 302)					3	0	0	3
Desirable (Courses	Basic	: hydra	ulics a	nd Eng	ineerin	g Chei	nistry		•		ł		
Textbooks:														
-	u, B.S.N hi, 2 nd E				nd Wa	stewate	er Eng	ineerin	g" Tat	a McG	raw H	ill Pri	vate limit	ed, New
	g, S. K.													
	di, P. N tion, 201		ter Suj	oply Er	ngineer	ring (E	nviron	mental	Engin	eering	I)", St	andar	d Book H	ouse, 6 ^t
References	:													
			-					HEEO,	Minis	stry of	Hous	ing a	nd Urban	Affair
	elopme							arratar	Taaba	alage?		laarmi	na privota	limited
	Edition,		паш	ner wi,	J, Wa	ater and	ı wası	ewater	Techn	lology	, ГПГ	learm	ng private	mined
	· · ·		Cornv	vell, D,	A, "Iı	ntroduc	tion to) Envir	onmen	tal Eng	gineeri	ng", ′	Tata McG	raw Hil
	lishing									· ·	0	0,		
4. Nat	hanson,	J. A.	, "Bas	ic Env	ironme	ental T	echnol	ogy",	PHI L	earning	g priva	ate lir	nited, 5 th	Edition
200														
Course Ob	•													
	provide	-			•					•				
	impart n prepare		•		U U		•						chnology	
	familiari			-						water	ucaun		chilology	•
Course Lea														
CO	After			on of th		a tha	tudant	aboul	d ba ab	1a to]	Bloor	n's Cogni	tive
CO	After			on of th	ne cour	se the s	student	should	1 be ab	le to	Lev		n's Cogni Descri	
C0 C01	Expla	the co	mpletio			se the s				le to		el		iptor
CO1	Expla techno	the co in wa	mpletio ter qua	lity, wa	ater sup		stem a	nd trea	tment	le to	Lev	el	Descr	iptor
	Expla techno Solve	the co tin wa blogies the pr	mpletio ter qua 3. oblems	lity, wa	ater sup ater rela	oply sy	stem a	nd trea	tment	le to	Lev	el	Descr Understan	iptor
CO1	Expla techno Solve conve	the co in wa ologies the pr	mpletio ter qua s. oblems and tre	lity, wa s on wa	ater sup ater rela t.	oply sy	stem a	nd trea	tment	le to	Lev		Descr Understan	iptor
CO1 CO2 CO3	Explate technology of the second seco	the co in wa ologies the pr yance n wate	mpletio ter qua s. oblems and tre	lity, wa s on wa	ater sup ater rela t.	oply sy ated to	stem a	nd trea	tment	le to	Lev II III		Descri Understan Applying	iptor
CO1 CO2 CO3	Explate technology of the second seco	the co in wa ologies the pr yance n wate	mpletio ter qua s. oblems and tre	lity, wa s on wa	ater sup ater rela t.	oply sy ated to	stem a	nd trea	tment	le to	Lev II III		Descri Understan Applying Creating	iptor
CO1 CO2 CO3 CO-PO Ma	Expla techno Solve conve Desig	the co in wa blogies the pr yance n wate	mpletio ter qua 3. oblems and tre er treat	lity, wa s on wa eatment ment u	ater sup ater rela t. nits, an	oply sy ated to d pipel	stem a quality line sys	nd trea	tity,		Lev II III VI		Descri Understan Applying Creating	i ptor ding
CO1 CO2 CO3 CO-PO Ma PO	Expla techno Solve conve Desig	the co in wa blogies the pr yance n wate	mpletio ter qua 3. oblems and tre er treat	lity, wa s on wa eatment ment u	ater sup ater rela t. nits, an	oply sy ated to d pipel	stem a quality line sys	nd trea	tity,		Lev II III VI		Descri Understan Applying Creating PSO1	iptor ding PSO2
CO1 CO2 CO3 CO-PO Ma PO CO1	Expla techno Solve conve Desig	the co in wa ologies the pr yance n wate	mpletio ter qua 3. oblems and tre er treat	lity, wa s on wa eatment ment u	ater sup ater rela t. nits, an	oply sy ated to d pipel	stem a quality line sys	nd trea	tity,		Lev II III VI		Description Understant Applying Creating PSO1 2	iptor ding PSO2 3
CO1 CO2 CO3 CO-PO Ma PO CO1 CO2	Explate technology of the second seco	the co in wa ologies the pr yance n wate	mpletion ter qua 3. oblems and tre er treats 3	lity, wa s on wa eatment ment u	ater sup ater rela t. nits, an	oply sy ated to d pipel	stem a quality line sys	nd trea	tity,		Lev II III VI		Description Understan Applying Creating PSO1 2 3	iptor ding PSO2 3 3

Two components of In Semester Evaluation (ISE), C		d
Semester Examination (ESE) having 20%, 30% and Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1: Assignment on real-life problem pertaining to		
test/quiz/presentation/oral.	s modules 1 to 5 and evaluated by	
ISE 2: Field visit to water treatment plants and evalu	nated by test/auiz/presentation/oral	
MSE: Assessment is based on 50% of course conten		
ESE: Assessment is based on 100% of course content	•	llv las
three modules) covered after MSE.	with 00 70% weightige for course content (norma	ily lust
Course Contents:		
Module 1 Water demand and quality		Hrs
Water supply system: Introduction, Components		
Water demand: Usage and rates, Governing factors,	Variation, Estimation(Present, intermediate and	
ultimate)		7
Water Quality: Physical, Chemical and biological pa	arameters, IS 10500-2012	
Sources: Quantitative and Qualitative study		
Module 2 Conveyance of water		Hrs
Source works: Intake (Types and location), Design of	of river intake, Jack well, Pumping system,	
Power and capacity of pump		
Conveyance system: Types (Gravity, gravity fed an		5
Iron, Mild steel and Plastic), Jointing, Laying, Hydra	aulic testing, Break pressure tank, Design of	J
gravity fed and pressure pipe, Economic design		
Appurtenances: Valves, Thrust block		
Module 3 Water treatment (Aeration, Mixing and	d Settling)	Hrs
Treatment: Philosophy, Unit processes and operation	ns	
Aeration: Process, Types of aerator, Design of casca	de aerator	
Coagulation: Physics and chemistry, Practice, Desig	n of rapid mixer	8
Flocculation: Theory, Design of slow mixer (hydrau	lic and mechanical)	
Settling: Theory, Types, Design of rectangular and c	circular clarifiers for type 1 settling, High rate	
Module 4 Water treatment (Filtration and Disinf	ection)	Hrs
Granular Filtration: Classification, Theory of deep n	nono and dual bed filter, Components of deep	
bed filter, Clean filter bed head loss, Filter operation	, Design of mono and dual bed filter	6
Disinfection: Types, Ideal and non-ideal disinfectant	t, Kinetics, Chlorination, Chemistry of	U
chlorination, Chlorine demand, Chlorination practice	e, UV and Ozone disinfection	
Module 5 Advanced water treatment		Hrs
Membrane filtration: Types, Basic concepts, Applica	ations	5
Adsorption: Introduction, Basics of Carbon adsorption	on	5

Ion Exchange: Theory, Design of softener	
Point of use purifiers, Package drinking water plant, Water plant residual management	
Module 6 Water distribution system and Operation-Maintenance	Hrs.
Water distribution: Methods, System configurations, Hydraulic and functional requirements,	
Hydraulic analysis, Design, Computer applications (EPANET/WATERGEMS)	
Service reservoirs: Necessity, Components, Location, Head, and Capacity	
Leakage: Causes, Detection and Control	9
Water quality in distribution: Causes of deterioration, Source trace, Water age, Nodal constituent	
concentration	
Operation and maintenance: Water supply system	
Module wise Outcomes	
At end of each module students will be able to	
1. Explain water supply system, Estimate water requirements and assess water quality.	
2. Analyze and design conduits in water supply system.	
3. Explain the process of aeration, coagulation, flocculation and settling, and Analyze and design	
aerator, rapid mixer, flocculator and clarifier.	
4. Explain the process of filtration and disinfection; Analyze and design mono and dual media	
filters.	
5. Explain advanced treatment systems; Design water softener.	
6. Analyze and design water distribution system. Identify problems during operation and	
maintenance of water supply system.	

Title of the	Course	e:]		Т	Р	Cr
Design of st	teel Str	ucture	s (4C	V303)							2	1	-	3
Desirable (Courses	: Solid	Mecha	anics &	z Struc	tural M	Iechan	ics						
Textbooks:														
1. Duggal Edition,		'Limit	state c	lesign	of stee	el struc	ctures"	, Tata	McGra	aw-Hill	Publi	catior	ns, New D	elhi, 2 nd
2. Shiyeka 2013.	ır, M.R	., "Lin	nit stat	e desig	gn in s	structu	ral stee	el", PH	I learr	ning Pv	vt.Ltd	Public	cations 2 nd	Edition
3. Subram		I., "Des	sign of	steel s	tructur	es", Oz	cford U	Universi	ity Pres	ss, 201).			
References														
1. Dayarat													10.0	000
													nd Sons, 2	
3. Gaylord Compar	i, Eawi w Ltd	in and New I	Gaylo Delhi 3	ora, Cl rd Editi	naries, on 20°	Desi	gn of	steel	structu	res', I	ata N	lcGra	w Hill Pi	iblisning
4. IS 800-2	2007 °C	Code of	f Pract	ice for	Gener	al Con	struction	on in st	teel', a	nd IS	875-1	987 p	art 1 to 5;	Code of
												-	Indian St	
New De														
Course Ob	,													
1. To illus			0 1					•	•					
2. To impa			U U	•										
3. To prov	ide kno	wledge	e of des	sign pr	actical	steel st	tructur	es such	as ind	ustrial	sheds,	steel	buildings e	etc.
Course Lea	rning	Outcor	nes:											
СО	Aftor	the co	mploti	on of th		so tho	atudan	t should	l ba ab	la to		Bloor	n's Cognit	tive
	Alter		mpien			se uie i	studen	. should			Lev	vel	Descr	iptor
CO1	Appl	y the c	oncept	of lim	it state	for des	sign of	steel st	ructure	es.	IV	V	Appl	ying
CO2		ulate thections		igth of	steel s	tructur	al men	bers ar	nd		V	7	Evalu	ating
CO3	Desig etc.	gn steel	struct	ures su	ch as i	ndustri	al shec	ls, steel	buildi	ngs	V	I	Crea	ting
CO-PO Ma	pping	: (Use	1, 2, 3	as Cor	relatio	on Stre	engths)							
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3												1	1
CO2		3											2	2
CO3			3										3	3
Assessment	ts: Teac	cher A	ssessm	ent:										1
Two compo	nents o	f In Se	mester	Evalua	ation (I	SE), O	ne Mio	1 Seme	ster Ex	aminat	ion (N	ISE) a	nd one En	d
Semester Ex	kaminat	ion (ES	SE) hav	ving 20	0%, 309	% and :	50% w	eights	respect	ively.				
		Asses	sment							I	Marks			
		ISI	E 1								10			
		M	SE								30			
							I							

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared tes	t/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content	(Normally first three modules)	
ESE: Assessment is based on 100% course content with	ith60-70% weightage for course content (normall)	y last
three modules) covered after MSE.		
Course Contents:		
Module 1: Introduction		Hrs.
Introduction to steel structures, standard rolled steel s	ections and their properties and designation,	
Design philosophies, Types of loads acting on structu		
IS 875, IS 800.	*	5
Introduction to Plastic theory- Plastic hinge concept, 1	Plastic collapse load, Plastic moment, Shape	
factor, Plastic section modulus.		
Module 2: Connections		Hrs.
Types of bolts, bolted and welded connections. Conce	entric and eccentrically loaded connections.	
simple connection of bracket plates to columns.		4
Module 3: Tension and Compression Members		
•		Hrs.
Various types of failures such as yielding of gross are	a, rupture at critical section and block shear.	
Design of single and double angle sections.		5
Buckling classification of various sections, Buckling	curves, Design of single and double angle	
struts in trusses,		
Module 4: Beams and Girders		Hrs.
Laterally restrained and unrestrained simply supporte		5
welded plate girder. Selection of section and position	ing of stiffeners, Curtailment of flange plates.	0
Module 5: Columns and Column Bases		Hrs.
Column subjected to Axial load and biaxial bending	, built up column sections, laced and battened	
columns.		5
Column bases: Design of slab base, gusseted base, mo	oment resisting base, Anchor bolts.	
Module 6: Roofing System		Hrs.
Trusses, Purlins. Dead load, Live load and Wind load	calculations. Analysis and design of truss.	
Connections of truss to column.		5
Module wise Outcomes		
At end of each module students will be able to:		
1. Explain the concept of various design philosophie	· · ·	
2. Design of concentric and eccentric steel connection	ons.	
 Design of tension and compression members. Design of flooring system beams and plate sirder 	r0	
4. Design of flooring system, beams and plate girder	18.	
 Design of columns and column bases. Design of roofing system 		
6. Design of roofing system.		

Tutorial

One hour per week per batch tutorial is to be utilized for problem solving to ensure that students have properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz, surprise test, declared test, seminar, final orals etc.

Professional Elective-I Construction Equipment and Techniques 2 1 0 3 Desirable Courses: NIL Image: Textbooks: Image: Textbooks: <t< th=""></t<>
 (4CV311) Desirable Courses: NIL Textbooks: Kumar NeerajZha, "Construction Project Management", Pearson India Education, edition,2015 Robert Peurifoy, Clifford J. Schexnayder, AviadShapira, Robert Schmitt, "Construct planning, equipment, and methods", McGraw-Hill, 8thedition, 2010. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 1 References: Kumar Neeraj Zha, "Formwork for construction" McGraw-Hill, 3rd reprint, 2019. Course Objectives: This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 Textbooks: Kumar NeerajZha, "Construction Project Management", Pearson India Education, edition,2015 Robert Peurifoy, Clifford J. Schexnayder, AviadShapira, Robert Schmitt, "Construct planning, equipment, and methods", McGraw-Hill, 8thedition, 2010. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 1 References: Kumar Neeraj Zha, "Formwork for construction" McGraw-Hill, 3rd reprint, 2019. Course Objectives : This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 Kumar NeerajZha, "Construction Project Management", Pearson India Education, edition,2015 Robert Peurifoy, Clifford J. Schexnayder, AviadShapira, Robert Schmitt, "Construct planning, equipment, and methods", McGraw-Hill, 8thedition, 2010. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 1 References: Kumar Neeraj Zha, "Formwork for construction" McGraw-Hill, 3rd reprint, 2019. Course Objectives : This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 edition,2015 2. Robert Peurifoy, Clifford J. Schexnayder, AviadShapira, Robert Schmitt, "Construct planning, equipment, and methods", McGraw-Hill, 8thedition, 2010. 3. Sharma S.C. "Construction Equipment and Management", Khanna Publishers New Delhi, 1 References: Kumar Neeraj Zha, "Formwork for construction" McGraw-Hill, 3rd reprint, 2019. Course Objectives : This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 Kumar Neeraj Zha, "Formwork for construction" McGraw-Hill, 3rd reprint, 2019. Course Objectives : This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 Course Objectives : This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
 This course aims at making civil engineering students who need to understand the breadth depth of construction field for possible engagement. To introduce various construction equipment and techniques, To provide knowledge about efficient utilization of the equipment and techniques.
Course Learning Outcomes:
CO After the completion of the course the student should be Bloom's Cognitive
able to Level Descripto
CO1Describe different construction equipment and plants.2Understand
CO2Explain different construction techniques.2Understand
CO3Choose suitable equipment, formwork and technique based on project requirements.3Applying
CO-PO Mapping :
PO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PS
CO1 3 1 1 1
CO2 2 2 2 2 2 2 2
CO3 2 2 2 2 2
Assessments :
Teacher Assessment: Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and
End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.
Assessment Marks
ISE 1 10
MSE 30
ISE 2 10
ESE 50
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

ESE: Assessment is based on 100% course content with 60-70% weightage for course	content
(normally last three modules) covered after MSE.	
Course Contents: (Arrange Contents logically/process-wise/Conceptually/Theory follo application)	wed by
Module 1: Construction Equipment	Hrs.
 Introduction –Conceptual planning of new project, site access and services, mechanical v/s manual construction Earth moving Equipment- Bulldozers, Power shovel, Hoes, Hauling units, Simple numerical problems based on cycle time and production rates. Drag line, Clamshell, Trenchers, Compactors-types and performance, operating efficiencies. 	05
Module 2: Drilling & Blasting	Hrs.
• Excavation in hard rock: Rippers, jack hammers, drills, compressors and pneumatic equipment, Blasting explosives, detonators, fuses.	04
Module 3: Formwork	Hrs.
Material for formwork, introduction to design of formworkAdvanced formwork techniques	05
Module 4:Plants for construction works	Hrs.
 RMC plant layout and applications Asphalt mixing and batching plant (Hot mix plant), Sensor Paver for rigid roads Aggregate crushing plants. 	05
Module 5: Construction Techniques	Hrs.
 Diaphragm Walls: Purpose and Construction methods Introduction to trenchless technology Prefabricated construction: Planning for pre-casting, selection of equipment for fabrication, transport and erection, quality measures, safety measures during erection. Steel Construction : Planning for field operations, selection of equipment and erection tools 	05
Module 6: Pile Construction	Hrs.
• Pile driving equipment- Types, pile driving hammers, single acting and double acting, differential acting hammers, hydraulic and diesel hammers, vibratory drivers.	05
Module wise Outcomes	
At end of each module students will be able to	
 Assign appropriate equipment for earth moving works. Choose suitable equipment and technique for drilling and blasting. Use suitable formwork for concrete works. Explain elements of different plants for construction work. Apply construction techniques for diaphragm walls, trenchless laying of pipelines, prefabrication and steel structure. Describe pile driving equipment and their use. 	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that students	
have properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz,	

surprise test, declared test, seminar, final orals etc.

Title of the	Cours	e:								I	L	Т	Р		Cr
Profession	nal El	ective	e-I: St	ructu	iral G	eolog	y 4C	CV312			2	1	-		3
Desirable (Courses	s: Engi	neering	g Geol	ogy										
Textbooks:															
1. Gokhale			•												
2. Marlanc		0			0.0										
3. Philip K		Keith A	4. Klej	peis, F	rederic	k J. Vi	ne, "G	lobal	Fectoni	cs", Jo	ohn V	Viley	& Sc	ons	Ltd,Thir
Edition, References															
1. Leo A.		eaman	"Fart	h Stru	cture ·	Δn In	troduc	tion T	o Struc	tural (Feolo	συ Δ	nd T	ectonics"	w w
Norton							uouuc	uon i	0 Siluc		Jeon	gy A	nu i	ectomes	, ** . *
						sic Met	hods c	of Strue	ctural G	Beology	/",Pe	arson	Educ	cation; 20	17.
3. Gokhale	e N. W.	, "A M	anual	of Prol	blems i	n Struc	ctural (Geolog	y", CB	S Publi	isher	s, Del	hi.20	19.	
Course Ob															
1. Introduc				•		0		-		0	U .	0			
		ent able	e in rec	ognizi	ng, cla	ssifyin	g and	descrit	oing vai	rious ge	eolog	gical s	truct	ures and	structura
phenom 3. Enable s		s to un	doreton	امعما	orical	nroble	m hafe	oro und	ortokin	a any c	vivil.	angin	orin	n project	
				u geoi	ogical	proble			CITAKIII	g any c		engine	zering	g project.	
Course Lea	arning	Outco	mes:												
GO	A C.	. 1	1	6		.1	. 1			1.		Ble	oom'	s Cognit	ive
CO	After	the co	mpleti	on of t	he cou	rse the	studer	nt shou	ld be al	ble to	L	evel		Descri	ptor
	Dece	nih a th	a goot	aatani	0.0000		ontino	ntal di	ift and	plata					F
CO1	tector		le geol	ectom	c espec	lany C	onune	intal ui	iit allu	plate		II		Understa	anding
	lecto	incs.													
CO2	Expl	ainthe	mecha	nism c	of geol	ogical s	structu	res in t	he field	1.		II		Understa	anding
	Annl	vthe	znowle	dae	of stri	ictural	geolo	ngy to	o solve	e the					
CO3		•		U		on or ex	0	0.	50110	c uic		III		Apply	ving
CO-PO Ma	-														
1000000000000000000000000000000000000	1	2	3	4	5	6	7	<u> </u>	9	10	11	12	2	PSO1	PSO
C01	1	-	0	-	0	v	,	0		10			-	1001	1002
CO2	1	2													2
CO2	2	2												1	2
Assessment		4												1	4
Teacher As		n.													
Two comp			Samos	tor Ex	aluatio	on (ISI		o Mid	Somo	stor Ex	zomi	notion		SE) and	ono En
Semester E												nation	1 (101)	SE) and	one En
Semester L	vamma			vilig 2	070, 50	<i>7/0</i> and	5070	weight	stesper	cuvery.	Ma	alta			
			sment												
		ISI									10				
		M									30				
		ISI									10				
		ES	SE								50)			
	~ ~ ~							, -							
ISE 1 and ISE MSE: Asses				U			-								

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Module 1: Continental Drift	Hrs.
Introduction to geotectonics, origin of the Earth, interior of the Earth, isostasy, Pratt's and Airy's	
hypothesis, continental drift, evidances for Gondwana land and Laurasia	04
Module 2: Plate Tectonics	Hrs.
Plate tectonics, plate boundaries and their types, plate margins, Convection current hypothesis,	
opening and closing of oceans, Sea floor spreading, relevance of geotectonics with structural	05
geology.	00
Module 3: Structural Geology-Folds	Hrs.
Primary and secondary geological structures, outcrop, bedding or stratification, dip and strike,	
extrusions and intrusions, flows and masses, causes for the development of structures, folds and	05
folding, definition and parameters/morphology of folds, types of folds, mechanics of folding,	05
recognition of folds in the field, civil engineering significance of folds.	
Module 4:Structural Geology-Faults	Hrs.
Faults, definition and parameters of faults and fault terminology, classification of faults, mechanics	
of faulting, effect of faults on outcrops, field evidences of faulting, civil engineering significance of	05
faults, Foliation and lineation, their origin and relation with structures, Shear zones and their	03
development.	
Module 5:Unconformity, Joints and Mountain building	Hrs.
Unconformities and joints, types of unconformity, recognition of unconformity in the field, concept	
of overlap, types of joints, common joints in different rocks, concept of stress and strain in	
developing joints, study of landforms, mountain building and types of mountain, roll of plate	05
tectonics in mountain building, mountains of India, Structural geological aspects of physiographic	
divisions of India.	
Module 6: Applications of Geology in Civil Engineering	Hrs.
Geological maps, description, outcrop patterns and geological structures, determination of strike	
and dip, problems with outcrops, borehole data and thickness of beds. Dip-strike three point	05
problem, completion of outcrop.	
Module wise Outcomes	
At end of modules student will be able to	
1. Describe the concept of continental drift along with the global evidences.	
2. Describe the events of continental drift, seismicity and volcanism collectively by the theory of	
plate tectonics.	
3. Explain the folds in field and explain associated mechanics.	
4. Explain the faults in field and explain associated mechanics.	

One hour per week per batch tutorial is to be utilized for problem solving to ensure that students	
have properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz,	
surprise test, declared test, seminar, final orals etc.	

	e Cours	e:									L	Т	Р		Cr
Professiona			omputa	tional I	Method	is and	Optimi	zation			2	1	0		3
Techniques	<u>4CV3 (</u> 4CV3	13 <u>)</u>									2	1	0		5
Desirable	Courses	s: Al	l Cours	es in M	lathem	atics fo	or UG								
4th 2. Bal	: apra S.C Editior bu Ram ha Ham	n, 2002 "Num	2. Ierical N	Method	s", Pea	urson, 1	st Edit	tion, 20	10.	s", Tata	a McG	raw H	iill Publ	icatio	ons,
References															
200 2. Jai	lgurusw)9. in M.K. Editior	, Iyeng	gar S. R								-				
Course Ob		-													
 To fiel To To To 	provide provide d of eng provide deliver	e neces gineeri e pre-re know-	sary kn ng. equisite how of	owledg statisti	ge of n	umerica owledg	al tools	s requir e stude	red for nts for	analyz analyz	ing and	d solv e data	results.		s in th
Course Le	arning	Outco	mes:								Dias	2 ~ (1		
CO	After	the co	ompletio	on of th	ne cour	se the	student	t should	l be ab	le to	Leve		Cognitiv Dese	e cript	or
CO1			elemer on Tech			tationa	l Meth	ods and	1		2		unde	erstar	nding
CO1 CO2	Optin Solve	nizatio e linea		niques near, ai	nd diff	erential	l equat	ions by	nume		2 3,4		appl	erstar ying yzing	and
	Optin Solve meth	nizatio e linea ods an	on Tech r, nonli	niques near, ai ze data	nd diffe using	erential variou	l equat	ions by ods of 1	numer	ion.			appl anal	ying	and
CO2 CO3	Optin Solve meth Reco	mizatio e linear ods an ommen	on Tech r, nonlin d analy d optim	niques near, an ze data nal solu	nd diffe using tion to	erential variou linear	l equat s meth	ions by ods of 1 mming	numer	ion.	3,4		appl anal	ying yzing	and
CO2 CO3 CO-PO M PO	Optin Solve meth Reco apping 1	mizatio e linear ods an ommen	on Tech r, nonlin d analy d optim	niques near, an ze data nal solu	nd diffe using tion to	erential variou linear	l equat s meth	ions by ods of 1 mming	numer	ion.	3,4	12	appl anal	ying yzing uatin	and g ng PSO 2
CO2 CO3 CO-PO M PO CO1	Optin Solve meth Reco apping	mizatione in the second	on Tech r, nonlin d analy d optim 1, 2, 3	niques near, an ze data nal solu as Cor	nd diffe using tion to relatio	erential variou linear on Stre	l equat s meth progra	ions by ods of 1 mming	numer regress	ion. ems	3,4 5	12	appl anal eval	ying yzing uatin	and g PSO2 3
CO2 CO3 CO-PO M PO CO1 CO2	Optin Solve meth Reco apping 1	mizatio e linear ods an ommen : (Use	on Tech r, nonlin d analy d optim 1, 2, 3 3	niques near, an ze data nal solu as Cor	nd diffe using tion to relatio	erential variou linear on Stre	l equat s meth progra	ions by ods of 1 mming	numer regress	ion. ems	3,4 5	12	appl anal eval	ying yzing uatin	and g PSO2 3 3
CO2 CO3 CO-PO M PO CO1 CO2 CO3	Optin Solve meth Reco apping 1 3	mizatione in the second	on Tech r, nonlin d analy d optim 1, 2, 3	niques near, an ze data nal solu as Cor	nd diffe using tion to relatio	erential variou linear on Stre	l equat s meth progra	ions by ods of 1 mming	numer regress	ion. ems	3,4 5	12	appl anal eval	ying yzing uatin	and g PSO2 3
CO2 CO3 CO-PO M PO CO1 CO2 CO3 Assessmen	Optin Solve meth Reco apping 1 3 ts :	mizatione in the second	on Tech r, nonlin d analy d optim 1, 2, 3 3	niques near, an ze data nal solu as Cor	nd diffe using tion to relatio	erential variou linear on Stre	l equat s meth progra	ions by ods of 1 mming	numer regress	ion. ems	3,4 5	12	appl anal eval	ying yzing uatin	and g PSO2 3 3
CO2 CO3 CO-PO M PO CO1 CO2	Optin Solve meth Reco apping 1 3 ts : ssessme onents of	mization e linear ods an ommen : (Use 2 3 ent: of In Se	on Tech r, nonlin d analy d optim 1, 2, 3 3 3 emester	niques near, ar ze data nal solu as Cor 4 Evalua	tion to relation 5	erential variou linear on Stre 6	rogra	ions by ods of r mming 8 8	numer regress proble 9 ster Ex	ion. ems 10 	3,4 5 11		appl anal eval PSC	ying yzing uatin	and g PSO2 3 3 3
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessmen Teacher A Two compo	Optin Solve meth Reco apping 1 3 ts : ssessme onents of	mization e linear ods an mmen : (Use 2 3 ent: of In Settion (E	on Tech r, nonlin d analy d optim 1, 2, 3 3 3 emester	niques near, ar ze data nal solu as Cor 4 Evalua	tion to relation 5	erential variou linear on Stre 6	rogra	ions by ods of r mming 8 8	numer regress proble 9 ster Ex	ion. ems 10 camina ively.	3,4 5 11	ISE) a	appl anal eval PSC	ying yzing uatin	and g PSO2 3 3 3
CO2 CO3 CO-PO Ma PO CO1 CO2 CO3 Assessmen Teacher A Two compo	Optin Solve meth Reco apping 1 3 ts : ssessme onents of	mization e linear ods an ommen : (Use 2 3 ent: of In Section (E Asses	on Tech r, nonlin d analy d optim 1, 2, 3 3 3 3 emester CSE) ha	niques near, ar ze data nal solu as Cor 4 Evalua	tion to relation 5	erential variou linear on Stre 6	rogra	ions by ods of r mming 8 8	numer regress proble 9 ster Ex	ion. ems 10 camina ively.	3,4 5 11	ISE) a	appl anal eval PSC	ying yzing uatin	and g PSO2 3 3 3

ISE 2	10	
ESE	50	
ISE 1: Assignment pertaining to modules 1 to 3 and e	evaluated by test/quiz/presentation/oral.	
ISE 2: Assignment on pertaining to modules 4 to 6 a	nd evaluated by test/quiz/presentation/oral.	
MSE: Assessment is based on 50% of course content	(Normally first three modules)	
ESE: Assessment is based on 100% course content w three modules) covered after MSE.	with 60-70% weightage for course content (norma	lly last
Course Contents:		
Module1: Introduction to O. R.		Hrs.
Introduction, Background and necessity of O. optimization problems. Unconstrained optimization, optimization techniques.		4
Module2: Linear Programming		Hrs.
General form, Standard form, Symmetric form, C Review of graphical method, Optimization of Linea Big-M and two phase simplex method, Conceptual in	ar P. P. using Simplex method, Introduction to	5
Module3: Typical optimization problems in civil	engineering	Hrs.
Conventional optimization problems in civil engineer Assignment Model, Hungarian method, minimization Transportation Model, Initial feasible solution, approximation method, Optimization using stepping and maximization cases.	and maximization cases. NW corner rule, Least cost rule, Vogel's	5
Module 4: Introduction to computational methods	3	Hrs.
Introduction to Computational Methods, Pros and Accuracy & Precision, Errors in Computational Metherror, Significance of error computation.	•	4
Module 5: Regression		Hrs.
Difference between regression and interpolation, Si Error analysis, Linear Regression, Least Squares Regression: Power fit, Parabola of Best fit.		4
Module6: Solutions of equations		Hrs.
Revision of computational methods for solving li Method, one point iteration method, Newton-Raph Strum theorem. Solutions of Ordinary Differential Equations, In Classification of methods of solution. Runge - Kutta Difference methods. Classification of Partial Differential Equations, Fo Laplace's and Poisson's equations.	nitial value and boundary value problems, Method, Solutions of B.V. Problems by Finite	6
Module wise Outcomes		
 Module wise Measurable Students Learning Outcome After the completion of the course the student should 1. Explain elements of optimization techniques, 2. Explain elements of L. P. P. and Solve L. P. D. 	be able to and formulate problems	

- 4. Explain elements of computational methods and error analysis
- 5. Use computational methods for regression of data
- 6. Deploy computational methods for solutions of linear, nonlinear equations, ODEs and PDEs

Title of the	Course:									Ι		Т	Р	Cr
Profession	al Elec	tive	-I Stru	uctura	al Me	chani	cs (40	CV314)		2	1	-	3
Desirable C	ourses: S	Solid	Mecha	nics, S	tructu	al Ana	lysis							
Textbooks:				,			5							
1. Gere, J	J. M. & V	Weav	ver, W.	,"Matr	ix Ana	lysis o	f Fram	ed Stru	ctures'	', CBS	Publis	shers a	und Distrib	outor, 2 nd
	n, 2004.					-								
2. Godbo	le, P. N.,	"Int	troducti	ion to 1	Finite 1	Elemer	nt Meth	ods", I	K Inte	ernation	nal Pu	blishir	ig House l	Pvt. Ltd.,
1 st Edit	ion, 2013	•												
3. Reddy	, C. S., "I	Basic	e Struct	ural Ar	nalysis	", McC	braw H	ill Educ	cation,	3 rd edit	ion, 20	017.		
References:														
1. Cook, R	obert D.,	Mall	kus, Da	wid S.,	Plesha	a, Micł	nael E.,	and W	vitt, Ro	bert J.,	"Cone	cepts a	and Applic	ations of
Finite El	ement Ar	nalys	sis", 20	03.										
2. McGuire	e, Williar	n, G	allagha	ur, Ricl	hard H	I. and	Ziemia	ın, Ror	nald D	., "Mat	trix St	ructur	al Analys	is", John
Wiley, 2	nd Edition	n, 200	00.											
3. Meghare	A. S.&I	Deshi	mukh S	5. K.,"N	Matrix	Metho	ds of S	tructura	al Ana	lysis" (Charota	ar Pub	lishing Ho	ouse, 2nd
Edition,	2016.													
Course Obj	ectives:													
1. To expla		-						•						
2. To incul														
3. To illust	rate the co	once	pt and	applica	tions o	of finite	eleme	nt meth	nod in s	structur	al eng	ineerir	ıg.	
Course Lea	rning Ou	itcor	nes:											
СО	After th	e co	mpletic	on of th	e cour	se the s	student	should	be abl	e to	Lev		n's Cognit Descr	
	Apply	the c	oncepts	sof mat	rix me	thods of	ofstruct	ural an	alvsis.		I			lying
CO1			oneepu						urj sist				- PP	B
CO2	Analyz	eind	etermin	ate str	uctures	s by us	ing str	ucture	oriente	d and	Iv	V	Analy	zing
CO2	element	t app	roach.			•	-							-
COA	Calcula	ate ti	henoda	l displ	acemei	nts and	memt	per for	ces by	using	V	1	Evalı	ating
CO3	finite el	eme	nt meth	od.					-	_				-
CO-PO Ma	pping : (Use	1, 2, 3	as Cor	relatio	n Stre	ngths)							
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
	1													1
CO1	3													2
	3	3												2 3
CO1	3	3 2			2									
CO1 CO2		-			2									3
CO1 CO2 CO3	s :	2			2									3
CO1 CO2 CO3 Assessment	s : sessment	2	Semest	er Eva		(ISE)), One	Mid S	Semest	er Exai	minati	on (M	(SE) and	3
CO1 CO2 CO3 Assessments Teacher Ass	s: sessment nents of	2 : In 5			luatior	```				vely.			(SE) and	3
CO1 CO2 CO3 Assessments Teacher Ass Two compo	s: sessment nents of amination	2 : In S n (ES			luatior	```				vely.	minatio Marks		SE) and	3
CO1 CO2 CO3 Assessments Teacher Ass Two compo	s: sessment nents of amination	2 : In S	SE) hav		luatior	```				vely.			SE) and	3 1
CO1 CO2 CO3 Assessments Teacher Ass Two compo	s: sessment nents of amination	2 : In S	SE) hav sment		luatior	```				vely.	Marks		SE) and	3 1
CO1 CO2 CO3 Assessments Teacher Ass Two compo	s: sessment nents of amination	2 : In 5	SE) hav sment E 1		luatior	```				vely.	Marks 10		SE) and	3

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content (Normally first three modules)	
ESE: Assessment is based on 100% course content with60-70% weightage for course content (norr	nally last
three modules) covered after MSE.	
Course Contents:	
Module 1: Flexibility Method- Beams & Frames	Hrs.
Flexibility coefficient matrix, Compatibility conditions, Development of flexibility matrix equations,	5
Analysis of indeterminate beams and rigid jointed frames by using flexibility method.	5
Module 2: Flexibility Method- Trusses	Hrs.
Analysis of indeterminate trusses by using flexibility method, Stresses due to lack of fit or error in	4
length, Temperature stresses.	4
Module 3: Stiffness Method- Structure Approach	Hrs.
Stiffness coefficient matrix, Relation between flexibility and stiffness coefficient matrix,	-
Development of stiffness matrix equilibrium equations, Analysis of continuous beams and frames.	5
Module 4: Stiffness Method–Element Approach: Beams & Frames	Hrs.
Formulation for element stiffness matrix for beam element and plane frame element, Local and global	
coordinates, Transformation of matrices, Analysis of continuous beams and frames by using direct	5
stiffness method.	
Module 5: Stiffness Method–Element Approach: Trusses	Hrs.
Direct stiffness method- Element approach, Development of element stiffness matrix and nodal load	5
vector for truss element, Analysis of trusses.	5
Module 6: Finite Element Method	Hrs.
Introduction finite element method, Basic concept, General procedure of finite element analysis,	
Discretization, nodes, element incidences, displacement model, shape function, selection of order of	
polynomials, Principle of minimum potential energy, variational principle, Development of element	5
stiffness matrix and nodal load vector for bar element, Applications to bars with constant and	
variable cross sections subjected to axial forces.	
Module wise Outcomes	
At end of each module students will be able to:	
1. Analyse statically indeterminate structures such as beams and frames by using flexibility method.	
2. Analyse statically indeterminate trusses by using flexibility method.	
 Apply physical concept of stiffness method for analysis of continuous beams and frames. Derive element stiffness matrix for various types of elements and analyze trusses. 	
 Derive element surfness matrix for various types of elements and analyze trusses. Analyse continuous beams and frames by using direct stiffness method. 	
 Analyse continuous ocaris and frames by using direct striness method. Apply the concept of finite element method for solving problems in structural engineering. 	
Tutorial	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that students have	
properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz,	
surprise test, declared test, seminar, final orals etc.	
r	

	e Course:										L	Т	Р	Cr
Environme	<u>ntal Engin</u>	eering	Laborat	ory (4	CV 351	<u>)</u>					0	0	2	1
Desirable Engineerin		ry Labo	ratory a	nd Wa	ter sup	ply and	Treat	nent Te	echnolo	ogy				
Textbooks	-	5			1	1 2								
Ed	etcalf and ition, 2014	•			-	_								
	wyer. C.N. mpany Lir		•	-		ustry fo	or Envi	ronmen	ital Eng	gineers	', Tata	McGra	w-Hill P	ublishing
2. Sta	s: 3025 (Rele andard Met er manual	hods fo	r the Ex	amina	tion of	Water		astewat	er, AP	HA, 23'	rd Revis	sed Edi	tion, 2017	7.
wa 2. To	provide t ter. develop th expose the	ne skills e studen	require its for co	d for a	pplying	g know	ledge t	o decid	e the c	hemical				uality of
												Bloor	n's Cogn	itive
CO	After the	e comple	etion of	the co	urse th	e stude	nt shou	ild be a	ble to			Level	De	scriptor
	Apply th			niques	4 - 1 - 4 -									I. I.
CO1	bacterio	•		•			the phy	rsical, c	hemica	ıl and		III	Appl	•
CO1 CO2	bacterio Design e	logical v	water qu	ality p	aramet	ers.						III VI	Appl Crea	ying
		logical v experime	water qu ent/s to	ality paddres	aramet s real-l	ers. ife case	es perti	nent to	water	quality.				ying ting
CO2	Design e	ogical v experime odern e	water qu ent/s to	addres	aramet s real-l ol/softv	ters. ife case ware to a	es perti analyse	nent to e water	water distrib	quality. ution		VI	Crea	ying ting
CO2 CO3	Design eApply msystem.Analyzepotabilit	ogical v experime odern e	water qu ent/s to	addres	aramet s real-l ol/softv	ters. ife case ware to a	es perti analyse	nent to e water	water distrib	quality. ution		VI	Crea	ying ting ying
CO2 CO3 CO4	Design eApply msystem.Analyzepotabilit	ogical v experime odern e	water qu ent/s to	addres	aramet s real-l ol/softv	ters. ife case ware to a	es perti analyse	nent to e water	water distrib	quality. ution	11	VI	Crea	ying ting ying
CO2 CO3 CO4 CO-PO M	Design e Apply m system. Analyze potabilit apping :	ogical v experime addern e and inte	water qu ent/s to engineer erpret th	addres	aramet s real-l ol/softv lts to a	ers. ife case vare to a ssess th	es perti analyse e quali	nent to e water ty of w	water distrib ater fo	quality. ution		VI III IV	Crea Appl Anal	ying ting ying yzing
CO2 CO3 CO4 CO-PO M PO	Design e Apply m system. Analyze potabilit apping :	ogical v experime addern e and inte	water qu ent/s to engineer erpret th	addres	aramet s real-l ol/softv lts to a	ers. ife case vare to a ssess th	es perti analyse e quali	nent to e water ty of w	water distrib ater fo	quality. ution		VI III IV	Crea Appl Anal PSO1	ying ting ying yzing PSO2
CO2 CO3 CO4 CO-PO M PO CO1	Design e Apply m system. Analyze potabilit apping :	ogical v experime addern e and inte	water qu ent/s to engineer erpret th	address ing too ne resu 4 2	aramet s real-l ol/softv lts to a	ers. ife case vare to a ssess th	es perti analyse e quali	nent to e water ty of w	water distrib ater fo	quality. ution		VI III IV	Crea Appl Anal PSO1	ying ting ying yzing PSO2

Assessments : Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents:

st of Ex	periments	Hrs.
1.	Physical and chemical water quality analysis	
i.	Electrical conductivity and Total Dissolved Solids	
ii.	Turbidity and Total Suspended Solids	
iii.	Calcium	14
iv.	Sulphate	14
v.	Residual chlorine	
vi.	Fluoride	
vii.	Iron and Manganese	
2.	Bacteriological water quality analysis	2
	Most Probable Number	2
3. A	pplication of water quality analysis	
i.	Optimal coagulant dose by jar test	
ii.	Chlorine demand for surface/groundwater	10
iii.	Efficiency of water purifier (reverse osmosis/resin) for hardness removal.	10
iv.	Assessment of river/bore well water pollution through chloride content.	
v.	Efficiency of cascade aerator for dissolved oxygen enhancement.	
4.	Analysis of water network using EPANET/WATERGEMS	2

Title of the					50)						L	Т	Р	Cr
Soil Mecha	anics		ratory	(40 V 3	52)						0	0	2	1
Desirable	Cours	ses: S	oil Mec	chanics										
Textbooks	:													
				•	•				Delhi, 19					
			-							Founda	tion E	nginee	ring Geo	otechnical
	-	ring S	eries",	CBS p	ublish	ing; 1 st	edition	, 2018	3.					
References			Inginaa	ring Dr	oparti	as of Sc	51 & TI	hair N	Jagguram	ont To	ata M	Graw	Hill Pub	liching
			n, 1992	-	operno		лап		leasuren		ua - 1010	Jaw	-1111 F uU	iisiiiig
					I.S.27	'20 (Va	rious se	ection	s / parts)					
Course Ob				,					1 /					
	-		ills to f	find Inc	lex pr	operties	s and e	ngine	ering pro	perties	of soi	l and tl	ne classif	ication of
soil.	r				F-	-r		-0	8 F	r				
Course Le	arnin	g Out	tcomes	:										
												Bloo	m's Cogi	nitive
CO	Aft	er the	comple	etion of	the co	ourse th	e stude	ent sh	ould be a	ble to		Level		escriptor
	Der	nonst	rate th	e exper	iment	al data	to asses	ss ind	ex prope	rties an				
CO1			ng prop	•					F F		-	III	A	pplying
CO2	Ana	alyzea	and inte	rpret th	ne beha	aviour o	of soils	based	d on the			IV	Δ.	nalyzing
	-		ntal dat	ta.								1 V	A	laryzing
СО-РО М			1			1				1	1	1	T	
PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1				3									3	3
CO2				3									3	3
Assessmen														
Lab Asses					npone	ents of l	ab asse	ssme	nt, LA1,	LA2, L	A3 and	l Lab E	ESE.IMP:	Lab
ESE is a se	-		Based o	•		Cond	ucted b	T 7	Condu	notion (nd Ma	nka Sul	omission	Marks
Assessment		I	baseu o	11		Collu	ucteu D	y	Cond		inu ma		5111881011	IVIALKS
LA1		Lat	o activi	ties,	т	.ab Cou	reo Foc		During	Week	1 to W	eek 4		25
LAI		attend	lance, j	ournal		ao Cou		Juity	Submis	sion at	the end	d of W	eek 5	25
		Lat	o activi	ties					During	Week	5 to W	ook 8		
LA2			lance, j		L	ab Cou	rse Fac	culty	Submis				eek 9	25
		atterie	lance, j	oumu										
LA3			o activit		I	.ab Cou	rse Fac	ulty	During					25
		attend	lance, j	ournal			i ut		Submis	sion at	the end	d of W	eek 14	20
	I	ab Pe	rforma	nce and	1				During	Week	15 to V	Veek 1	8	
Lab ESE			docum			Lab Cou	irse fac	ulty	Submis					25
													-	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments

Cours	se Contents:						
List of Experiments							
1.	Identification and classification of soils by field procedures	2					
2.	Determination of specific gravity for coarse and fine grained soil	2					
3.	Particle size distribution - Mechanical sieve analysis and sedimentation process using hydrometer	2					
4.	Determination of consistency limits and indices	2					
5.	Determination of coefficient of permeability by both constant and variable head method	2					
б.	Determination of Field density / In-situ density for soil	2					
7.	Determination of shear strength parameters by direct / box shear test	2					
8.	Determination of MDD and OMC for soil by Standard Proctor compaction test	2					
9.	Demonstration of Unconfined compression test	2					
10.	Demonstration of one dimensional consolidation test	2					
11.	Demonstrationof triaxial compression/shear test	2					

Title of the											L	Т	Р	Cr	
Estimating	and Co	ontrac	<u>ts (</u> 4C)	<u>(321)</u>							3	0	0	3	
Desirable (Courses	: Bui	lding N	Iateria	ls and	Constru	uction,	Build	ing Pla	nning	and D	esign			
Textbooks:															
1. Dut 201		N., "Es	stimatir	ng & C	Costing	; in Ci	vil Eng	gineerii	ng," U	BS Pu	blishe	rs, 281	th Revised	l Edition,	
2. Bire	li G.S.,	"Text	book o	f Estin	nating	& Cost	ing", I	Dhanap	at Rai	Sons, 7	th Edi	ition, 2	2015.		
3. Pati	1 B. S.,	"Civil	Engine	eering	Contra	cts & I	Estimat	tes", Or	rient Lo	ongma	n Ltd.,	4th E	dition, 20	15.	
References	:														
1. I.S.	code 12	200 (Pa	art I to	XXX)	B.I.S.,	Delhi									
2. "Sta	andard	Specifi	cation	Vol. I a	& II", I	PWD N	Mahara	shtra.							
3. "D.	S.R.", I	PWD N	Iaharas	shtra fo	or the r	ecent y	ear.								
Course Ob	jectives	:													
2. To 1	ing, me make st acquain	udents t the st	aware aware	of prev	vailing	profes		practic	es.						
								Bloom's Cognitive							
CO	After	the co	mpletio	on of th	ne cour	se the	studen	t should	d be ab	le to	Leve	el	Descr	ptor	
CO1	Expl	ain ele	ments o	of estir	nating	as well	l as coi	ntractin	g.		2		unders	tanding	
CO2			specific al as we		-	-		for var works.	ious ite	ems	3, 6		applyi creatir	-	
CO3							ferent civil works; and cution of a civil work.						analyz	analyzing	
CO-PO Ma	pping	: (Use	1, 2, 3	as Cor	relatio	on Stre	engths)		T	1	1		-1	
PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
C01	3	2											3	2	
CO2 CO3		3	3								2		3	2	
Assessment	<u>ا</u>		5			I		I		I		<u> </u>			
Teacher As		ent:													
Two compo Semester Ex					-						tion (N	ASE)	and one E	nd	
		Asses	sment]	Mark	6			
		ISI	E 1								10				
		M	SE				30								
		10													

ESE	50	
ISE 1: Assignment pertaining to modules 1 to 3 and eval	uated by test/quiz/presentation/oral.	
ISE 2: Assignment on pertaining to modules 4 to 6 and 6		
MSE: Assessment is based on 50% of course content (No		
ESE: Assessment is based on 100% course content with	•	v last
three modules) covered after MSE.		y ius
Course Contents:		
Module1: Elements of Estimating		Hrs.
č		
Definition of Estimate, Objectives, Types, Approximestimate, Supplementary estimate, Sub estimate, Annu		,
Concept of item of work, Units and modes of measureme	-	
Module2: Specifications		Hrs.
Necessity and significance, Types of specifications,		
Contents of detailed specifications, Specifications for		,
specifications for traditional items of civil work, Pros a		
deviations w.r.t. standard specifications, Steps invo		
conventional items of civil work.		
Module3: Preparation of Quantity Sheets	Н	Hrs.
Taking out quantities, PWD method, MES method, me	easurement and abstract sheets, prime cost, 7	7
provisional sum, provisional quantities items. Appropr	riate assumptions for certain quantities e.g.	
dimensions of R. C. C. elements and steel quantities in		
schedule, Preparing quantity sheets for buildings and ot	-	
volumes, Use of excel spread sheets and other software f		T
Module 4: Rate Analysis		Hrs.
Rate for an item of work, Factors affecting rate, man		Ó
equipment cost, Sundry costs, water charges, contractor'	· ·	
items of work, Effect of lead and lift, Price escalation, D conventional items of civil work.	SR, Steps involved in rate analysis for non-	
Module 5: Detailed & Approximate Estimates	H	Hrs.
Detailed Estimates of Buildings, Bridges, Roads, Wate		
works etc. benefits of detailed estimates.	······································	
Purpose and various methods for different types of Ap	proximate Estimates of civil works namely	
Building, Bridges, Roads, Water supply and drainage	schemes, Irrigation works etc. Basis for	
approximate estimates: Plinth area, Cubic contents, Servi	ice unit, Bay method, Elemental bill etc.	
Module6: Methods for execution of Civil Works	Н	Hrs.
Contracts Act: Definition of contract, Essentials of le	egally valid contract, Contract documents, 8	3
Conditions of contract.		
Competitive Bidding Contracts, various types Pros ar	id cons of each type, tender notice, tender	
	n, process and advantages of e-tendering.	
documents, submission, scrutiny and acceptance of tende	h type	
documents, submission, scrutiny and acceptance of tender Negotiated contracts: various types, Pros and cons of eac		
documents, submission, scrutiny and acceptance of tende		
documents, submission, scrutiny and acceptance of tender Negotiated contracts: various types, Pros and cons of eac PWD practices, Introduction to BOT and other methods Module wise Outcomes		
documents, submission, scrutiny and acceptance of tende Negotiated contracts: various types, Pros and cons of eac PWD practices, Introduction to BOT and other methods		

- 3. Demonstrate preparation of quantity sheets
- 4. Analyze rates for different items of civil works
- 5. Estimate costs of different civil works
- 6. Describe elements of contracts and decide methods for execution of civil works

Eour ·		Cours									I	Ĺ	Т	Р	Cr
round	datior	n En	ginee	ering	(4CV	322)						2	1	0	3
Desira	ble Co	ourse	s: So	il Mec	hanics	s, Soil	Mecha	anics I	Lab						
Textbo	ooks:														
	and d	istrib	utors,	2nd e	dition	, 1989	•			C	C /			ublisher	rs Delhi, 1
	editio	n, 20	05.			-			-	-	-				ndations
5.							Edition					centa	ines a		nautions
Refere	ences:														
1.	Bowle editio			oundat	tion A	nalysi	is and	Desi	gn", I	McGra	w Hil	l Int	ernati	onal Ed	lition, 4
	Kanir Delhi			'Desig	n Aid	ls in S	Soil M	lechan	ics an	nd Fou	ndatio	n En	ginee	ring", T	MH Ne
	•					•		,	-	tRai an				100-	
							-							1995.	Tachnic
5.				s., ngalor			annes	anu i	ounua	ation	Engine	CIIIĮ	3, 50	икпра	Technic
~			,	0											
Course	e Obie	ective	es:												
	Ū			basic k			the Fo	ounda	tion ar	nd inter	raction	with	n soil.		
1)	Ū	ovide	the b		nowle	dge of		ounda	tion ar	nd inter	raction	with	n soil.		
1) 2)	To pr To im	ovide part	the b the de	esignin	nowle	dge of		ounda	tion ar	nd inter	raction	with	n soil.		
1) 2)	To pr To im	ovide part	the b the de	esignin	nowle	dge of		ounda	tion ar	nd inter	raction	with		n's Cog	nitive
1) 2)	To pr To im e Lear	ovide part ning	e the b the de Outc	esignin comes:	nowle ig of fo	dge of oundat	tion.			nd inter				n's Cog Des	nitive criptor
1) 2) Course	To pr To im e Lear Afte Expl	ovide npart ning r the lain t	e the b the de Outc	esignin comes: letion	nowle ag of fo : of the	dge of oundat	tion. e the st	tudent	shoul		ole to	Le	Bloor	Des	
1) 2) Course	To pr To im e Lear After Expl their Anal of gi	ovide npart rning r the lain t suita lyse ven s	e the b the de Outc comp he co bility Shallo	esignin comes: letion ncept ow and ope co	nowle ag of fo of the of bea d deep nfigur	dge of oundat course uring c o foun ation	tion. e the st apacit dation	tudent y, fou s and	shoul ndatio evalu	d be al n type ate sta	ble to s and bility	Le	Bloor	Des Under	criptor
2) Course CO CO1	To pr To im e Lear After Expl their Ana of gi Desi	ovide npart rning r the lain t suita lyse ven s	e the b the de Outc comp he co bility Shallo oil slo e Sha	esignin comes: letion ncept ow and ope co	nowle ag of fo of the of bea d deep nfigur	dge of oundat course uring c o foun ation	tion. e the st apacit dation	tudent y, fou s and	shoul ndatio evalu	d be al	ble to s and bility		Bloor evel II	Des Under Ana	criptor rstandin
1) 2) Course CO CO1 CO2 CO3	To pr To im e Lear After Expl their Ana of gi Desi para	ovide npart ning r the lain t suita lyse ven s gn th meter	e the b the de Outc comp he co bility Shallo coil slo rs.	esignin comes: letion ncept ow and ope co	nowle ag of fo of the of bea d deep nfigur	dge of oundat course uring c o foun ation	tion. e the st apacit dation	tudent y, fou s and	shoul ndatio evalu	d be al n type ate sta	ble to s and bility		Bloon evel II	Des Under Ana	criptor rstandin alyzing
1) 2) Course CO CO CO CO CO PO	To pr To im e Lear After Expl their Ana of gi Desi para	ovide npart rning r the lain t suita lyse yen s gn th meter pping 1	e the b the de Outc comp he co bility Shallo coil slo rs.	esignin comes: letion ncept ow and ope co	nowle ag of fo of the of bea d deep nfigur	dge of oundat course uring c o foun ation	tion. e the st apacit dation	tudent y, fou s and	shoul ndatio evalu	d be al n type ate sta	ble to s and bility		Bloon evel II	Des Under Ana Cr PSO	criptor rstandin alyzing eating 1 PSO
1) 2) Course CO CO CO CO CO PO CO	To pr To im e Lear After Expl their Anal of gi parat D Map	ovide part ning r the lain t suita lyse yen s gn th meter oping	e the b the de Outc comp he co bility Shallo is shallo is s. g: 2	esignin comes: letion ncept ow and ope co allow	nowle ag of for of the of bea d deep nfigur and de	dge of oundat course uring c o foun ation eep for	e the strapacit	tudent y, fou s and ons or	shoul ndatio evalu	d be al n type ate sta	ole to s and bility f soil		Bloon evel II V	Des Under Ana Cr PSO 3	criptor rstandin alyzing eating 1 PSC 3
1) 2) Course CO CO1 CO2 CO3 CO-PC PO CO1 CO2	To pr To im e Lear Afte: Expl their Anal of gi paran D Map	ovide npart rning r the lain t suita lyse yen s gn th meter pping 1	e the b the de Outc comp he co bility Shallo coil sho cs.	esignin comes: letion ncept ow and ope co allow 3	nowle ag of for of the of bea d deep nfigur and de	dge of oundat course uring c o foun ation eep for	e the strapacit	tudent y, fou s and ons or	shoul ndatio evalu	d be al n type ate sta	ole to s and bility f soil		Bloon evel II V	Des Under Ana Cr PSO 3 3	criptor rstandin alyzing eating 1 PSC 3 3
1) 2) Course CO CO CO CO CO CO CO CO CO CO CO CO CO	To pr To im e Lear After Expl their Anal of gi parat D Map	ovide part rning r the lain t suita lyse ven s gn th meter pping 1 3	e the b the de Outc comp he co bility Shallo is shallo is s. g: 2	esignin comes: letion ncept ow and ope co allow	nowle ag of for of the of bea d deep nfigur and de	dge of oundat course uring c o foun ation eep for	e the strapacit	tudent y, fou s and ons or	shoul ndatio evalu	d be al n type ate sta	ole to s and bility f soil		Bloon evel II V	Des Under Ana Cr PSO 3	criptor rstandin alyzing eating 1 PSC 3
1) 2) Course CO CO CO CO CO CO CO CO CO CO CO CO CO	To pr To in e Lear After After Ana of gi paran D Map	ovide npart ning r the lain t suita lyse yen s gn th meter pping 1 3	e the b the de Outc comp he co bility Shallo coil slo e Sha s: g: 2 3	esignin comes: letion ncept ow and ope co allow 3	nowle ag of for of the of bea d deep nfigur and de	dge of oundat course uring c o foun ation eep for	e the strapacit	tudent y, fou s and ons or	shoul ndatio evalu	d be al n type ate sta	ole to s and bility f soil		Bloon evel II V	Des Under Ana Cr PSO 3 3	criptor rstandin alyzing eating 1 PSC 3 3

End Semester Examination (ESE) having 20%, 3	0% and 50% weights respectively.					
Assessment	Marks					
ISE 1 10						
MSE	30					
ISE 2	10					
ESE	50					
ISE 1 and ISE 2 are based on assignment, oral, semin [One assessment tool per ISE. The assessment tool us MSE: Assessment is based on 50% of course con	ed for ISE 1 shall not be used for ISE 2]	sion.				
ESE: Assessment is based on 100% course conte (normally last three modules) covered after MSE		t				
Course Contents:						
Module 1 : Shallow Foundation design for stal	•	6 Hrs.				
Introduction: General requirements for satisfa stability and deformation criteria)Bearing Capacity: Modes of failure: general, log gross, net and safe bearing capacity, allowable bearing capacity.	cal and punching. Definitions of ultimate,					
bearing capacity equation. IS code approach of be variation and for inclined/eccentric loads, ultimat Plate load test and Standard Penetration Test :	earing capacity evaluation with water table te bearing capacity in local shear condition.					
evaluation based on them. Module 2: Shallow Foundation design for defo	rmation critoria	4 Hrs.				
Stress distribution in soil: Boussinesq and Wes		7 111 5.				
foundation settlement, total, differential settlement Immediate settlement computation: IS 8009-19	nt, angular distortion, limiting values.					
Consolidation settlement : Pre-consolidation pre consolidated soils, Computation of consolidation	•					
Module 3: Shallow Foundations		4 Hrs.				
Contact pressure distribution in cohesive and analysis, Isolated, combined, strap footing de foundation. Floating foundation: concept and construction de Foundations on Expansive soils	esigns. Concept of elastic analysis, raft					
Module 4: Deep Foundations		6 Hrs.				
 Pile Foundation: Classification, static method estimation- structural capacity, capacity in cohest drag, Under-reamed piles. Pile groups: Evaluation of group efficiency factor Caisson Foundations: Brief construction review 	sive, cohesion less and mixed soils, Down- or, group capacity evaluation.					
Module 5: Flexible Retaining Structures		4 Hrs.				
Sheet piles : Projects in which sheet piles are use pile in cohesive and cohesion less soils. Design of	-					

method.	
Module 6 : Slope Stability	4 Hrs.
Causes and types of slope failures, Different factors of safety, Slope stability analysis by	
Swedish circle method (method of slices), Use of N and T curves, Friction circle method,	
Use of stability number.	
Module wise Outcomes	
At end of each module students will be able to	
1. Compute and Interpret bearing capacity, Design foundations for stability criteria	
2. Explain Stress distribution in soils, Compute foundation settlement and	Examine
deformation criteria for foundations.	
3. Differentiate between various shallow foundations, Assess their suitability and	Produce
foundation design calculations	
4. Compute capacity of single pile and group of piles, Describe caisson construction	
5. Recognize projects for sheet pile use, Compute embedded depth of sheet piles	
Explain the causes of earth slope instability, Analyze the factor of safety of given various methods.	slope by
Tutorials:	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that	students
have properly learnt the topics covered in the lectures. This shall include assignment, tutoria	als, quiz,
surprise test, declared test, seminar, final orals etc.	

Title of the	Course:									1		Т	Р	Cr		
Waste Mana	ngement	and Po	ollution	Contr	ol (4C	V323)					2	1	0	3		
Desirable Co	ourses:	Water S	Supply	and Tre	atment	Techno	ology, E	nvironr	nental S	Science						
Textbooks:																
1. Nath												^h Editio	on, 2009.			
	i, P. N.,			•	•			-				C	L11 Deels	Commonwe		
	у н, s, ın Editio			ind I ch	obanog	lous G	, Envi	ronmen	tai Eng	ineering	g, MC	Jfaw-i	Hill Book	Company,		
References:		, _ 0 1 /														
1. Ham 2018		J and H	ammer	M, J, "	Water a	and Wa	stewate	r Techn	ology"	, PHI lea	arning j	private	limited, 7	h Edition,		
	nual on a	-	-	-	Treatm	nent", C	CPHEE(O, Minis	stry of	Housing	g and U	Irban A	Affairs Dev	elopment		
			-			-	nent",	CPHE	EO, M	inistry	of Ho	using	and Urba	n Affairs		
	elopmen	t, Govt.	, of Ind	ia, New	Delhi,	2016.										
Course Obje		concer	ts of w	astewat	er engin	eering	solid 11	iaste nri	recein	o gir an	d noise	nollut	ion control			
	rovide p	-			-	-		-		-		-		•		
				•		•	•			0			ution contr	ol.		
-	nake stud		-							C		•				
Course Lea	ning O	utcome	s:													
CO	After	the com	mlation	oftha		haatud	antcha	B B build be able to					Bloom's Cognitive			
CO	After	the com	pletion	or the	course t	ne stud	ent sno	uid be a	ble to		Lev	vel	Descriptor			
C01	monit treatm	oring	air cessing	qual contro	ity l techno	and ologies	meteo for pro	ater and rologica evention oise.	al i	mpact;	Ι	[Unders	tanding		
CO2	genera	•	naracter					/aste as nt/proce			II	I	App	lying		
CO3	Desig	n sewei	age and	l wastev	water tr	eatmen	t systen	1.			V	I	Crea	ating		
CO-PO Maj	oping :			•			•	1	-				- 1	-		
PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
CO1	3												2	3		
CO2		3											3	3		
CO3			3										3	3		
Assessments Teacher Ass	essment															
Two compon Examination									ter Exa	minatio	n (MS	E) and	l one End	Semester		
		Asses	sment]	Marks					
		ISI									10					
		M	SE								30					

ISE 2 10	
ESE 50	
ISE 1: Assignment on real-life problem pertaining to modules 1 to 3 and evaluated by test/quiz/presetISE 2: Field visit to waste processing facility OR assignment on pollution problem in social test/quiz/presentation/oral.MSE: Assessment is based on 50% of course content (Normally first three modules)ESE: Assessment is based on 100% course content with 60-70% weightage for course content modules) covered after MSE.	ety and evaluated by
Course Contents:	
Module 1 Wastewater and Collection	Hrs.
Wastewater: Sources, Flow rate and variations, Quantitative estimation, Characteristics	
Gravity sewer collection system: Nomenclature, Manhole, Inverted siphon, Pumping station	5
Design of sanitary and storm sewer, Computer application SEWERCAD	
Module 2 Introduction to Wastewater treatment	Hrs.
Wastewater treatment: Philosophy, Unit operations and unit processes	
Primary treatment: Screening, Grit removal, Settling	4
Biological/Secondary treatment: Fundamentals of aerobic and anaerobic treatment, Classification	
Module 3 Aerobic Wastewater treatment	Hrs.
Aerobic suspended growth: Conventional Activated Sludge Process (ASP) and modifications, Pro	cess design
and operating parameters (ASP), Operational problems (ASP), Process design of oxidation ditch	and Waste
stabilization pond	5
Biological filtration, Biological nitrogen and phosphorous removal	
Module 4 Decentralized treatment and Disposal	Hrs.
Decentralized treatment: Concept, Septic tank and soakage pit, Anaerobic baffled reactor (ABR), filter (AF), Constructed wetland (CW), Typical system Advances in wastewater treatment : Moving bed bioreactor (MBBR), Membrane bioreactor (ME ASP Disposal of wastewater: Methods, Effluent standards Stream pollution: Self-purification (Stream rejuvenation), DO sag curve, Streeter Phelp's equation source, Stream classification	BR), Cyclic 5
Module 5 Solid waste	Hrs.
Sludge: Characteristics, thickening, dewatering, digestion, disposal	
Solid Waste: Characteristics, Generation, Collection and transportation	
Engineered systems for solid waste processing: Mechanical, Thermal, Biological	5
Sanitary land fill: Location, Components, Design	
Module 6 Air and Noise pollution	Hrs.
Air Pollution: Meteorological parameters, Ambient air quality monitoring, Air quality standards	
Air pollution control: Approaches and equipment for particulate and gaseous pollutants	4
Noise pollution: Permissible limits of noise pollution, measurement of noise, Control of noise pollut	ion.
Module wise Outcomes	
At end of each module students will be able to	
1. Explain wastewater characteristics and collection system. Estimate wastewater flow rate	and design
flows for sewer. Design sewer.	
2. Explain unit operations and processes for wastewater treatment. Analyze and design prelimprimary treatment units.	minary and
 Explain the activated sludge process (ASP) and biological filtration. Design of ASP, oxidation waste stabilization pond. 	n ditch, and

4. Explain decentralized treatment system, self-purification of stream and advances in wastewater treatment. Design septic tank. Estimate DO and deficit using Streeter-Phelp's equation.	
5. Explain functional elements of solid waste management and processing techniques. Design sanitary land	
fill for area requirements.	
6. Explain meteorological elements and its relation to air pollution; air and noise pollution control	
equipment.	
Tutorial:	
Module 1: [Tutorial 1: Examples on BOD and BOD test; Tutorial 2: Design of sanitary sewer; Tutorial 3:	
Design of storm sewer and pumping system; Tutorial 4: COD test]	
Module 2: [Tutorial 1: Examples on bar screen; Tutorial 2: Design of grit chamber]	
Module 3: [Tutorial 1: Examples on ASP; Tutorial 2: Design of oxidation ditch; Tutorial 3: Design of	
oxidation pond and bio-filter]	
Module 4: [Tutorial 1: Examples on septic tank and area requirement for ABR, AF, and CW; Tutorial 2:	
Examples on stream purification]	
Module 5: [Tutorial 1: Examples on solid waste generation and collection; Examples on landfill]	
Module 6: [Tutorial 1: Examples on meteorological parameters and air quality ; Tutorial 2: Examples on	
noise and Demonstration of HVS and Noise level meter]	

Title of the	e Cours	e:								Ι		Т	Р		Cr
Design of	Concrete	e Struct	tures (4	CV324	<u>4)</u>		_				2	1	-		3
Desirable	Courses	s: Soli	d Mech	nanics,	Structu	ıral An	alysis								
Textbooks	:														
1. Punmi	a, B. C.	and Ja	in, A. I	K. "Lir	nit stat	e desig	gn of re	einforce	ed con	crete",	Laxm	i Publ	ication,	1 st E	Edition
2013. 2. Shah,	V. and K	arva	S "Iin	nit stat	a theor	v and c	lecion	ofrain	forced	concret	to" St	ruotu	oc Dubli	cati	ons 1 ^{tl}
	v. and K 1, 2003.	salve, i	5. Lili	III Stat		y and c	lesign		loiceu	CONCIE	ie , 51	luctui		Call	0115, 4
3. Varghe	ese, P. C	. "Lim	it State	Desig	n of Re	einforco	ed Con	crete S	tructur	es", Pro	entice	Hall,	4 th Editi	on, ź	2010.
Reference	s:														
1. IS 45	5:2000-	Code	of Prac	tice fo	r Plain	and R	einford	ced Co	ncrete,	BIS ar	nd SP	34-19	87 – Ha	andb	ook oi
	ete reinfo				•								41		
	S. V. an mruthm,						•								
Course Ol			esign o	1 Tenno		oncrea	e struct	ules,	Dhanp	al Kal r	uonsi	ning, i	/ Eult	1011,	2010.
1. To int	roduce		ndamer	ntal co	ncepts	of lir	nit sta	te met	hod fo	or the	design	of r	einforce	d c	oncrete
compo 2. To imp	nents. oart knov	vledge	for stre	ength d	letermi	nation	of diff	erent ki	inds of	RC co	mpone	ents us	sing IS c	ode	
	vide kno														
Course Le	arning	Outco	mes:												
												Bloor	n's Cog	niti	ve
СО	After	the co	mpletio	on of th	ne cour	se the	student	t should	l be ab	ole to	Le	vel	Des	scrit	ptor
	Appl	y the	conce	pt of	limit	state f	for dea	sign o	f reint	forced	Ι	I	Applyi	-	
CO1		-	mponei	•				C						U	
CO2	Calc	ulate ti	he strer	ngth of	reinfo	rced co	oncrete	membe	ers.		V	/	Evalua	ting	5
	Desid	m vari	ous coi	nnonei	nts of r	einford	red con	crete st	tructur	es	V	Ί	Creatin	חס	
CO3	Desiş			nponer		cimore	cu con		liuctur	03	v	1	Creatin	ig	
CO-PO M	apping	: (Use	1, 2, 3	as Cor	relatio	on Stre	engths)								
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO	1	PSO2
CO1	3	-											1	-+	1
CO2		3	3										2	-+	2
CO3 Assessmer			3									1	3		3
Assessmer Teacher A		ent:													
Two comp	onents o	f In Se									ion (N	(ISE) a	and one	End	
Semester E	examinat			ving 20	J%, 30 [°]	% and	50% w	eights	respect	•					
			sment							N	Aarks	5			
			E 1								10				
		Μ	SE								30				
		IS													

ESE	50	
ISE 1 and ISE 2 are based on assignment/declared test	st/quiz/seminar etc.	
MSE: Assessment is based on 50% of course content	(Normally first three modules)	
ESE: Assessment is based on 100% course content w three modules) covered after MSE.	ith 60-70% weightage for course content (normal	ly last
Course Contents:		
Module 1: Introduction		5 Hrs.
a) Design Philosophies- Working Stress Method, Ult state of collapse, Characteristic strength, Character curves for concrete and steel, Limit state of serviceab	ristic load, Partial safety factors, Stress-strain	
b) Singly reinforced rectangular beam, Balanced reinforced section, Moment of resistance, Design of r		
Module 2: Doubly Reinforced Beams		5 Hrs.
a) Moment of resistance for doubly reinforced rectantb) Design of doubly reinforced rectangular, T and L t	-	
Module 3: Shear, Bond, and Torsion		5 Hrs.
a) Shear: Truss analogy, Design of beam for shear acb) Bond: Bond and development length, Bond stress,c) Torsion: Design of beam subjected to torsion according to the stress of the stres	Standard hooks, Anchorages.	
Module 4: One Way and Two Way Slab		5 Hrs.
a) Design of single span, continuous and cantilever ofb) Design of two way slab by IS code method.c) Design of staircases.	ne way slab.	
Module 5: Columns		4 Hrs.
Load carrying capacity of axially loaded column, Sh columns, Design according to IS, Column subjected to M interaction diagram.		
Module 6: Isolated Footing		5 Hrs.
Design of square/rectangular and circular isolated for	oting.	
Module wise Outcomes		
At end of each module students will be able to:		
 Apply the concept of limit state method for desexplain different design philosophies. Design doubly reinforced beams. Design the beam for short hand, and terring. 	sign of singly reinforced beams in flexure and	
 Design the beam for shear, bond, and torsion. Design one way, two way slab, and dog-legged st 	taircase.	
 Design one way, two way shae, and dog regged s Design axially and eccentrically loaded columns. 		
6. Design square, rectangular, and circular isolated	footings.	
Tutorial: One hour per week per batch tutorial is to be utiliz have properly learnt the topics covered in the lecture surprise test, seminar, final oral, etc.		

Title of the C										Ι	_	Т	Р		Cr
PE-II: Desig	n of Hy	drauli	c Struc	tures (4CV33	<u>1)</u>				2	2	1	0		3
Desirable Co	urses:	Water	Resour	ces Eng	gineerir	ng				ľ					
Textbooks:									4						
1. Garg, 2. Modi												d Rool	Z Uouso	10 th	Edition,
2. Woul 2008.		water	Kecour	ses Eng	gineerin	g and v			ngmeen	ng , si	lanuar		k House,	10	Eution,
3. Punm Editio	iia,B.C. on, 200		nde, B.	B., "Irr	igation	Water	Power 1	Engine	ering",L	.axmi F	Publica	tion P	rivate Li	mite	ed, 4 th
References:															
 Sahas Varsh 	srabudh	ie, S.R. nd Gup	,"Irriga	tion and	d Hydra	ulic str	uctures	", S.K		and Sor	ns Deł	nhi,3 rd	Edition		1 Brothers,6 th
Course Obje	ctives :	:													
1. To in	troduce	e studen	its the c	oncepts	s of rese	ervoir p	lanning	g and i	rrigatio	n engin	eering				
•					•		0		us hydra						
3. To pr	epare t	he stude	ents for	higher	studies	and re	search i	in the fi	eld of w	vater res	source	s and	irrigation	eng	gineering.
Course Lear	ning O	utcome	es:												
СО	After	the con	nletior	n of the	course	the stu	dent sh	ould be	able to			Blo	om's Co	ogni	tive
0	7 11101	the con	iipieuoi	i oi the	course	the stu	dent site				Le	evel	Ι	Descriptor	
CO1	-				, gravit			lam, sp	illway, y	weirs,		II	Ur	nder	standing
CO2		y thekr ems ass			nydrauli	ic struc	ctures t	to solv	e/analyz	e the	III	, IV	Apply	ying	Analyzing
CO3	Desig	n hydra	aulic str	uctures	inirrig	ation er	ngineeri	ing.			Y	VI		Cre	ating
CO-PO Map	ping :	(Use 1,	2, 3 as	Corre	lation S	Strengt	hs)								
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO	1	PSO2
CO1	3														
CO2		3											3		3
CO3			3										3		3
Assessments	:														
Teacher Asse															
Two compon									ester Ex	aminat	ion (N	MSE)	and one	En	d Semester
Examination	(ESE) l)% and	50% w	veights	respecti	ively.							
		Asses									Marl	KS			
		ISI									10				
		M									30				
		ISI									10				
		ES				1.1 1	1 - 2	1. 1	- 1 - 1 1	4	50		/ 1		
ISE 1: Assign		-	-		-				-	-	-			n/a	rol
ISE 2: Assign MSE: Assessi		-		-			-			-	v test/0	iuiz/pi	esentatio	011/01	al.
ESE: Assess						-	•				course	e conte	ent (norr	nall	y last three
								-	0	<u> </u>			<		

modules) covered after MSE.	
Course Contents:	
Module 1 Planning of reservoir and classification of dams	Hrs.
Planning of reservoirs: storage calculations, control levels of reservoir, silting of reservoir, losses in	
reservoirs and calculation of life of reservoir.	5
Dams: necessity and types, selection of suitable site for construction, selection of type .	
Module 2 Gravity dam and arch dam	Hrs.
Gravity Dam: forces acting on gravity dam, failure criteria of gravity dam, theoretical and practical profile	
of gravity, methods of stability analysis and construction of gravity dam.	5
Arch dams: types, layout of constant angle and constant radius arch dam, forces acting on arch dam.	
Module 3 Earthen dam	Hrs.
Earthen dams: components and their functions, stability and design criteria; seepage through the body of the	
earth dam and below earth dam, application of slip circle method, different type of filters, upstream and	5
downstream drainage arrangement, construction of earthen dam.	
Module 4 Spillway	Hrs.
Spillway: necessity and different types, factors affecting choice and type of spillway, elementary hydraulic	
design, energy dissipation devices, jump height and tail water rating curve, energy dissipation below	4
spillway, type of gates provided at the crest of the spillway	
Module 5 Weir on permeable foundation and canal	Hrs.
Weirs on permeable foundation: theories of seepage, Bligh's creep theory, Khosla's theory	
Canal: types, alignment, Kennedy's and Lacey's silt theories, canal losses, typical canal sections,	
necessity and types of canal lining	5
Canal structures: cross drainage works and canal regulatory works, aqueduct, culvert, super passage, level	
crossing, cross and head regulator, canal Siphon, canal escape, canal fall and canal outlets	
Module 6 River training work and hydro power engineering	Hrs.
River training works: types of rivers, meandering phenomenon, types of river training works.	
Hydropower engineering: types of water power plants, layout and components of each type, intakes,	5
conveyance system, surge tanks, power house types, components and layout.	
Module wise Outcomes	
At end of each module students will be able to	
1. Explain storage capacity of the reservoir and type of dam, estimate of life of the reservoir.	
 Analyze and design gravity dam. Analyze and design earthen dam. 	
4. Analyze and design spillway with energy dissipating devices.	
5. Analyze and design the weir on permeable foundation and canal.	
6. Explain the river training methods and hydro power engineering.	
Tutorial	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that students	
have properly learnt the topics covered in the lectures. This shall include assignment, tutorials,	
quiz, surprise test, declared test, seminar, final orals etc.	

Title of the O										Ι		Т	Р	Cr	
PE-II: Adva	nced Su	rveyin	g (4CV)	<u>332)</u>						4	2	1	-	3	
Pre-Requisit	te Cours	ses: Eng	gineerin	g Surve	eying										
2. K. R	idra A.M . Arora ' wal N.K	'Survey	ring", V	ol. 1 &	2, Stan	dard Bo	ook Ho	use, 16t	h editio	n, 2018,					
References:															
2. Lille New	sand T. I York, (2	M. and 2002).	Kiefer.	R.W., '	'Remote	e Sensii	ng and 1	Image I	nterpret	tation", 4	4th Edi	tion, Jo	on; 7th edit ohn Wiley a npany, Nev	and Sons,	
Course Obje		1.1000	c und s.	rteny,	Survey	<u>6</u> , 11	icory u	ila i luci	100 , 10				iipuiiy, ree	W TOIK.	
 To deprine To ad field 	iples in lopt suit conditio	n abilit plannin able su ons.	y to ana g and d rvey tec	lyze lar esign o	nd profi f engine	les in lo ering s	ogical n tructure	nanner a es on the	ind will Earth	be able s surfac	e.	-	understood		
Course Lear	ming Ou	itcome	s:												
СО	After	the con	pletion	of the	course t	he stud	ent sho	uld be a	ble to		T			s Cognitive Descriptor	
	C4 J					t offoo	4			liter of	L	evel	Desc	criptor	
CO1	Study modern surveying equipment effectively to improve quality of surveys.IVAnalyz									lyzing					
CO2	-		•		ta from ematic		rial pho	otograpł	is and	remote]	V	Ana	lyzing	
CO3	Analy and G		Solve	surveyi	ng prob	olems b	y using	; remote	sensin	g, GIS			olying, lyzing		
CO-PO Map	oping:(Use 1,	2, 3 as (Correla	tion St	rength	s)						·		
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1	1	1			3								1		
CO2	1	1			3								1		
CO3	3	1			3								1		
Assessments															
Teacher Ass				F 1						<u> </u>	0.00			9	
Two compon Examination									ter Exa	iminatio	n (MS	E) and	one End	Semeste	
		Asses	sment							Ι	Marks				
		ISI	E 1								10				
		Μ	SE								30				
		ISI	E 2								10				
			SE								50				
ISE 1 and ISI MSE: Assess ESE: Assess modules) cov	ment is ment is	based o based	on 50% on 100	of cours	se conte	nt (Nor	mally f	irst thre			urse co	ontent	(normally	last thre	

Course Contents:	
Module 1: Geodetic Surveying	Hrs.
Introduction & objective of Geodetic Surveying, Principal & classification of triangulation system, Selection	
of base line and stations, Orders of triangulation-triangulation figures, Station marks and signals-marking	5
signals, Examples on Phase error, Extension of base, reduction of center, selection and marking of stations	
Module 2: Total Station Survey	Hrs.
Principle, Data observations, Data extraction and conversion using software	1
Concept of traversing, profile survey and contouring using Total Station	4
Module 3: Aerial Photogrammetry	Hrs.
Aerial Photogrammetry, Basic concepts, Geometry of vertical photographs, Scale and Flying height, Relief	
displacement, Flight planning computations, Stereoscopy and Parallax, Photo mosaic, Elements of photo	5
interpretation.	
Module 4:Remote Sensing	Hrs.
Definition and scope of remote sensing; Electromagnetic radiation (EMR) and electromagnetic spectrum;	
EMR interaction with atmosphere and earth surface; Atmospheric window and spectral reflectance curve;	
Resolutions in remote sensing; Types of remote sensing; Principles and applications of optical, thermal &	6
microwave remote sensing; Introduction to hyperspectral remote sensing; Characteristics and types of Remote	-
sensing satellites and sensors	
Module 5: Introduction to Geographical Information System (GIS)	Hrs.
Definition of GIS, Components of GIS, Hardware and Software, GIS operations. Types of Geographic data;	
Raster and Vector data model: Advantages and Disadvantages; Fundamental of data storage: block code, run	
length code, chain code, quad tree; Spatial data input: Digitization and Conversion; Point, line and polygon;	5
Concept of Arc, node and vertices; Digitization errors; Topological relationship; Topology: Error and editing.	
Module 6: Introduction to Geographical Positioning System (GPS)	Hrs.
Introduction to GPS; Types of GPS; GPS satellite; data receiver and control points; Differential GPS; Sources	1115.
of GPS errors; Application of GPS in surveying, mapping and navigation.	4
Module-wise Outcomes: At end of each module students will be able to	
 Classify triangulation systems and analyze baseline data. Use Total Station and analyze Total Station survey data. 	
 See Total Station and analyze Total Station survey data. Explain basic concepts of aerial photogrammetry. 	
 Explain basic concepts of actual photogrammetry. Explain basic concepts of Remote Sensing. 	
5. Use GIS and analyze GIS data.	
6. Explain working of GPS and apply GPS measurement and mapping techniques for GPS surveying.	
Tutorial	
One hour per week per batch tutorial is to be utilized for problem solving to ensure that students have	
properly learnt the topics covered in the lectures. This shall include assignment tutorials quiz	
properly learnt the topics covered in the lectures. This shall include assignment, tutorials, quiz, surprise test, declared test, seminar, final orals etc.	

Title of th Profession			- Adv	anced	Concr	oto Tor	hnolog	w (AC	V333)	Ι		Т	Р	Cr	
1101055101			- Auvo	inceu	concr			<u>sy (</u> 40	• 555 <u>7</u>	2	2	1	-	3	
Desirable	Course	es: Ci	vil Eng	gineerii	ng Mat	erials									
Textbook	s:														
										shers, 2					
										th Editio					
3. Shetty	, M. S.,	"Conc	erete T	echnol	ogy", S	. Chan	d and (Compa	ny Ltd	, New I	Delhi,	2014.			
Reference	es:														
1. Indian	codes-	IS: 45	6-2000	, IS: 22	250-19	81, IS:	516-19	959, IS	: 5816	-1999,	IS: 40)31(Pa	urt 6) - 19	988.	
		•					Structu	res",	https://	′www.a	mazo	n.in/F	ormwork	-Concrete	
	ures-Ku		0	•			~			~				1	
	is P.H., hers, 19	-	ur, Pro	tection	and V	Vaterpr	ooting	of Co	ncrete	Structu	ires"	Elsevi	er Appli	ed Science	
			esion a	of Con	erete M	lixes"	2nd Ed	lition (CBS P	hlisher	's and	Distr	ibutors, 2	009	
11113111	m rtuju.	, р	551511 (.1 0010			2110 L.C			.01151101	5 unu	1311	.54(015, 2		
Course O															
-			-			-	of maki	ng of c	concret	e, appli	catio	n of co	oncrete to	o roads and	
	rial floc part the	-					atotic	ing							
	-		-	-	•				rete sti	ructures					
				queste	// testii		repuir (1010 51	uetures	•				
Course Lo	arning	gOute	omes:												
СО	After	the co	mpleti	on of tl	he cou	se the	student	t shoul	d be ab	le to		Bloo	m's Cog	nitive	
												vel		criptor	
	Explain advanced technique of making of concrete, applicationof concrete to roads and industrial floors, precast concrete,]	Ι	Unde	rstanding		
CO1		oncrete work.	to ro	ads a	nd ind	ustrial	floors	, preca	ast cor	ncrete,					
	Asse		ality	of co	ncrete	throu	10h a	nality	asses	sment		V	Ex	Evaluate	
CO2	CO2 Assess quality of concrete through quality assessment techniques.						Sillent		•		uruute				
CO3	Desi	gn the	formw	ork for	concre	ete stru	ctures				I	Ί	Cı	eating	
CO-PO M	lapping	g :						_							
PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO		
CO1	2													2	
CO2			3 3											3	
CO3 Assessme	nts •		5			<u> </u>	<u> </u>							5	
Teacher A		nent:													
Two comp			emest	r Eval	uation	(ISF)	One M	id Sem	lester F	Tyamin	ation (MSE) and one	Fnd	
Semester l												TAPPE			
			ssment	Ũ			/ 0	-8-10		•	Aark				
			E 1								10	,			
		IV.	ISE								30				

ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

· · ·	
Course Contents:	
Module 1: Concrete Plant and Ready-mixed concrete	5 Hrs.
Batching plant and ancillary equipment for improving accuracy; mixers; distributing plant; vibrators. Site for RMC plant, need of RMC plant, types of plant; truck-mixer efficiency; effects of prolonged agitation; quality control: acceptance and compliance.	
Module 2: Special processes and technology for particular types of structure	5 Hrs
Sprayed concrete, underwater concrete, grouts, grouting and grouted concrete, form construction, concrete for liquid retaining structures, pumped concrete, mass concrete, vacuum process; concrete coatings and surface treatments, Exposed concrete finishes; types of surface finish; methods of production; weathering.	
Module 3: Precast Concrete and Concrete for Roads and Industrial Floors	5 Hrs
 A) Precast concrete- Review of types of small and large products; methods of compaction other than vibration; mix design and curing; special formwork requirements; masonry. B) Concrete roads- Methods and materials for pavements; equipments, cement-bound materials; testing materials, joints, methods of curing. C) Industrial floors- Materials and construction procedures; screeds and toppings; testing. 	
Module 4: Quality concepts, Quality control and Statistics	5 Hrs
 A) Quality concepts- Definitions; principles and Standards; quality schemes; third party capability assessment; QA schemes for materials, ready-mixed concrete and precast concrete; QA in concrete construction; product conformity. B) Quality control- Quality of mixed concrete: outline of problems involved; control techniques; selection of control procedures. Quality of finished product. C) Statistics- Measures of dispersion, probability and sampling theory, tests of significance, curve fitting and regression, repeatability and reproducibility, control charts. The role and limitations of statistics in concrete technology. 	
Module 5: Formwork	5 Hrs
Principles of design; concrete pressures; linings; release agents; formwork for exposed concrete finishes; tolerances. Formwork materials, structural requests, formwork systems, connections, slip formwork, specifications, removal for forms, failure of formwork.	
Module 6: Non-destructive Testing and Repairing of Concrete	4 Hrs
Causes for repairing, types of concrete failures, distress in structure – causes and precautions, damage assessment of structural elements. Non-destructive testing- rebound hammer, ultrasonic pulse velocity apparatus and rebar locator etc. Repairing techniques and repairing materials-jacketing, FRP wrapping, shotcrete and grouting, chemical adhesives etc.	
Module wise Outcomes	
At end of each module students will be able to:	

1.	Explain concrete plants and RMC	
2.	Demonstrate special processes and techniques of concreting like for particular types of	
	structure like underwater, water retaining etc.	
3.	Explain advanced techniques of concreting for roads, industrial floors and precast units.	
4.	Assess the quality of concrete through quality control and quality assessment procedure.	
5.	Design the formwork for concrete structures.	
6.	Assesses existing strength of concrete using non-destructive testing methods and select proper	
	strengthening method.	
Tu	torial	
0	One hour per week per batch tutorial is to be utilized for problem solving to ensure that students	
h	ave properly learnt the topics covered in the lectures. This shall include assignment, tutorials,	
q	uiz, surprise test, declared test, seminar, final orals etc.	

Title of the			10			=1)					L	Т	Р	Cr
<u>Mini Proje</u>	ct 2 -Esti	mating a	and Co	osting (<u>4CV 3</u>	71)					0	0	2	1
Desirable (Courses:	Buildin	g Mate	rials ar	nd Cons	structio	on, Bui	lding P	lannin	g and D	esign			
Textbooks	:													
1. Du	tta, B. N.,	"Estima	ting &	Costin	g in Ci	vil Eng	ineerin	g," UB	S Publ	ishers, 2	28th R	evised	Edition, 2	016.
2. Bir	di G.S., "	Fext boo	k of Es	stimatir	ng & Co	osting"	, Dhan	apat Ra	i Sons	, 7th Ed	ition, 2	2015.		
3. Pat	il B. S., " (Civil Eng	gineerii	ng Con	tracts &	& Estin	nates",	Orient	Longn	nan Ltd.	, 4th E	dition,	2015.	
References	•													
1. I.S.	code 120	0 (Part I	to XX	X) B.I.	S., Del	hi								
2. "St	andard Sp	ecificati	on Vol	. I & II	", PWI) Maha	arashtra	•						
3. "D	S.R.", PW	/D Maha	arashtra	a for th	e recen	t year.								
Course Ob	jectives :													
1. To	develop tl	ne skills	require	d for f	ormula	ting sp	ecificat	ions an	d carry	ing out	rate ar	nalysis.		
2. To	provide s	tudents	hands-o	on prac	tice for	estima	ating co	ost of ci	ivil wo	rks.				
3. To	impart tra	aining to	use co	mputer	r for est	timatin	g and c	osting.						
Course Lea	arning Ou	itcomes	:											
												Bloo	m's Cogn	itive
CO	After the	e comple	etion of	the co	urse the	e stude	nt shou	ld be a	ble to			Level	Des	scriptor
CO1	Formula	te specif	fication	is and a	analyze	rates f	or diffe	erent ite	ems of	work	4,6	Ì	Anal creat	yzing, ing
CO2	O2 Estimate costs of the different civil works 4 Analyzi							yzing						
CO3	Demons	trate app	olicatio	n of co	mputer	for est	imating	g and c	osting		3		Appl	ying
CO-PO Ma	apping : (Use 1, 2	, 3 as (Correla	ation S	trengtl	ns)						·	
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1			3										2	2
CO2			3								2		1	2
CO3					2								2	

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
LA1	Lab activities,	Lab Course Faculty	Lab Course Faculty During Week 1 to Week 4			
	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25		
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25		
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23		
LA3	Lab activities,	Lab Course Faculty	Course Ecoulty During Week 10 to Week 14			
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25		
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25		
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	25		

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:	
List of Assignments	Hrs.
The mini-project to be completed for the course shall comprise of two parts as specified below	
Part 1. Estimate for Residential Building	
Preparation of a report incorporating	
i. General description of the work, Drawings, data and assumptions	
ii. Detailed Estimate of Two storeyed residential building	
iii. Detailed Specifications: Minimum 3 traditional items of work and Minimum 1	
nontraditional items of work pertaining to the estimate in ii	
iv. Preparation of bar bending schedule for a part of the above work	18
v. Rate analysis for the items covered in iii	
vi. Tender notice for the above work	
vii. Listing all conditions of contract for the above work and detailed drafting of any	
three conditions of contract for the above work	
viii. Concluding Remarks	
ix. References	
Part 2. Estimate for any One Civil Work other than building (such as Road, Canal, C.D. works,	
Structural steel work, Water supply or treatment work, S.T.P., E. T. P. etc.)	
Preparation of a report incorporating	
i. General description of the work, Drawings, data and assumptions	ρ
ii. Detailed Estimate of the work	8
iii. Detailed Specifications: Minimum 1 item of work pertaining to the estimate in other than	
those common in buildings.	
iv. Rate analysis for the items covered in iii	

v. Concluding Remarks	
vi. References	

Title of the					° D	()	CX1280				L	Т	Р	Cr	
<u>Mini Proje</u>	<u>ct 3- Str</u>	uctural	steel D	esign d	x Drav	ving (4	<u>CV3/2</u>	-			-	-	2	1	
Desirable (Courses:	Enginee	ring Me	echanic	cs, Soli	d mech	anics, D	esign	of stee	l structu	res	1			
Textbooks:			-												
1. Duggal S 2014.	S. K., "I	limit stat	e desig	n of st	eel stru	ictures'	', Tata I	AcGra	ıw-Hill	Publica	tions,	New D	elhi, 2n	d Edition,	
2. Shiyekar	, M. R.,	"Limit st	ate des	ign in s	structu	al steel	I", PHI I	earnin	ng Pvt.	Ltd Pub	lication	ns 2nd	Edition	2013.	
3. Subrama				•			-		•						
References								2	-						
3. IS 800-2	, Edwin elhi, 3rd 007 'Co	and Gayl Edition, 2	ord, Ch 2010. actice fo	arles, ' or Gen	"Designeral Co	n of ste onstruct	el struction in s	ures", æel', a	, Tata M and IS	McGraw 875-198	Hill P 87 part	: 1 to 5	; Code o	of Practice	
4. SP: 6(1)	C			-	,		0	ires, D	ureau	or mutar	i Stanc	iarus, r	New Del		
2. To dem	art the ki onstrate ride the l	nowledge the desig knowledg	n of pra	actical	steel st	ructure	s such a	s indu	strial s						
	After the completion of the course the student should be able to										Bloom's Cognitive				
CO													Descriptor		
CO1		Estimate various types of loads such as DLLL WL etc. acting on steel							nalyzing						
CO2		Calculate design forces in members of steel structures for various V Evaluating modern tools.									aluating				
CO3	-	Design various types of practical steel structures and develop detailed VI Creative								Creating					
CO-PO Ma	opping :	(Use 1, 2	2, 3 as (Correl	ation S	trengt	hs)								
РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
CO1														2	
CO2		3			2									2	
CO3		3	3										3	3	
Lab Asses	sment:														
There are f		ponents	of lab	asses	sment.	LA1.	LA2. L	A3 ar	ıd Lab	ESE.					
IMP: Lab I		-				,									
Assessme		-	ed on	- F		onducte	ed by	Co	onducti	on and M	Marks	Submis	sion	Marks	
	Lab activities,				Lab Course Faculty			During Week 1 to Week 4							
LA1	attendance, journal							Sub	Submission at the end of Week 5						
LA2		Lab activities, attendance, journal				Lab Course Faculty			DuringWeek5toWeek8Submission at the end of Week25						
LA3		Lab activities, attendance, journal				Lab Course Faculty			During Week 10 to Week 1425Submission at the end of Week 14						
Lab ES	E L	Lab Performance and related documentation				Lab Course faculty			DuringWeek15toWeek1825Submission at the end of Week1825						

Week 1 indicates starting week of Semester.	
Lab activities/Lab performance shall include performing experiments, mini-project, presentation	
drawings, programming and other suitable activities, as per the nature and requirement of the lab	course.
The experimental lab shall have typically 8-10 experiments.	
Course Contents:	
List of Experiments	Hrs.
The lab work shall consist of structural analysis, design and detailing of the following structures along	
with necessary drawings.	
1. Industrial Shed:	
a) Roof truss, purlin, connections.	06
b) Gantry girder.	00
c) Columns and column bases	
2. Building Frames:	
a) Secondary and main beams.	
b) Column and column bases.	09
c) Beam- to- beam connection.	09
d) Column- beam connection.	
3. Foot Bridge:	
a)Influence lines.	
b) Cross beam.	
c) Main truss.	
d) Raker.	
e) Joint details.	09
f) Support details.	
OR	
3.Welded Plate Girder:	
a) Stiffeners	
b) Curtailment of Flange plates	
4. Analysis results of the first problem of industrial shed shall be compared with the results by any	04
standard software package.	04

Γ

٦