Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

T.Y. B. Tech (Electrical Engineering) Sem. V to VI

AY 2020-21

Course Pre-Rec Fextboo	e Cod			er Sys	stem A	narys	is anu	Stabil	l u j	L			Р	Cr
extboo		e: 4EL	.301							3		0	0	3
	quisite	e Cour	ses: I	Electric	cal trai	nsmiss	ion and	d distri	bution	and A.	C. Ma	chines		
	oks:													
	J. Nag 015.	grath a	nd D.P	. Koth	ari, "1	Power	System	n Analy	rsis", 2	2 nd Editi	on and	I TMH	Publicat	ion
Referen	ces:													
1. G	lover,	Sharn	na, Ov	erbye	Power	Syster	ns Ana	alysis a	nd De.	sign, Tl	nomps	on, 5 th 1	Ed., 2012	2.
2. H	ladi Sa	adat, I	Power	System	n Anal	<i>ysis</i> , T	MH, 1	st Editi	on, 20	02.				
3. St	tevens	on W.	D., <i>El</i>	ements	s of Po	wer Sy	stem A	Analysi	s, TMI	H, 4 th E	dition,	2014.		
Course	Obie	tives	:											
	v			of loa	d flow	analv	sis and	l short	circuit	studies	5.			
	0		0			•						vnamio	e mechan	isms ¹
			er syste	-			,		J F*					
		-	•		analy	vtical s	kills i	n the s	student	s for in	nvestig	gating i	ssues re	lated
		systen		-	-						-	-		
				-	lents ir	n prepa	ring fo	or com	petitiv	e exami	inatior	IS.		
Course		0												
CO	Afte	er the o	compl	etion (of the	course	the st	udent	will b	e able t	0	Bloon	n's Cogn	itive
												level	Descr	iptor
CO1	Sun	ımariz	the the	use o	f vario	ous loa	ad flov	v anal	ysis m	ethod	and	2	Underst	anding
	asse	ss the	power	system	n unde	r symr	netrica	l fault.						
CO2	Ana	lyze s	ymme	trical c	compo	nents o	of netv	vork a	nd pov	ver syst	em	4	Analy	zing
			alanced						_	-			-	_
CO3	Eva	luate	the ro	otor a	ngle.	voltag	e stab	ility a	nd so	lve sw	ing	5	Evalua	ating
			y vario		-	0					0	_		0
CO-PO	-		<i>j</i>											
	PO1		PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO
	2												2	
CO1	2													
	2	3											2	

discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Module 1: Power Flow Analysis	Hrs.
Bus classification, bus admittance matrix, general form of power flow equations, GS, NR	-
and FD load flow methods and Comparison of PFA Methods.	7
Module 2: Symmetrical Components	Hrs.
Symmetrical components, Dr. Fortescue Theorem, Component synthesis, Component	
analysis, sequence impedances and sequence networks, sequence impedances of	
transmission lines, transformers, and synchronous machines, construction of sequence	6
network of a power system.	
Module 3: Fault Analysis: Balanced Fault	Hrs
Introduction, Classification, Severity and occurrence of fault, Effect of faults, Balanced	
three phase fault, Transient on transmission line, Short circuit capacity, Symmetric fault	6
analysis using bus impedance matrix.	
Module 4: Fault Analysis: Unbalanced Fault	Hrs
Introduction, Assumptions, Sequence voltages of generator, general procedure for analysis	
of various faults, Analysis of unbalanced faults-SLG,LL and DLG, short circuit studies of a	6
large power system network.	
Module 5: Power System Stability	Hrs
Basic concepts and definitions, Classification of stability ,Power angle curve, An	
elementary view of transient stability ,swing equation ,M and H constant, Equal Area	7
Criterion and its applications, critical clearing angle, Rotor angle stability, Voltage	/
stability, Factors influencing transient stability.	
Module 6: Numerical Integration Methods And Application To Stability Evaluation	Hrs
Numerical integration methods - Euler's method, Modified Euler's method -,Runge - Kutta	5
methods and Solution of swing equation by point by point method.	5
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student will be able to	
1. Analyze load flow using different techniques like GS method, NR method and Fast de	coup
mathod	

- method.2. Design sequence network of a power system analysis.
- 3. Evaluate and Analyze Balanced Fault and short circuit study.
- 4. Grasp different techniques of determination of fault current for various faults in power system.
- 5. Introduce the concept of power system stability and mathematical formulation for SMIB.
- 6. Implement numerical methods for carrying out the stability studies.

Title of	the Co	urse: (Contro	l Syste	em En	gineer	ing				Ι	L I	C P	Ci
Course	Code: 4	4EL30	2								3	3 () 0	3
Pre-Req	uisite	Course	es: Eng	gineeri	ng Mat	hemat	ics III,	Signal	s and S	Systems	, Electr	rical Cir	cuit An	alysis
Textboo	ks:													
		,		-	-	-	•			th Editi				
	-	ath and	l M. Go	opal,'C	Control	System	m Engi	neerin	g', An	shan Pu	blishers	s, Fifth	edition,	2008.
Referen														
										irth Edi		012.		
										ion, 200		1	100	0
			op, 'Mo	odern (Contro	I Syste	m', Ad	lison v	Vesley	Longm	an, Eig	ht Editi	on, 199	8.
			<i>.</i>	<i>.</i> .	1 1	1 0	1	111	1 .	1 4				
			-	0		0		<u> </u>		al syster		more de	main	thoda
													main me Foront n	ethods. nethods.
	roduce						-		•	near sys	sterns u	sing un		iemous.
Course						100 101	595001	<u>ii anai j</u>	515.					
	After t	-			he cou	rse the	e stude	ent will	be ab	le to		Bloom	's Cogr	itive
			•								1	evel	Desci	
CO1	Calcul	ate sy	stem 1	transfe	r func	tion a	nd sys	stem c	haract	eristics	of	3	App	lying
	differe	-					•							• 0
CO2	Analyz	ze per	formar	nce of	f phys	sical s	system	s usir	ig ma	themati	cal	4	Anal	yzing
	models	-			1.0		5		C					
CO3	Check	the sta	bility o	of linea	ar syste	ems in	time a	nd freo	uencv	domain		5	Evalu	ating
CO-PO					j~0				J		<u> </u>	-		- 0
	Tabhi	<u></u>												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3												
CO2		3												2
CO3		3												2

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Module 1: Analysis of system in the Frequency Domain	Hrs.
History of control systems, Laplace transforms review, transfer function of Electrical systems,	
Mechanical systems, Rotational Systems, Electrical circuit analogs, Transfer function of DC	6
motor	l
Module 2: Analysis of system in the Time Domain	Hrs.
State space representation, Converting transfer function to state space: Phase Variable Form,	
State space to transfer function, State Transition Matrix, Solution of state equation,	6
Controllability, Observability.	I
Module 3: Transient Response and Reduction of multiple subsystem	Hrs.
Time response, poles, zero and system response, Response of first, second and general second	
order system, system response with additional poles, additional zeros Block diagram analysis	
and design of feedback systems, signal flow graph, mason's rule, signal flow graphs of state	6
equation, similarity transformation.	I
Module 4: Steady State Error	Hrs.
Steady state error for unity feedback systems, static error constants, and system type. Steady	
state error specifications, steady state error for system with disturbances, non-unity feedback	6
systems. steady state error for systems in state space, PID Controllers.	I
Module 5: Stability Analysis: Routh Criterion and Root Locus	Hrs.
Routh criterion for stability and stability in state space, Sketching the root locus, transient	
response design via gain adjustment, Root locus for positive feedback system, pole sensitivity,	6
lag, lead, lag-lead compensators in root locus domain.	I
Module 6: Stability Analysis: Bode Plot and Nyquist Plot, Compensators	Hrs.
Bode plot, Nyquist criterion, Determination of stability, gain margin, phase margin via the	I
Nyquist diagram and bode plots	6
Introduction to Compensators, lag, lead, lag-lead compensator in frequency domain.	
Module wise Measurable Students Learning Outcomes :	
After completion of the course students will be able to:	
1. Calculate system transfer function model of electrical, mechanical and electromechanical syst	em.
2. Construct State Space Model of a system and analyze system performance.	
	an not
3. Apply block diagram reduction and signal flow graph technique for system simplification. U	se pon

- and zeros to determine time response of a system.
- 4. Assess the stability and Steady State Error of a control system.
- 5. Construct the root locus and analyze the system performance and check system stability
- 6. Assess the system stability using frequency domain techniques to determine system stability.

Professional Core (Lab) Courses

	se: Power	r Syste	m An	alysis a	and St	ability	Lab			L	T I	2	С
Course Code: 4E	L351									0	0 2	2	1
Pre-Requisite Co	urses: Po	wer Sy	stem E	Enginee	ering, A	AC Ma	chine						
Fextbooks:													
1. I.J. Nagrath	and D.P. I	Kothar	i, "Poi	wer Sys	stem A	nalysis	", 2 nd]	Edition	and T	MH Pul	olication	2015	5.
References:													
1. Glover, Sha	rma, Over	bye Pa	wer Sy	ystems	Analys	sis and	Design	n, Thom	npson,	5 th Ed.	, 2012.		
2. Hadi Saada	, Power S	ystem A	Analysi	is, TM	H, 1 st I	Edition	, 2002.						
3. Stevenson V	V.D., Elen	ients oj	f Powe	er Syste	em Ana	lysis, T	ΓMH, 4	4 th Editi	on, 19	94.			
Course Objective	s:												
1. This laborat								tudies fo	or a po	ower sy	stem.		
2. It provides						•							
3. It lays the f			ductin	g high	er leve	l study	in pov	ver syst	em				
Course Learning	Outcome	5:											
CO After the	completio	on of tl	ne cou	rse the	e stude	ent will	l be ab	le to		Bloo	m's Cog	nitiv	e
										level	Desc	ripto	r
CO1 Simulate	the variou	s load	flow a	nalysis	metho	ods.				2	Unders	stand	ing
CO2 Carry ou	ı t simulati	on for	symn	netrica	l com	ponent	s of ne	etwork	and	3	App	lying	5
analyze tł	e power s	ystem i	under u	unbalar	nced fa	ult.							
CO3 Evaluate	the equal A	Area ci	iterior	n and s	wing c	urve.				5	Eval	uatin	g
	:												
CO-PO Mapping													
								DO10	DO11	PO1 2	PSO1	PS	02
CO-PO Mapping	O2 PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	FUL	1 1 501	ID	
CO-PO Mapping PO1 P CO1 P	O2 PO3	PO4 3		PO6	PO7	PO8	PO9	POI0	POI		2	15	
CO-PO Mapping	02 PO3		PO5	PO6	PO7	PO8	PO9	POIU	PUII				

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau LSE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents: 2hrs for Each Session

- 1. Development of the MATLAB program of bus admittance matrix Y_{bus} .
- 2. Outline of MiPower for power system analysis and stability.
- 3. Analyze Load flow using MiPower.
- 4. Simulation of Short circuit analysis using MiPower.
- 5. Simulation of Transient analysis using MiPower.
- 6. Demonstration of unbalanced Fault Using TLS.
- 7. Outline of SIM Power Systems toolbox in MATLAB.
- 8. Analyze Symmetrical components of 3phase unbalanced system using MATLAB.
- 9. Development of the program for Equal Area Criteria analysis using MATLAB.
- 10. Examination of Swing Curve using power world/MiPower/MATLAB simulation

Computer Usage / Lab Tool: MATLAB/TLS/Power world/MiPower Simulator

Title of t	the Co	urse: (Contro	l Syste	ems Er	nginee	ring L	ab			L	Т		P	Cr
Course	Code: 4	4EL35	2								0	0)	2	1
Pre-Req	uisite (Course	s: Eng	gineerii	ng Mat	hemati	ics III,	Signal	s and S	Systems	, Electri	ical Cir	cuit A	nalys	sis
Textboo	ks:														
											ion, 201 blishers		ition, 2	008.	
Referen	Ŭ			•			U		O /			/	,		
2. K	Ogata,	'Mode	ern Coi	ntrol E	ngg', F	P.H.I.,	Fourth	Editio	n, 200	2.	ition, 20 n, Eight		n. 199	8.	
Course (, 1110		0111101	s joten	,		0510 / 1	201181114	, <u>Digi</u> i		, 177	0.	
		rse int	tends	to pro	vide p	oractica	al kno	wledge	e regai	ding n	nodellin	g of d	ifferer	t ph	ysica
sy 2. It <u>3. It</u> Course I	vstems. intends aims to	to imp estima ng Out	oart ski ate the t come s	ills to e stabili	evaluat ty of li	e the p near sy	erform ystems.	ance o	of syste	ms usin	nodellin ng transi	ent ana		1	
sy 2. It <u>3. It</u> Course I	vstems. intends aims to Learni	to imp estima ng Out	oart ski ate the t come s	ills to e stabili	evaluat ty of li	e the p near sy	erform ystems.	ance o	of syste	ms usin		ent ana	llysis. n's Co	1	ve
sy 2. It 3. It Course I	vstems. intends aims to Learni	to imp estima ng Out	oart ski ate the tcomes npletio	ills to e stabili s: on of t	evaluat ty of li he cou	e the p near sy rse the	erform ystems. e stude	ent wil	of syste	ms usin		ent ana	llysis. n's Cc	gniti	ve ptor
sy 2. It 3. It Course I CO CO	vstems. intends aims to Learnin After to Solve a	to imp estima ng Out the con	bart ski ate the tcomes npletio	ills to e stabili s: on of t	evaluat ty of li he cou l syster	e the p near sy rse the ms usin	erform ystems e stude ng sim	ent wil	of syste	ms usin		ent ana Bloor level	lysis. n's Cc D A	gniti escri pply	ve ptor
sy 2. It 3. It Course I CO CO1 CO2	vstems. intends aims to Learnin After to Solve a	to imp estima ng Out the con and ana the sta	bart ski ate the tcomes npletio	ills to e stabili s: on of t hysica of syst	evaluat ty of li he cou l system ems us	e the p near sy rse the ms using free	e stude	ent wil	of syste	ms usin		ent ana Bloon level 3	n's Co	gniti escri pply naly	ve ptor ing zing
sy 2. It 3. It Course I CO CO1 CO2	vstems. intends aims to Learnin After t Solve a Assess Study Mappi	to imp estima ng Out the con and ana the sta transie ng :	bart ski ate the tcomes npletio alyze p ability o nt anal	ills to e stabili s: on of t hysica of syst lysis of	evaluat ty of li he cou l system ems us f physic	e the p near sy rse the ms using sing fre cal sys	e stude ng sim equency	ent wil	of syste	ms usin	ig transi	ent ana Bloon level 3 4 4	lysis. n's Cc A A A	gniti escri pply naly naly	ve ptor ing zing zing
sy 2. It 3. It Course I CO CO1 CO2 CO3	vstems. intends aims to Learnin After t Solve a Assess Study	to imp estima ng Out the con and ana the sta transie	part ski ate the tcomes npletio alyze p ability nt anal PO3	ills to e stabili s: on of t hysica of syst	evaluat ty of li he cou l system ems us	e the p near sy rse the ms using free	e stude	ent wil	of syste	ms usin		ent ana Bloor level 3 4	n's Co	gniti escri pply naly naly	ve ptor ing zing
sy 2. It 3. It Course I CO CO1 CO2 CO3	vstems. intends aims to Learnin After t Solve a Assess Study Mappi	to imp estima ng Out the con and ana the sta transie ng :	bart ski ate the tcomes npletio alyze p ability o nt anal	ills to e stabili s: on of t hysica of syst lysis of	evaluat ty of li he cou l system ems us f physic	e the p near sy rse the ms using sing fre cal sys	e stude ng sim equency	ent wil	of syste	ms usin	ig transi	ent ana Bloon level 3 4 4	lysis. n's Cc A A A	gniti escri pply naly naly	ve ptor ing zing zing

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

- 1. Construct transfer function using software tools.
- 2. Analyze the effect of feedback using software and simulation tools.
- 3. Conversion of transfer functions to state space and vice versa using software tools
- 4. Calculate the transfer function of Electrical, Mechanical and Rotational systems using MATLAB
- 5. Calculate the state transition matrix, state and eigen values for Electrical Systems.
- 6. Evaluate the transient response of first and second order systems.
- 7. Compute the Controllability and Observability of physical systems
- 8. Stability analysis of control system using software tools.
- 9. Sketch root locus and design compensator using G.U.I. and software tools.
- 10. Sketch Nyquist, Bode Diagram and design compensator using G.U.I. and software tools.
- 11. Design a PID controller for speed control of electric machine.

Computer Usage / Lab Tool:

1. Use of software simulation tools like MATLAB/Simulink

Professional Elective (Theory) Courses

Title of the Course: Professional Elective I: Energy Audit and	L	Т	Р	Cr
Management	3	0	0	3
Course Code: 4EL311				

Pre-Requisite Courses: NIL

Textbooks:

- 1. Amlan Chakrabarti, "Energy Engineering and Management", PHI, 2011.
- 2. Bureau of Energy Efficiency, "General Aspects of Energy Management & Energy Audit1.1, 1.2 & 1.3", BEE, e-books.

References:

Course Objectives :

- 1. To create awareness in the students about energy conservation and its importance.
- 2. To develop skills for energy auditing and energy management in industrial environment.

Course Learning Outcomes:

CO	After the completion of the course the student will be able to	Bloon	n's Cognitive
		level	Descriptor
CO1	Identify the energy conservation opportunities in thermal and	3	Analyzing
	electrical energy.		
CO2	Apply various tools for energy audit and management.	4	Applying
CO3	Evaluate the financial analysis for energy efficiency importance	5	Evaluating

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2											2
CO2					2									
CO3											2			

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Energy Conservation and ManagementHrs.Energy Conservation and its importance, Energy strategy for future, Energy Conservation Act-
2001 and its features, Energy Pricing, Energy Sector Reforms, Energy And Environment,
Energy Security, Objectives and Principles of Energy Management.6

Module 2: Energy Audit	Hrs.
	1115.
Energy audit Definition as per EC-act 2001, Need of Energy Audit, Types of Energy Audit,	(
Energy Audit Reporting Format, Understanding Energy and Costs, Benchmarking, Energy	6
Performance, Energy Audit Instruments, Duties and Responsibilities of Energy Auditor.	
Module 3: Energy Action Planning, Monitoring And Targeting	Hrs.
Energy action Planning Steps, Top Management Support, Energy Manager Duties &	
responsibilities, Evaluating Energy Performance, Energy monitoring & Targeting – Set up, Key	-
Elements, Data & Information Analysis, Relating Energy Consumption & Production, CUSUM	7
Technique, Case Study	
Module 4: Energy Economics	Hrs.
Financial Analysis Techniques – Pay Back Period, Net Present Value, Return on Investment,	
Internal Rate Of Return, Time Value Of Money, Cash Flow, Risk & Sensitivity analysis.	5
Module 5: Energy Efficiency in Electrical Utilities	Hrs.
Electricity Billing, Electrical Load Management and Maximum Demand Control, Power Factor	
Improvement & Benefits, Assessment of Transmission and Distribution Losses, Estimation Of	
Technical Losses in Distribution System, Commercial Losses, Demand Side Management,	7
Energy Saving Opportunities With Pumps and Fans.	
Module 6: Energy Efficiency in Thermal Utilities	Hrs.
Energy Conservation in Boilers, Steam Turbine, Industrial Heating System, Heat Exchangers,	
Heat Pumps, Efficiency Improvement, Energy Conservation in Buildings, Climate responsitive	
	6
Buildings, Thermal load modeling in Building, Zero energy Buildings, Co-generation and	
Waste heat recovery.	
Module wise Measurable Students Learning Outcomes :	
After completion of the course students will be able to:	
1. Identify the importance of energy conservation and energy management.	
2. Write energy audit reports.	
3. Assess best methodology in the energy management using CUSUM technique.	
4. Evaluate payback period with different techniques.	
5. Analyze the energy conservation opportunities in electrical systems.	
6. Analyze the energy conservation opportunities in thermal utilities.	

Fitle of t	the Cou	urse:	Profes	sional	Electi	ve I: D	igital	Signal	Proce	essing	Ι		ΓF	P C1
Course (Code: 4	4EL31	2								3	3 () () 3
Pre-Req	uisite (Course	es: Eng	gineeri	ng Mat	hemati	cs –III	, Signal	ls and S	Systems				
Textboo	ks:													
2008.						0	-			and App	olication	ns', Pea	rson Edu	acation,
•	et Mitr	a, ' <i>Dig</i>	ital Sig	nal Pr	ocessin	g', TM	IH Pub	., 2006	•					
Reference		1.5		c (D.		<i>a</i> .	1 D			2007			
11	atramai						0		0	PHI Puł 06	0., 2005			
				0	0					ion, 200	0.			
Course (4	,		5	,			,				
	evelop													
	-			0								•	gineerin	g.
					ents to	learn d	ifferer	nt mode	ern sig	nal proc	essing	tools.		
Course I	After	-			hoor	unco th	o atud	ont wi	l bo ol	bla ta		Ploor	n's Cog	nitivo
CO	Alter	the co	mpieu			ii se ui	e stuu	ent wh	ii be a		1	level		riptor
CO1	Expla	in the	sional	nroces	sing to	ols and	l tranci	forms				2		tanding
	Apply				-			torms.				3		U
	Expla			-										
CO-PO	_			znai pr	00005511	ig aigu	11111115					2	Unders	tanung
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3		100	100	107	100		1010			1001	1001
CO2					2									
CO3					2									2
Assessm	ent:													
Two con	nponen	ts of I	n Sem	ester E	Evaluat	ion (IS	SE), O	ne Mic	l Seme	ester Ex	aminat	tion (M	SE) and	l one Er
Semester	Exam	ination	(ESE)) havin	g 20%	, 30% ;	and 50	% wei	ghtage	respect	ively.			
		А	ssessm	nent							Mark	S		
			ISE 1								10			
			MSE								30			
			ISE 2	2							10			
			ESE								50			
ISE 1	and IS	E 2 a	re bas	ed on	assig	nment,	oral,	semin	ar, tes	t (surp	rise/dec	clared/q	uiz), ar	nd group
discussi	on.[On	e asses	ssment	tool p	er ISE.	The a	ssessm	nent too	ol used	for ISE	E 1 shal	l not be	used fo	or ISE 2]
MSE: A									•			,		
						rse con	ntent v	vith70-	80% v	veightag	ge for c	ourse c	ontent (normally
last thre	e modu	ules) co	overed	after M	ASE.									
Course (
Modul		0	0	-										Hrs.
		4	Tratan		· · · · · · · ·	DCD.			1. /1	1		C	•	
DSP sy Digital		-					-	-	pling t	heorem,	Z Trai	nsforms	s review	, 6

Module 2: Discrete Fourier Transform	Hrs.					
DFT, Relation between DFT & Z ¬transform, Circular convolution and DFT, FFT Algorithms,	7					
(DIT- FFT & DIF-FFT). Overlap save algorithm, overlap add algorithm						
Module 3: IIR Filter Design	Hrs.					
Filter design using impulse invariant technique, bilinear transformation and Analog filter	7					
approximation (Butterworth) and Realization issues.	/					
Module 4: FIR Filter Design	Hrs.					
FIR Filter Design, Fourier series method, Windowing method, Filter design using window,	7					
frequency sampling methods, quantization and realization issues.	7					
Module 5: Modern Signal processing	Hrs.					
Digital Signal Processors- Introduction, Architecture, important blocks, Programming Aspects,						
Multirate Signal Processing, time and frequency effects, filter design for aliasing and imaging	6					
effects.						
Module 6: Wavelet and Applications of Digital Signal Processing	Hrs.					
Wavelet Transform- Introduction, continuous and discrete wavelet, applications of wavelet						
transform, Noise cancellation and DSP based measurement techniques, Case studies in DSP -	6					
Power system and control system applications.						
Module wise Measurable Students Learning Outcomes :						
1. Grasp basic concepts of Digital Signal Processing.						
2. Evaluate the Discrete Fourier Transform and Fast Fourier Transform of signals.						
3. Analyze the IIR filter design using different methods.						
4. Analyze the FIR filter design using different methods.						

5. Grasp basic concepts of Modern Digital Signal Processing like DSP processors and Multirate.

6. Grasp basic concepts of Wavelet transform and applications.

Title of the Course: Professional Elective I: Electromagnetic Field	L	Т	Р	Cr
Course Code: 4EL313	3	0	0	3

Desirable Requisite: Electrical Circuits, DC Machines and Transformers

Textbooks:

- 1. W.H. Hayt, J A Buck, M J Akhtar "Engineering Electromagnetic", McGraw Hill, 8th Edition 2014.
- 2. M. Sadiku, "Elements of Electromagnetics", Oxford University Press, 4th Edition 2007.

References:

- 1. Joseph A. Edminster, "Electromagnetics", Tata Mc Graw Hill, 2nd Edition. 2010
- 2. John D. Kraus, "Electromagnetics", Tata Mc Graw Hill, 4th Edition 2006
- 3. Jorden and Balmen, "Electromagnetic Wave and Radiation System" Pearson Publication 2nd Edition 2015.

Course Objectives:

- 1. This course develops foundational concepts in electrostatic and electromagnetic fields.
- 2. It familiarizes the students with electrical field and scalar potential, magnetic field and vector potential, Maxwell's equations, Biot-Savart Law, electrostatic boundary conditions, time varying potential.
- 3. This course will help students in preparing for competitive examinations.

Course Learning Outcomes: (Write from student perspective)

CO	After the completion of the course the student should be able to	Bloom's Cognitive			
		level	Descriptor		
C01	Catch the concepts of electrostatic and electromagnetic fields.	2	Understand ing		
CO2	Apply various laws in electromagnetics to identify the nature and strength of electric and magnetic fields.	3	Applying		
CO3	Test the boundary value conditions in electromagnetic fields.	4	Analyzing		

CO-PO Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2	3												2	
CO3		2											2	

Assessment:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Module 1: Vector Analysis	Hrs							
Vector Algebra, Rectangular Coordinate System, Vector Component, Vector Field, Dot								
Product, Cross Product, Circular and Cylindrical Coordinate System, Vector Calculus, Del								
Operator, Gradient of Scalar, Divergence of Vector and Divergence Theorem, Curl of a Vector and Stroke's Theorem, Classification of Vector Fields.								
Module 2: Electrostatic Fields	Hrs							
Coulombs Law and Field Intensity, Electric Fields due to Continuous Charge Distributions,	1115							
Electric Flux Density, Gauss's Law- Maxwell's Equation, Electric Potential, Relationship								
between E and V-Maxwell's Equation, Electric Dipole and Flux Lines, Energy Density in	7							
Electrostatic Fields.								
Module 3: Electric Fields in Material Space	Hrs							
Properties of Materials, Convection and Conduction Current, Conductors, Polarization in								
Dielectrics, Dielectric Constant and Strength, Linear, Isotropic and Homogenous Dielectrics,	7							
Continuity Equation and Relaxation Time, Boundary Conditions.								
Module 4: Electrostatic Boundary-Value Problems	Hrs							
Introduction, Poisson's and Laplace's Equations, Uniqueness Theorem, General Procedures for	6							
Solving Poisson's and Laplace's Equations, Resistance and Capacitance, Method of Images.								
Module 5: Magneto Static Fields and Magnetic Forces	Hrs							
Biot- Savart's Law, Ampere's Circuital Law-Maxwell's Equation, Application of Ampere's								
Law, Magnetic Flux Density-Maxwell's Equation, Maxwell's Equation for Static Fields,	7							
Magnetic Scalar and Vector Potentials. Introduction, Forces due to Magnetic Torque and								
Moment, Magnetic Dipole.	TT							
Module 6: Maxwell's Equations	Hrs							
Introduction, Faraday's Law, Transformer and Motional Electromotive Forces, Displacement	6							
Current, Maxwell's equations in Final Forms, Time-Varying Potentials, time Harmonic Fields.								
Module wise Measurable Students Learning Outcomes: After the completion of the course the students should be able to:								
1. Understand the basic of vector and vector field.								
 Examine electrostatic field due to continuous charge distributions and measure energy dens 	sity							
 Examine electric fields in material space to measure various properties in materials. 	51ty.							
 Interpret Poisson's and Laplace's Equations for Electrostatic Boundary-Value Problems. 								
5. Apply various laws of magneto static fields to find forces created by magnetic field on cha	rged							
particles, current elements, loops and dipoles.	0							

particles, current elements, loops and dipoles.6. Interpret the Maxwell's equations for transformer and Time varying potentials.

Title of the Course: Professional Elective II: Microprocessor	L	Т	Р	Cr
Course Code: 4EL314	3	0	0	3

Pre-Requisite Courses: Analog and Digital Circuits

Textbooks:

1. Gaonkar R.S., Microprocessor Architecture Prog. and Appl.with 8085, PENRAM, Fourth Edition, 2000.

References:

- 1. Ghosh P.K. & Sridhar P.R., 0000 to 8085 Introduction to Microprocessors for Engineers & Scientists, PHI, Second Edition, 2005.
- 2. Badri Ram, Fundamentals of Microprocessors & Microcomputers, Dhanpat Rai, First Edition, 1989.

Course Objectives :

- 1. This course aims to provide the foundation level knowledge of microprocessor to the student.
- 2. The course will enable student to develop basic skills of assembly language programming, necessary for microprocessor and microcontroller.
- 3. The course will also help in developing microprocessor based interfacing of peripheral devices.

Course Learning Outcomes:

CO	After the completion of the course the student will be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Summarize the basic philosophy of 8 bit microprocessor and write	2	Understanding		
	assembly language programs for simple tasks.				
CO2	Apply the assembly language programming knowledge for simple	3	Applying		
	tasks.				
CO3	Analyze the use of various peripheral chips for electrical engineering	4	Analyzing		
	applications.				

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3												
CO2			3											
CO3		3												

Assessment:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment, oral, semina	r, test (surprise/declared/quiz), and group discussion.[One
assessment tool per ISE. The assessment tool used for IS	E 1 shall not be used for ISE 2]
MSE: Assessment is based on 50% of course content (Network)	ormally first three modules)
ESE: Assessment is based on 100% course content with	170-80% weightage for course content (normally last three

modules) covered after MSE.	
Course Contents:	
Module 1: Architecture and Instruction Set	Hrs.
8085 architecture, addressing modes, instruction set, simple programs.	6
Module 2: Interrupts of 8085	Hrs.
Interrupt structure of 8085, priority, and programming.	6
Module 3: Timing Diagrams	Hrs.
Concept of T-state, m/c cycle, instruction cycle, Timing Diagrams of various instructions.	7
Module 4: Memory & I/O interfacing	Hrs.
Types of memories, interfacing of memory, generation of chip select signal, I/O interfacing,	F
memory mapped & I/O mapped I/O.	5
Module 5: Peripheral chips	Hrs.
8255 PPI, 8253 PTC, 8279 KBD & Display, 8257DMA, 8259 PIC Function block interfacing	10
and programming, diagram study.	10
Module 6: Applications	Hrs.
DAC & ADC interfacing using 8255, Timers & counters using 8253, KBD and 7-segment	6
display interface using 8279.	6
Module wise Measurable Students Learning Outcomes :	

After completion of the course students will be able to:

- 1. Explain the architecture and instruction set of 8085.
- 2. Apply the knowledge of instruction set to write and execute simple assembly language programs.
- 3. Outline the timing diagram for an instruction and interpret the execution of that instruction.
- 4. Design the address decoding logic circuits for memory and I/O interfacing and evaluate their merits and demerits.
- 5. Explain and evaluate the applications of select peripheral chips in microprocessor based system.
- 6. Analyze the requirements and design a microprocessor based system for measurement and display of electrical quantities.

Title of the Course: Professional Elective II: Electrical Machine Design	L	Т	Р	Cr
Course Code: 4EL315	3	0	0	3
Pre-Requisite Courses.: Electrical Machine				
Textbooks:				
 "A Course in Electrical Machine Design" - by A. K. Sawhney, Dhanj Edition, 2006. 	pat Rai	and So	ons, Del	hi, 6th
2. "Design of Electrical Machines", by V.N. Mittle and A. Mittle Distributors, Delhi, 2002.	, Stanc	lard Pu	ublicatio	ons &
References:				
 "Principles of Electrical Machine Design", by R.K. Agarwal, S.K. Ka "Principles of Electrical Machine Design with Computer Programmes" Publishing Co. Pvt. Ltd., New Delhi, 1987. 		,		
Course Objectives :				

- 1. This course intends to provide basic knowledge of design process of Electrical machines.
- 2. It is aimed to impart skills to perform and apply basics of Electrical Engineering for design of Electrical machines.

Course	Learning Outcomes:		
CO	After the completion of the course the student will be able to	Bloo	m's Cognitive
		level	Descriptor
CO1	Summarize the design procedure for electrical machine.	2	Understanding
CO2	Analyze the performance of machine based on design details.	4	Analyzing
CO3	Design transformer, induction motor and synchronous machine.	6	Creating
~ ~ ~ ~			

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2		3												
CO3			3											3

Assessment:

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:						
Module 1: Constructional Details And Design of Transformers	Hrs.					
Output equation, EMF per turn. Ratio of iron loss to copper loss, Relation between core area	6					
and weights of iron and copper, optimum designs, Core design. Design of windings.						
Module 2: Performance Evaluation of Transformer	Hrs.					
Calculation of no-load current. Equivalent circuit and performance characteristics. Temperature						
rise. Design of tank and radiators.	6					
Module 3: Constructional Details And Design of Three Phase Induction Motors	Hrs.					
Output equation. Specific electric and magnetic loadings. Efficiency and power factor, main						
dimensions. Type of winding and connection .Turns per phase, shape of stator slots. Number of	6					
stator slots, design of stators.						
Module 4: Operating Characteristics of Three Phase Induction Motors	Hrs.					
No load current Magnetizing current, loss component short circuit current. Use of circle						
diagram to obtain performance figures. Calculation of static torque, maximum torque,						
maximum output, maximum power factor. Dispersion coefficient.						
Module 5: Design of Synchronous Machines	Hrs.					
Construction of water wheel and turbo alternators. Different parts and materials used for						
Synchronous machine, choice of electric and magnetic loadings, Output equation.	6					
Determination of diameter and length, effect of short circuit ratio on machine performance.						
Module 6: Computer Aided Design of Electrical Machines	Hrs.					
Benefits of computer in machine design, methods of approach, optimization and computer	6					
aided design of induction motor and three phase transformer, Testing as per IS.	U					
Module wise Measurable Students Learning Outcomes:						
After completion of the course students will be able to:						
1. Design the transformer.						
2. Calculate the radiators.						
3. Design the Induction Motor stator.						
4. Design the Induction Motor rotor.						
5. Design the Synchronous Machine.						
6. Design the machines with computer aided Methods.						

Title of the Course: Professional Elective II: Energy Storage Systems for	L	Т	Р	Cr
EV	3	0	0	3
Course Code: 4EL316				
Pre-Requisite Courses: Power Electronics				

Textbooks:

- 1. Abu-Rub, Haitham, Mariusz Malinowski, and Kamal Al-Haddad. Power electronics for renewable energy systems, transportation and industrial applications. John Wiley & Sons, 2014.
- 2. Santhanagopalan, Shriram, et al. Design and analysis of large lithium-ion battery systems. Artech House, 2014.
- 3. Kiehne, H. A. "Battery Technology Handbook. Marcel Dekker Inc." (2003).

References:

- 1. Masters, Gilbert M. Renewable and efficient electric power systems. John Wiley & Sons, 2013.
- 2. Wakihara, Masataka, and Osamu Yamamoto, eds. Lithium ion batteries: fundamentals and performance. John Wiley & Sons, 2008.

Course Objectives :

- 1. This course aims to provide the foundation level knowledge of different energy storage systems.
- 2. The course will enable student to use various energy systems and study various components of battery management system.
- 3. The course will help the students to examine the power converters for electric vehicles.
- 4. The course will also help the students to analyze the performance of fuel cells and supercapacitors.

Course Learning Outcomes:

СО	After the completion of the course the student will be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Examine the operation of various energy storage systems used for	3	Applying		
	engineering applications				
CO2	Analyze the components and working of battery management	4	Analyzing		
	system, fuel cells and supercapacitors to meet the performance				
	criteria				
CO3	Investigate the performance of different power electronic converters	4	Analyzing		
	used in electric vehicles				

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3												
CO2				3										
CO3				2										

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents: Module 1: Introduction to Energy Storage Systems Hrs. Introduction and need for storage for EV, traditional energy storage systems, global market and 4 scenario, battery, fuel cell, supercapacitors, compressed air, hydrogen storage, fly-wheels. **Module 2: Batteries** Hrs. Battery introduction, parameters of battery, battery cell electrical equivalent models, types of batteries, coulomb efficiency, electrode, battery manufacturing process, building block cells, battery modules and packs, working principle, operation, modeling and components- lithium 8 polymer and lithium ion batteries, lead acid batteries, applications of batteries, future developments. **Module 3: Converters for Batteries** Hrs. Concept of vehicle to grid and grid to vehicle, DC-DC converters, SEPIC converters- topology 6 and operation, interleaved converters- topology and operation, power flow between converters. Module 4: Battery Management System Hrs. Objectives and functions of the BMS, SOC and DOD, charge controller, sensors in BMS, protection of batteries, CCCV, charging topologies, cell equalization, pulse power capability, 6 dynamic power limits. Module 5: Fuel Cells and its Classification Hrs. Basic structure and functions of fuel cell, its characteristics and working, fuel cell power conversion, classification of fuel cells, PEM and alkaline fuel cells, molten carbonate fuel cells, 6 phosphoric acid, solid oxide fuel cells. Module 6: Supercapacitors and Hydrogen Storage Systems Hrs. Supercapacitor: characteristics, components, schematic, classification, advantages, disadvantages 6 Hydrogen storage systems: Basics, working and applications. Module wise Measurable Students Learning Outcomes : After completion of the course students will be able to: 1. Illustrate the need and classification of energy storage systems 2. Analyze the operation, modeling and components of various batteries. 3. Study topology and operation of different power electronics converters. 4. Investigate the working and components of battery management system 5. Illustrate different types and working of fuel cells.

6. Study working principle, operation and components of super capacitors and hydrogen storage systems.

Professional Elective (Lab) Courses

	f the Co	urse:	Profes	sional	Electi	ve II:	Micro	proces	sor La	b	L	. T	' P	. (
Course	e Code:	4EL36	4								0	0	2	
Pre-Re	quisite	Course	es: Ana	alog an	d Digi	tal Cir	cuits						I	
Textbo	oks:													
	Gaonkar 2000	R.S., <i>I</i>	Aicrop	rocess	or Arc	hitectu	re Pro	g. And	Apply	With 8	085, PE	ENRAM	I, Fourt	h Editi
Refere	nces:													
	Ghosh P.						Introd	luction	to Mic	roproce	essors f	or Engi	neers &	
	Scientis	,	·		,									
	Badri Ra 1989.	m, <i>Fur</i>	ndamen	tals Q	f Micro	oproce	ssors o	&Micro	ocomp	ıters, D	hanpat	Rai, Fir	st Editi	on,
Course	e Object	ives :												
	This cou													essor.
	It would													
	This kno	owledg	e will o	enable	the stu	ident to	o exect	ute pro	grams	for inte	rfacing	periphe	ral chip	s with
	8085. • Learni	ng Qu	toomo											
Course	After t	0			20.0011	rea tha	stude	nt wi	ll bo ol	la ta		Bloom	's Cour	itivo
CO	Alter		upieno	n or u		i se uit	stuut					level	-	criptor
CO1	Develo	n and	avagut	2.00000	ably lo	nalloa	nrog	roma fo	raim	la tacka		3		olying
CO1 CO2		-			-					chips		3&4		ying &
02	practic			-	e me	use of	vario	us per	ipnerai	cmps		$\alpha 4$		ynig α yzing
CO3	Demor				mioro	proces	or ho	cod av	stom 1	for sim	nla	3		olying
COS					micro	proces	501 Ua	seu sy	Stelli I	or sim	pie	3	Ар	nymg
	engine	- · ·	ppncat	IOHS.										
CO-PC) Mappi	ng :												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
			3									_		
CO1				3										
CO2			3											
CO2		<u> </u>												
CO2 CO3														
CO2 CO3	ssessmer are four c			61.1		. T	A 1 T 4			1 505				

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:	
1. Develop & execute programs for addition & subtraction of Hex & BCD numbers	s 4 hrs.
2. Develop & execute programs for arranging series of numbers in ascending/ desc order	ending 2 hrs.
3. Develop & execute programs for Up / down counters	2 hrs.
4. Develop & execute programs for Interrupt Service Routines	2 hrs.
5. Develop & execute programs for interfacing 8255 in Mode 0, BSR mode	2 hrs.
6. Develop & execute programs for interfacing 8255 in Mode 1 & Mode 2	4 hrs.
7. Develop & execute programs for interfacing 8253 in all Modes	4 hrs.
8. Develop & execute programs for interfacing 8279 for keyboard & display	4 hrs.
9. Develop & execute programs to design a voltage/ current measurement system ADC interfaced through 8255.	n using 2 hrs.
10. Develop & execute programs to generate various waveforms on CRO using interfaced through 8255.	g DAC 2 hrs.

Title of the Course: Professional Elective II: Electrical Machines Design	L	Т	Р	Cr
Lab	0	0	2	1
Course Code: 4EL365				
Dres De serieta Commense Electrical Martine				

Pre-Requisite Courses: Electrical Machine.

Textbooks:

- 1. "A Course in Electrical Machine Design" by A. K. Sawhney, Dhanpat Rai and Sons, Delhi, 6th Edition, 2006.
- 2. "Design of Electrical Machines", by V.N. Mittle and A. Mittle, Standard Publications & Distributors, Delhi, 2002.

References:

- 1. "Principles of Electrical Machine Design", by R.K. Agarwal, S.K. Kataria and Sons, Delhi, 2002
- 2. "Principles of Electrical Machine Design with Computer Programmes" S. K. Sen, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987.

Course Objectives :

- 1. This course intends to provide basic knowledge of draw and design process of simple Electrical machines.
- 2. It is aimed to impart skills to perform and apply basics of Electrical Engineering for draw and design of Electrical machines.

Course Learning Outcomes:								
CO	After the completion of the course the student will be able to	Bloom's Cognitive						
		level	Descriptor					
CO1	Summarize the design procedure for electrical machine.	2	Understanding					
CO2	Analyze the performance of machine based on design details.	4	Analyzing					
CO3	Design and formulate transformer, induction motor and synchronous	6	Creating					
	machine.							

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3											
CO2				3										
CO3					2									3

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25		
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25		
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25		
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23		
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25		
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23		
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25		
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18			

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents: 2hrs for Each Session.

After completion of the course students will be able to:

- 1. Design the transformer with given suitable data.
- 2. Calculate the radiators for transformer.
- 3. Design the Induction Motor stator parts with provided input data.
- 4. Design the Induction Motor rotor with applications.
- 5. Design the Synchronous Machine parts.
- 6. Drawing sheets on Transformer parts, Transformer Design.
- 7. Drawing sheets on Induction motor parts, Induction Motor design.
- 8. Design the machines with computer aided Methods.
- 9. Assignments using software or problem solving, Seminars, and any other work based on syllabus.
- 10. Use Software for design of Electrical Machine parts.

Computer Usage / Lab Tool: MATLAB software

Title of the Course: Professional Elective II: Energy Storage Systems	L	Т	Р	Cr
for EV Lab	0	0	2	1
Course Code: 4EL366				

Pre-Requisite Courses: Power Electronics

Textbooks:

- 1. Abu-Rub, Haitham, Mariusz Malinowski, and Kamal Al-Haddad. Power electronics for renewable energy systems, transportation and industrial applications. John Wiley & Sons, 2014.
- 2. Santhanagopalan, Shriram, et al. Design and analysis of large lithium-ion battery systems. Artech House, 2014.
- 3. Kiehne, H. A. "Battery Technology Handbook. Marcel Dekker Inc." (2003).

References:

- 1. Masters, Gilbert M. Renewable and efficient electric power systems. John Wiley & Sons, 2013.
- 2. Wakihara, Masataka, and Osamu Yamamoto, eds. Lithium ion batteries: fundamentals and performance. John Wiley & Sons, 2008.

Course Objectives:

- 1. This course will help students to model and test different battery models using in Electric Vehicles.
- 2. It would help in developing and executing programs on Matlab/Simulink environment.
- 3. This knowledge will enable the student to execute programs for investigating the performance of power converters in Electric Vehicles.

Course Learning Outcomes:

CO	After	the co	omplet	ion of	the co	urse th	ne stud	ent wi	ll be a	ble to		Bloc	om'	s Cognit	ive
												level		Descrip	otor
CO1	Deve	Develop and test battery models using software tools3Applying											ng		
CO2	Cons	Construct the simulation models of power converters for electric 3 Applying													
	vehic	vehicles													
CO3	Anal	Analyze the performance of batteries and power converters used in 3 Applying													
	Electric Vehicles.														
CO-PC) Map	ping :													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO	12	PSO1	PSO2
CO1			3												
CO2			3												

Lab Assessment:

CO3

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

2

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks	
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25	
	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25	
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25	
	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23	
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25	
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23	
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25	
LaU ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents: (Experiments)

- 1. Study the performance of various types of the batteries.
- 2. Demonstrate modeling of lead acid battery and observe various characteristics.
- 3. Execute modeling and characteristics of Lithium Battery.
- 4. Examine Super-capacitor charging and discharging characteristics.
- 5. Implement the electrical system of a vehicle.
- 6. Simulate and model different types of fuel cells.
- 7. Construct interleaved DC to DC converter for designing EV.
- 8. Implement SEPIC converter for designing EV.

Computer Usage / Lab Tool: MATLAB

Open Elective- I Courses

Fitle of	the Course: Open Elective I: Electrical Machine Technology	L	Т	Р	C					
Course	Code: 40E343	3	0	0	3					
Pre-Requisite Courses: Basic Electrical Engineering, Basic Electronics Engineering.										
Fextbo	oks:									
1. S. J. Chapman, "Electric Machinery Fundamentals", Tata Mc Graw Hill publication, 4th Edition,										
)11									
2. N	I. G. Say. "Performance Design of AC Machines", CBS Publishers, 3 rd E	dition,	2017							
Refere										
1. S	K Bhattacharya, "Electrical Machines", Tata Mc Graw Hill, 3 rd Edition,	2010.								
2. J. B. Gupta, "Electrical Machines", SK Kataria and Sons, 2013.										
Course	Objectives :									
1. T	o make students understand operation and performance of ac and dc ma	chines.								
2. T	o make students learn characteristics of ac and dc machines.									
3. T	b develop skills to choose ratings of ac and dc machines for various appli	cations	5.							
Course	Learning Outcomes:									
CO	After the completion of the course the student will be able to	Bloc	om's C	ognitive	;					
		leve	l Des	scriptor						
CO1	Explain the construction and working principle of A.C. and D.C	. 2	Un	derstand	ling					
	Machines.									
CO2	CO2 Examine the various characteristics of A.C. and D.C. machines.		Ap	plying						
CO3	Analyze the performance of A.C. and D.C. machines for various	s 4	An	alyzing						
	applications.									

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2		2												
CO3		2												

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:					
Module 1: DC Motors	Hrs.				
Construction, Working, Types, Back emf, Speed equation, Armature Reaction, Torque equation,					
Speed torque characteristics, Applications, Power losses in d.c. motors. Need of starter, 3 point					
starter, 4 point starter, speed control of D.C. shunt and series motor (numerical treatment),	6				
Thyristor based speed control for D.C. motor. Reversal of rotation, Electric braking of shunt and					
series motor.					
Module 2: Single Phase Transformer	Hrs.				
Construction and type, EMF equation phasor diagram, equivalent circuit, efficiency, losses,					
regulation, Experimental determination of equivalent circuit parameters and calculation of					
efficiency and regulation, parallel operation, Introduction to three Phase Transformer,	7				
Connection of three Phase Transformer, Applications of Transformers.					
Module 3: Three Phase Induction Motor	Hrs.				
Construction, Types, Working, Speed equation, Torque equation, Starting torque, Concept of full					
load torque, torque speed characteristics, Power stages in motor, (numerical treatment). Induction	7				
Generator.					
Module 4: Three Phase Induction Motor Control	Hrs.				
Need of starter, Star delta starter, DOL starter, Autotransformer starter, Rotor resistance starter.					
Speed control methods- Pole changing, Voltage control, VFD (V/f) control, Block schematic of	5				
electronic VFD control, Rotor resistance speed control, Reversal of rotation.					
Module 5: Synchronous Machines	Hrs.				
Alternator, Construction of Alternator, Alternator Operation, Armature Winding of Alternator,					
Winding Factors, E.M.F. equation of an alternator, Armature Reaction in Alternator, Alternator					
on Load, Synchronous Reactance, Phasor Diagram of a Loaded Alternator, Voltage Regulation,					
Effect of Salient Poles, Power developed in Salient Pole Synchronous Generator.	8				
Synchronous Motor, Equivalent Circuit, Motor on load, Pull-Out Torque, Motor Phasor Diagram,					
Mechanical Power Developed by Motor, Power Factor of Synchronous Motor, Application of					
Synchronous Motor, Comparison of Synchronous Motor with Induction Motor.					
Module 6: Special-Purpose Electric Machines	Hrs.				
Stepper motor-Variable-Reluctance Motor, Permanent Magnet Motor, Hybrid Stepper Motor,					
Servomechanism, D.C. Servomotors, A.C. Servomotors, Switched Reluctance Motor, Permanent					
Magnet D.C. Motor, Brushless D.C. Motor. Selection and Sizing of Motors based on	6				
applications.					
Module wise Measurable Students Learning Outcomes:	I				
After completion of the course students will be able to:					
1. Evaluate performance of dc motor.					
 Evaluate performance of transformer. 					
 Understand operation, working and characteristics of the three-phase induction motor. 					
5. Onderstand operation, working and characteristics of the underphase induction motor.					

- 4. Understand the control concepts of three phase induction motor.
- 5. Evaluate performance of Synchronous Machines.
- 6. Understand applications of Special Electrical Machines.

a ,	of the	Cours	se: H	onors	Specia	alizati	on Co	urse:	Energ	y Storag	ge L	Т	Р	Cr
System	s for E	EV			_				_		3	0	0	3
Pre-Re	quisite	e Cour	ses: Po	ower E	lectron	ics								
Textbo	oks:													
5.	energy Santha	syster nagop	ns, trar alan, S	nsporta	tion ar	nd indu	strial a	pplicat	tions. J	laddad. P ohn Wile rge lithiu	y & So	ns, 2014	1.	
	House			т	1 1		11 1	Ъſ	101	1 T "	(2002)			
6. Refere		е, Н. А	. "Batt	ery Te	chnolo	gy Har	idbook	. Marc	el Dek	ker Inc."	(2003).	•		
3. 4.	Master Wakih	ara, N		ka, and	d Osa	mu Ya	amamo		-	systems. nium ior		•		
Course	-			whey t		, 2000	•							
6. 7. 8.	The c battery The co The co	ourse 7 mana 9 ourse w	will en gemen vill help	able s t syster t the st	tudent n. udents	to use to exa	vario	us ener he pow	gy sys	e of differ stems and verters fo	l study or electr	various	compoi	nents o
Course		sing A			ne stat	ients to	o analy	ze the	perform	nance of	fuel cel	ls and s	upercapa	citors.
		0	utcom	es:										
Course CO		0		es:								Bloom's	s Cogniti	ve
	After Exan	the contine the	omplet	es: ion of ation of	the co	urse tł	ne stud	ent wi	ll be a		le			ve otor
CO CO1	After Exan engin	the co nine th eering	butcom complet ne oper applic	es: ion of ation of ations	the co	urse th	ne stud ergy st	ent wi	ll be a l	ble to s used fo	le	Bloom's	s Cogniti Descrip Applyi	ve otor ing
CO	After Exan engin Anal	the control nine the eering yze the m, fue	e oper applicate applicate	es: ion of ation of ations	the control of variants and	urse th ous end	ne stud ergy st	ent wi	ll be a l system ery ma	ble to	le or nt	Bloom's vel 3	s Cogniti Descriț	ve otor ing
CO1	After Exan engin Anal system criter Inves	the contine the eering yze the n, fue the the the the the the the the the th	e oper applicate applicate of contents	es: ion of ation of ations ponen and rforma	the co of vario ts and superc	urse the second	ergy st cing o ors to	orage s orage s f batte meet	ll be a system ery ma the pe	ble to s used for	le or nt ce	Bloom's vel 3	s Cogniti Descrip Applyi	ve otor ing ing
CO CO1 CO2 CO3	After Exan engin Analy system criter Inves used	the conine the eering yze the m, fue ia tigate	putcom omplet ne oper applica ne com el cells the per	es: ion of ation of ations ponen and rforma	the co of vario ts and superc	urse the second	ergy st cing o ors to	orage s orage s f batte meet	ll be a system ery ma the pe	ble to s used for anagement rformanc	le or nt ce	Bloom's vel 3 4	s Cogniti Descrip Apply Analyz	ve otor ing ing
CO CO1 CO2 CO3	After Exan engin Analy system criter Inves used	the conine the eering yze the m, fue ia tigate	putcom omplet ne oper applica ne com el cells the per	es: ion of ation of ations ponen and rforma	the co of vario ts and superc	urse the second	ergy st cing o ors to	orage s orage s f batte meet	ll be a system ery ma the pe	ble to s used for anagement rformanc	le or nt ce	Bloom's vel 3 4	s Cogniti Descrip Apply Analyz	ve ptor ing ing
CO CO1 CO2	After Exan engin Anal syster criter Inves used	the continue the eering yze the n, fue the triggete the n, fue the triggete the tri	e oper applicate applicate the per the per	es: ion of ation c ations ponen and rformation nicles	the co of vario ts and superc nce of	urse the second	ergy st cing o ors to ent pow	ent wi orage s f batte meet ver elec	Il be a system ery ma the pe tronic	ble to s used for anagement orformance converter	le or nt ce	Bloom's vel 3 4 4	s Cogniti Descrip Apply Analyz Analyz	ve ptor ing ing
CO CO1 CO2 CO3 CO-PC	After Exan engin Anal syster criter Inves used	the continue the eering yze the n, fue the the the the the the the the the th	e oper applicate applicate the per the per	es: ion of ation c ations ponen and rformation	the co of vario ts and superc nce of	urse the second	ergy st cing o ors to ent pow	ent wi orage s f batte meet ver elec	Il be a system ery ma the pe tronic	ble to s used for anagement orformance converter	le or nt ce	Bloom's vel 3 4 4	s Cogniti Descrip Apply Analyz Analyz	ve ptor ing ing

Assessment:

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment, oral, semina	ar, test (surprise/declared/quiz), and group dise	cussio
[One assessment tool per ISE. The assessment tool use	ed for ISE 1 shall not be used for ISE 2]	
MSE: Assessment is based on 50% of course content ((Normally first three modules)	
ESE: Assessment is based on 100% course content	with70-80% weightage for course content (n	iorma
last three modules) covered after MSE.		
Course Contents:		
Module 1: Introduction to Energy Storage Systems		Hrs
Introduction and need for storage for EV, traditional		4
scenario, battery, fuel cell, supercapacitors, compresse	ed air, hydrogen storage, fly-wheels.	4
Module 2: Batteries		Hrs
Battery introduction, parameters of battery, battery of		
batteries, coulomb efficiency, electrode, battery man		
battery modules and packs, working principle, oper		8
polymer and lithium ion batteries, lead acid ba	itteries, applications of batteries, future	
developments.		TT
Module 3: Converters for Batteries Concept of vehicle to grid and grid to vehicle, DC-D	C convertors SEDIC convertors tonology	Hrs
and operation, interleaved converters- topology and op		6
Module 4: Battery Management System	beration, power now between converters.	Hrs
Objectives and functions of the BMS, SOC and D	OD charge controller sensors in BMS	1113
protection of batteries, CCCV, charging topologies,		6
dynamic power limits.		Ŭ
Module 5: Fuel Cells and its Classification		Hrs
Basic structure and functions of fuel cell, its chara	acteristics and working, fuel cell power	
conversion, classification of fuel cells, PEM and alka	line fuel cells, molten carbonate fuel cells,	6
phosphoric acid, solid oxide fuel cells.		
Module 6: Supercapacitors and Hydrogen Storage		Hrs
Supercapacitor: characteristics, components, schemati		6
Hydrogen storage systems: Basics, working and applic		_
Module wise Measurable Students Learning Outcon		
After completion of the course students will be able to:		
1. Illustrate the need and classification of energy st		
 Analyze the operation, modeling and componen Study topology and operation of different power 		
4. Investigate the working and components of batt		
 Illustrate different types and working of fuel cel 		
6. Study working principle, operation and compon	ents of super capacitors and hydrogen storage	ę

EVEN Semester

Professional Core (Theory) Courses

a ~ -	Course:	Funda	nental	s of M	lanage	ment	for En	ginee	rs I		Т	Р	Cr
Course Code	e: 4HS3	08							3	3	0	0	3
Desirable Co	ourses:	Fundan	nentals	of Ma	nagem	ent fo	r Engir	neers					
Textbooks:													
1. Koon	tz and C	'Donne	ll, Prin	ciples	of Ma	nagem	ent						
2. Joseph	h Messi	e, Essen	tials of	Mana	igemer	nt							
3. R. Par	neerselv	am, Eng	gineerir	ig Eco	nomic	s, PHI	Learn	ing Pv	rt. Ltd.				
4. Datta,	, Sundar	am, Ind	ian Ecc	nomy	, S. Ch	nand							
5. Mishr	a, Puri,	Busines	s Econ	omics	, Hima	laya P	ublishi	ing Ho	ouse				
References:													
1. Heinz	. Weihai	ich, Ma	nagem	ent, 12	2th Edi	tion							
2. Julie l	Nelson,	Econon	ics for	Huma	ans								
3. Matth	ew Bisł	op, Ess	ential E	Econor	nics								
Course Obje													
	troduce	1				-							
	ipart kno	0	-		0	•		0					
3. To de proble	-	udents t	owards	identi	ifying	rationa	al solut	ions f	or mar	ageria	al and	econom	1C
-		idents f	or work	in a aa									
-	r ··· · · ·			ang as	steam	memb	er and	team	leader.				
Course Lear	ning O			ang as	steam	memb	er and	team	leader.				
	U	itcome	:								Bloom	ı's Cogni	itive
	After thable to	itcome	:								Bloom vel	_	itive
	After th able to Perceive	e comp	etion of descri	of the	course	e the s	student t the			l Le	vel	Desc	criptor
	After thable to	e comp	etion of descri	of the	course	e the s	student t the	shou	ld be	l Le		Desc	criptor
CO 2 2 CO1 2 5	After th able to Perceive approach Solve in	e comp and and and and and and and and and and	etion descr descr ell as e and bu	of the ribe conon	course manag nics ter proble	e the s gemen rminol ems by	student t the ogies. y grasp	shou ories	ld be and arket	l Le	vel 2	Desc Unders	criptor standing
CO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	After the able to Perceive approache Solve in scenario	e comp and and as w and usi	descr descr ell as e and bu ng skill	of the ribe conon siness s relat	course manag nics ter proble ted to o	e the s gemen rminol ems by	student t the ogies. y grasp	shou ories	ld be and arket	l Le	vel	Desc Unders	criptor
CO2CO11aCO25b	After th able to Perceive approacl Solve in scenario numan r	e comp e and nes as w dustrial and usi esource	descr descr ell as e and bu ng skill manag	of the ribe conon siness s relat ement	course manag nics ter probleted to c	e the s gemen rminol ems b operati	student t the ogies. y grasp ons, fi	shou ories ing m nancia	ld be and harket al and	l Le	vel 2	Desc Unders	criptor standing
CO1	After th able to Perceive approach Solve in scenario numan r Design	e comp e and hes as w dustrial and usi esource strateg	etion of descr ell as e and bu ng skill manag of plan	of the ribe conon siness s relat ement ns to	course manag nics ter probleted to o	e the s gemen rminol ems by operati	student t the ogies. y grasp ons, fi mana	shou ories oing m nancia gerial	ld be and harket al and and		vel 2	Desc Unders Ap	eriptor standing oply
CO 2 CO1 2 CO2 5 CO3 6	After th able to Perceive approacl Solve in scenario numan r	e comp e and nes as w dustrial and usi esource strateg c difficu	descr descr ell as e and bu ng skill manag c plan ilties fa	of the ribe conon siness s relat ement ns to aced by	course manag nics ter probleted to o	e the s gemen rminol ems by operati	student t the ogies. y grasp ons, fi mana	shou ories oing m nancia gerial	ld be and harket al and and		vel 2 3	Desc Unders Ap	criptor standing
CO2CO11aCO25HCO36i	After the able to Perceive approach Solve in Scenario human r Design economic ndustria	e comp e and nes as w dustrial and usi esource strateg c difficu	descr descr ell as e and bu ng skill manag c plan ilties fa	of the ribe conon siness s relat ement ns to aced by	course manag nics ter probleted to o	e the s gemen rminol ems by operati	student t the ogies. y grasp ons, fi mana	shou ories oing m nancia gerial	ld be and harket al and and		vel 2 3	Desc Unders Ap	eriptor standing oply
CO2CO11aCO25HCO36i	After the able to Perceive approach Solve in Scenario human r Design economic ndustria	e comp e and nes as w dustrial and usi esource strateg c difficu l organi	descr descr ell as e and bu ng skill manag c plan ilties fa	of the ribe conon siness s relat ement ns to aced by	course manag nics ter probleted to construct	e the s gemen rminol ems by operati	student t the ogies. y grasp ons, fi mana	shou ories oing m nancia gerial	ld be and harket al and and		vel 2 3	Desc Unders Ap	eriptor standing oply
CO1 CO1 CO2 CO3 CO-PO Map	After the able to Perceive approach Solve in scenario numan r Design economi ndustria oping :	e comp e and nes as w dustrial and usi esource strateg c difficu l organi	descr descr ell as e and bu ng skill manag c plan ilties fa zations	of the ribe conon siness s relat ement ns to aced by	course manag nics ter probleted to o over y mana	e the s gemen rminol ems by operati come ageme	student t the ogies. y grasp ons, fi mana nt of b	shou ories oing m nancia gerial usines	ld be and aarket al and and s and		vel 2 3 4	Desc Unders Ap Ana	eriptor standing oply alyze
CO CO1 CO2 CO2 CO3 CO-PO Map	After the able to Perceive approach Solve in scenario numan r Design economi ndustria oping :	e comp e and nes as w dustrial and usi esource strateg c difficu l organi	descr descr ell as e and bu ng skill manag c plan ilties fa zations	of the ribe conon siness s relat ement ns to aced by	course manag nics ter probleted to c over y mana	e the s gemen rminol ems by operati come ageme	student t the ogies. y grasp ons, fi mana nt of b	shou ories oing m nancia gerial usines	ld be and aarket al and and s and	11	vel 2 3 4	Desc Unders Ap Ana	eriptor standing oply alyze

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared	1	
MSE: Assessment is based on 50% of course con		
ESE: Assessment is based on 100% course content	0 0	-
(normally last three modules) covered after MSE.		
Course Contents:		IIma
Module 1: Introduction to Management		Hrs.
Definition, objectives, nature and importance of n	management. Managerial roles and skills,	6
Challenges for management in global scenario.		•
Module 2: Functions and Principles of Manager	ment	Hrs.
Functions of Management: Planning, Organi	ising, Staffing, Directing, Controlling	
(Meaning, need and scope of each function)		
Mission, Vision and goals, Decision making proce	ss.	8
Leadership styles, characteristics of good lea		
Communication-Process and barriers.		
Module 3: Principles of Management and Motiv	vation	Hrs.
Fayol's fourteen principles of management and the	eir application in organisations.	
Motivation: Concept, Need and theories (Masle		6
Theory Y, Herzberg's Two Factor Theory)		
Module 4: Functional Areas and Recent Trend	s in Management	Hrs.
Sources of funds, financial statements (Types and	contents)	
Functions of HRM, recruitment, selection, Training		
Operations management-Plant layout, production		7
inventory control and TQ		
Module 5: Recent Trends in Management		Hrs.
6	shoin monogonant digital markating	111.5.
Recent Trends: Change management, supply		5
management in Post-Covid scenario, Business ethi	ICS.	
Module 6: Introduction to Economics		Hrs.
Economics: Meaning, nature, scope, types, Ba	asic concepts-Demand, Supply, Law of	
demand, Types of market structures, Pricing method	ods, Types of costs. Elasticity of demand,	7
Giffen goods		/
Indian economics: Features, sectors of economy, e		

	f the Course: Power System Protection	L	Т	Р	C
Course	e Code: 4EL321	3	0	0	3
Pre-Re	quisite Courses: Power System Engineering				
Fextbo	oks:				
1. S	S. Rao, Switchgear & Protection, Khanna Pub., XI edition, 2005.				
2. B	.Ram & Vishwakarma, Power System Protection & Switchgear, TMH P	ub., III e	ditior	n, 2008.	
Refere	nces:				
1. O	za, Nair, Mehta & Makwana, Power System Protection & Switchgear, N	IGH pub	., 201	1.	
2. C	.R. Mason, Art & Science of Protective Relaying, GE e-book.				
	G. Paithankar & S.R. Bhide, Fundamentals of Power System Protection 2004.	i, PHI pu	b., I e	dition,	
Course	Objectives :				
1. T	he need for power system protection and basic principles of circuit break	ters and i	relays	would b	be
	ught.				
	rotection of feeders, transmission lines, transformers, generators and the	ir implen	nentat	tion usin	g
	ectromagnetic & microprocessor based relays would be covered.				
	auses of over voltages in power system and protection against these over	r voltage	s wou	ld be	
d	scussed.				
Course	e Learning Outcomes:				
	5				
CO	After the completion of the course the student will be able to	Blo		Cognitiv	
		level		Descripto	
CO1	Describe basic principles & working of circuit breakers & fuses and	1	Re	member	ing
	select proper CB/fuse for a particular application.				
CO2	Classify the requirements of protection for different parts of a power	2	Un	derstand	ling
	system and select proper relay scheme.				
	Analyze the performance of various protection devices and discuss	4	Analyzing		σ
CO3	digital relaying techniques.			•	5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2													
CO2		3												
CO3			3										3	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Marks				
10				
30				
10				
50				
-				

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents: Module 1: Over Current Relays Hrs. Need of protection, Brief theory and construction of electromagnetic relays. Different time current characteristics of over current relay, Directional relay, Microprocessor based over 6 current relay, Directional over current relay, drawbacks of over current schemes. **Module 2: Arc Interruption Process** Hrs. Voltage - current characteristics of arc, Principles of DC and AC arc interruption, high resistance and current zero interruption, arc voltage, Transient Restriking Voltage (TRV), 6 Recovery voltage, RRRV, current chopping, resistance switching, capacitive current interruption. Module 3: Circuit Breakers & Fuses Hrs. Classification of circuit breakers, brief study of construction and working of Air break and Air Blast CB, SF6 and Vacuum CB, HVDC breakers, ratings of CB and testing of CB, Fuse -7 Rewirable and HRC fuse, fuse characteristics, application and selection of fuse. Module 4: Protection of Transformer, Generator and Bus Bar Hrs. Circulating current differential protection, percentage differential protection of power transformers, through fault stability, effect of magnetizing inrush, effect of over voltage inrush, 6 Buchholz relay, Differential protection of generator, stator and rotor protection schemes of generator, loss of excitation, prime mover failure protection, bus bar protection. **Module 5: Protection of Transmission Line** Hrs. Principles of distance relays, Effect of arc resistance, and power swing on relay operation, Microprocessor based impedance, reactance and admittance relays, Quadrilateral 8 characteristics, carrier aided protection of transmission line. Protection Against Over Voltages. **Module 6: Recent Developments in Protection** Hrs. Introduction to numerical/digital relay techniques. New numerical /digital relaying algorithms, 6 introduction of various transform techniques - Discrete Fourier Transform, Haar Transform etc. **Module wise Measurable Students Learning Outcomes :**

Module 1: CO1- Student will be able to explain & justify the overcurrent relay principle and application.Module 2: CO1 - Student will be able to understand & describe the DC and AC arc interruption processes.Module 3: CO2 - Student will be able to identify various types of circuit breakers, fuses & select proper device for protection.

Module 4: CO2 - Student will be able to summarize protection schemes for transformer, generator and bus bars.

Module 5: CO3 - Student will be able to analyze the importance of distance relays analyze their performance.

Module 6: CO3 - Student will be able to differentiate between the electromagnetic & digital relaying techniques.

Title of	f the C	ourse:	Indu	strial l	Drives	and C	Contro	1				L	Т	F	2	Cr
Course	Code	: 4EL3	322									3	0	()	3
Pre-Re	quisite	e Cour	ses: D	C Mac	chines	and Tr	ansfor	mer, A	C Mac	hines a	nd Pov	wer Ele	ctroni	cs		
Textbooks:																
1. "	1. "Fundamentals of Electrical Drives", G. K. Dubey, Narosa publication, 2 nd edition.															
Refere			5			,		<u> </u>			,					
1. "	1. "Fundamentals of Electrical Drives", NPTEL video lecture series by Prof. Shyama Prasad Das,															
			f Electi								2		5			,
2. "	Power	· Elect	ronics	- Conv	verter	Applic	ation"	By N	. Moha	n T.M.	unde	l and V	/. P.]	Robl	bins, .	John
	Wiely a															
3. "	Electr	ical Dr	rives - (Concep	ot and	applica	ation"	Vedam	Subra	manyar	n.					
Course	e Obje	ctives	:													
Г	The cou	urse aii	ns at g	iving a	a funda	amenta	l know	ledge	in dyna	amics a	nd con	trol of	Electr	ic D	rives.	The
с	The course aims at giving a fundamental knowledge in dynamics and control of Electric Drives. The control principles of various DC and AC motors using solid state converters are discussed.															
Principles of selection of Electric Motors are introduced. Some of the applications of Electrical											state	conver	ters a	are	discus	ssed
F		-	-							-						
	Princip	les of	selecti	on of	Electri					-						
Ι	Princip Drives	les of are also	selecti o highl	on of ighted.	Electri					-						
I Course	Princip Drives Lear i	les of are also ning O	selection o highl putcom	on of ighted. es:	Electri	ic Mot	tors ar	e intro	duced.	Some	of the	e applic	ations	of	Elect	
Ι	Princip Drives Lear i	les of are also ning O	selection o highl putcom	on of ighted. es:	Electri	ic Mot	tors ar	e intro	duced.	-	of the	e applic	ations	itive	Elect e	
I Course CO	Princip Drives Learn After	les of are also ning O r the co	selecti o highl utcom omplet	on of ighted. es: tion of	Electri	ic Mot	ors ar	e intro dent w	duced. vill be a	Some	of the	e applic Bloom's level	ations Cogr	of nitive scrip	Elect e ptor	rical
Course CO CO	Princip Drives Learn After Expl	les of are also ning O r the co ain the	selection o highl outcom omplet e variou	on of ighted. es: tion of	Electri the co	ourse t	tors and he stu e	e intro dent w	duced. rill be a	Some		e applic Bloom's level 2	ations Cogr De Un	of nitive scrip ders	Elect e ptor standin	rical
Course CO CO CO1 CO2	Princip Drives Learn After Expl App	les of are also ning O r the co ain the ly the c	selection o highl outcom omplet e variou	on of ighted. es: tion of us conc technic	Electri The co cepts u ques fo	ourse t sed in	he stue Electri tric dri	e intro dent w ic drive	duced. vill be a es. r speed	Some able to control	of the	e applic Bloom's level 2 3	ations Cogr De Un Ap	of nitive scrip ders plyi	Elect e ptor standin	rical
Course CO CO	Princip Drives Learn After Expl App Anal	les of are also ning O r the c ain the ly the c yze th	selection o highl utcom omplet e variou control ne perfe	on of ighted. es: tion of us conc technic ormane	Electri the co cepts u ques fo ce of	ourse t sed in or Elec variou	he stu Electri tric dri s cont	dent w dent w ic drive ives for rol tec	duced. vill be a es. r speed	Some able to control es used	of the	e applic Bloom's level 2	ations Cogr De Un Ap Ap	itive scrip ders plyi	Elect e ptor standin ng ng	rical
Course CO CO CO1 CO2	Princip Drives Learn After Expl Appl Anal speed	les of are also ning O r the c ain the ly the c yze th d contr	selection o highl outcom omplet e variou control control e performed col of	on of ighted. es: tion of us conc technic ormane	Electri the co cepts u ques fo ce of	ourse t sed in or Elec variou	he stu Electri tric dri s cont	dent w dent w ic drive ives for rol tec	duced. vill be a es. r speed	Some able to control	of the	e applic Bloom's level 2 3	ations Cogr De Un Ap Ap	itive scrip ders plyi	Elect e ptor standin	rical
Course CO CO1 CO2 CO3	Princip Drives Learn After Expl Appl Anal speed appli	les of are also ning O r the c ain the y the c yze th 1 contri cation.	selection o highl outcom omplet e variou control control e performed col of	on of ighted. es: tion of us conc technic ormane	Electri the co cepts u ques fo ce of	ourse t sed in or Elec variou	he stu Electri tric dri s cont	dent w dent w ic drive ives for rol tec	duced. vill be a es. r speed	Some able to control es used	of the	e applic Bloom's level 2 3	ations Cogr De Un Ap Ap	itive scrip ders plyi	Elect e ptor standin ng ng	rical
Course CO CO CO1 CO2	Princip Drives Learn After Expl Appl Anal speed appli Map	les of are also ning O r the c ain the ly the c yze th d contri cation. ping :	selection o highl outcom omplet e variou control me performed rol of	on of ighted. es: tion of us conc technic ormano electric	Electri the co cepts u ques fo ce of c drive	ourse t sed in or Elec variou es and	he stu Electri tric dri s cont select	dent w dent w ic drive ives for rol tec t a dri	duced. vill be a es. r speed chnique ve for	Some able to control es used particu	of the	e applic Bloom's level 2 3 4,5	ations Cogr Un Ap Ev	iitivo scrij ders plyi plyi alua	Elect e ptor standin ng ng ting	ng ,
Course CO CO1 CO2 CO3 CO-PC	Princip Drives Learn After Expl Appl Anal speec appli Map	les of are also ning O r the c ain the y the c yze th 1 contri cation.	selection o highl outcom omplet e variou control control e performed col of	on of ighted. es: tion of us conc technic ormane	Electri the co cepts u ques fo ce of	ourse t sed in or Elec variou	he stu Electri tric dri s cont	dent w dent w ic drive ives for rol tec	duced. vill be a es. r speed	Some able to control es used	of the	e applic Bloom's level 2 3 4,5	ations Cogr Un Ap Ev	iitivo scrij ders plyi plyi alua	Elect e ptor standin ng ting PSO2	ng ,
Course CO CO1 CO2 CO3 CO-PC CO1	Princip Drives Learn After Expl Appl Anal speed appli Map	les of are also ning O r the c ain the y the c yze th 1 contri cation. ping : PO2	selection o highl outcom omplet e variou control me performed rol of	on of ighted. es: tion of us conc technic ormano electric	Electri the co cepts u ques fo ce of c drive	ourse t sed in or Elec variou es and	he stu Electri tric dri s cont select	dent w dent w ic drive ives for rol tec t a dri	duced. vill be a es. r speed chnique ve for	Some able to control es used particu	of the	e applic Bloom's level 2 3 4,5	ations Cogr Un Ap Ev	iitivo scrij ders plyi plyi alua	Elect e ptor standin ng ng ting PSO2 2	ng ,
Course CO CO1 CO2 CO3 CO-PC	Princip Drives Learn After Expl Appl Anal speec appli Map	les of are also ning O r the c ain the ly the c yze th d contri cation. ping :	selection o highl outcom omplet e variou control me performed rol of	on of ighted. es: tion of us conc technic ormano electric	Electri the co cepts u ques fo ce of c drive	ourse t sed in or Elec variou es and	he stu Electri tric dri s cont select	dent w dent w ic drive ives for rol tec t a dri	duced. vill be a es. r speed chnique ve for	Some able to control es used particu	of the	e applic Bloom's level 2 3 4,5	ations Cogr Un Ap Ev	iitivo scrij ders plyi plyi alua	Elect e ptor standin ng ting PSO2	ng ,

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion. [One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1: Basics of drives	Hrs.
Types & parts of the Electrical drives, Selection criteria of drives, motor rating, selection based	
on duty cycle, selection of converter rating, fundamental torque equation, speed torques	
characteristics DC motor & Induction motor, multi quadrant operation of the drive, classification	
of mechanical load torques, steady state stability of the drive, constant torque and constant HP	6
operation of the drive, closed loop speed control.	
Module 2: DC motor drives	Hrs.
Methods of speed control, starting and breaking operation, single phase and three phase full	
controlled and half controlled converter fed DC drives, Multi quadrant operation of separately	
excited DC shunt motor, dual converter fed DC drives, circulating and non - circulating mode of	6
operation, converter fed DC series motor drive, chopper control of DC shunt and series motor	
drives, four quadrant operation of chopper fed DC shunt motor drive.	
Module 3: Induction motor drives	Hrs.
Speed control methods for three phase cage induction motor, stator voltage control, three phase	
AC voltage controller, closed loop speed control of induction motor by stator voltage control,	
multi quadrant operation of drive with AC voltage controller, phase angle and integral cycle	
control of stator voltage controlled induction motor drive VSI fed induction motor drive,	
constant torque (constant E/F and constant V/F), constant HP operation, closed loop speed	0
control block diagram., CSI fed induction motor drive, speed torque characteristics of CSI fed	8
drive, closed loop speed control block diagram, comparison of CSI fed and VSI fed induction	
motor drive. Analysis of inverter fed induction motor drive using harmonic equivalent circuit,	
harmonic slip, harmonic torques and losses with inverter fed induction motor. Introduction to	
field oriented control and direct torque control.	
Module 4: Slip Ring Induction Motor Drives	Hrs.
Chopper controlled resistance in rotor circuit, slip power recovery using converter cascade in	
rotor circuit, sub synchronous and super synchronous speed control, Kramer speed control,	6
cyclo - converter in rotor circuit.	
Module 5: Synchronous motor drives and Brushless DC drives	Hrs.
VSI fed synchronous motor drives, true synchronous and self-control mode, open loop and closed	_
loop speed control of Permanent magnet synchronous machine, brushless DC motor drives.	5
Module 6: Special Drives	Hrs.
Construction and operating principle, Current / Voltage control of switched reluctance motors,	
torque equation, converter circuits, operating modes and applications of switched reluctance	5
motors. Solar panel VI characteristics, solar powered pump, maximum power point tracking and	3
battery operated vehicles.	
Module wise Measurable Students Learning Outcomes :	
After completion of the course students will be able to:	
1. Explain the dynamics of motor load combination and dynamic response of the drive.	
2. Classify DC drives and investigate the performance of DC drives.	

- Classify DC drives and investigate the performance of DC drives.
 Apply and analyze various control techniques for speed control of Squirrel Cage Induction motor.
 Apply and analyze various control techniques for speed control of Slip Ring Induction motor.

- Explain the high efficiency PM synchronous drives.
 Describe SRM drives, solar and battery powered drives.

Title of	the Co	urse: N	Aicroc	ontro	ller an	d App	licatio	ns				L	Т	Р	
Course	Code:	4EL32	3									3	0	0	
Pre-Rec	quisite	Course	es: Ana	alog an	nd Digi	tal Cir	cuits								
Textboo	_														
		nad Ma	zidi J	anice N	Mazidi	and R	olin M	cKinla	v 'Th	e 8051 N	Microo	controll	er and	l Em	bedd
										ion, 200					
										cations',		dition,	2007		
										ed With				Open	n Soi
										dition, 2					
		al ,"En	nbedde	ed Syst	em", 2	and Edi	ition, T	TATA I	McGra	w Hill,	2009				
Referen															
							and F	Robots-	Proj	ects usi	ng th	e 8051	Mic	roco	ntrol
	engage						~1 00		n and		• • • •				
										Edition					
								,		and Data		Imbody	lad C	untar	nan
	ssembl									muonei	anu i	Embeu	ieu s	yster	ns u
Course				<u>icio</u> ,	1 carso	JII LAU	cation.								
	develo		know	ledge o	of micr	ocontr	ollers	and the	ir feat	ures					
				0						tions in	Electr	ical En	vineer	ing	
	-		-	-	-					fferent j			-	-	trolle
Course								- <u>r</u> - O			i I				
CO		the co			the cou	urse th	e stud	ent wi	ll be a	ble to		Bloo	m's C	logni	itive
00			P									level		escri	
C01	Expla	in the	archite	cture a	and fea	tures c	f micr	ocontro	ollers			2			ndin
CO1	-									ers, tim	ore	3		pply	
02		ipts and		-	-	65 10	mpie	ment	count	15, tim	CI5,	5	А	рргу	mg
CO2		-					interf			4401104		3	٨		
CO3	_						merra		crocon	troller v	viui	3	A	pply	mg
004		cal and			-		1							1	•
CO4			micro	control	ler bas	sed app	licatio	n.				3	A	pply	ing
CO-PO		0	1	1	1			1	1	1	1				
C01	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	2 PS	01	PSO
CO1 CO2			5		3										
CO3					3										
CO4			3												2
Assessn	ient:														
		nts of I	n Sem	ester F	Evaluat	tion (IS	SE). O	ne Mio	1 Sem	ester Ex	amina	tion (N	(ISE)	and	one
Semeste	-												,		
	- L/MIII		ssessn		5 20 /0	, 5070		.,	Sinuge	respect	Mar	75			
		A									10				
			ISE 1												
			MSE								30				
			ISE 2	2							10				

50

ESE

discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for 1 MSE: Assessment is based on 50% of course content (Normally first three modules)	-
ESE: Assessment is based on 100% course content with70-80% weightage for course content (no	ormall
last three modules) covered after MSE.	
Course Contents:	
Module 1: Microcontroller Basics	Hrs.
Difference between Microprocessor and Microcontroller, Harvard and Von-Neumann architectures, Advantage of microcontrollers, Overview of 8051/Arduino/DSP family, features, internal architecture, Pin out and pin functions, program memory, data memory, SFR area, PSW, Code memory space, (Internal/External), Port structure, clock circuit.	5
Module 2: Programming ports and timers	Hrs.
Instruction set, Introduction to C programming, , data types using pointers I/O programming, Assembler directives, Development tools for 8051 programs, Programming Timers and counters Timer block diagram and function, Timer modes 0, 1, 2 and their Applications, Timer and Counter Programming	7
Module 3: Interrupts and Serial Communication	Hrs.
Interrupt structure, Writing ISR, interrupt blocking conditions, Interrupt priorities, Programming for external interrupt. Programming timer interrupts. Serial Communication :Serial communication modes, RS232 signals of PC, Programming through Serial communication	6
Module 4:Peripheral Interfacing- I	Hrs
Interfacing of microcontrollers to external peripherals and programming, LCD interfacing,	1115
Interfacing of Analog to Digital Converters and Digital to Analog Converters, Stepper motor interfacing, RTC interfacing, RS232 interfacing,	6
Module 5: Peripheral Interfacing- II	Hrs
DC motor interfacing, PWM programming using microcontrollers, Interfacing of Wifi module, Use of Arduino in Power Electronics Applications, Introduction to CAN protocol and its interfacing	6
Module 6: Introduction to Advanced microcontrollers	Hrs
Introduction of MSP430 microcontrollers, PIC microcontrollers, overview, Features, concepts of brown out reset, watch dog timers, configurations registers, concept of hardware-in-loop simulation, programming examples	6
Aodule wise Measurable Students Learning Outcomes :	
 After completion of the course students will be able to: Describe the architecture and features of microcontrollers. Use the instruction set and develop different I/O, timer and counter programs. Implement the programs related to interrupts and serial communication Construct programs for peripherals interfaced to 8051. Design and implement programs for applications like motor speed control, etc. 	

Professional Core (Lab) Courses

Title of the Course: Power System Protection Lab	L	Т	Р	Cr
Course Code: 4EL371	0	0	2	1

Pre-Requisite Courses: Power System Engineering.

Textbooks:

- 1. S.S. Rao, Switchgear & Protection, Khanna Pub., XI edition, 2005.
- 2. B.Ram and Vishwakarma, Power System Protection & Switchgear, TMH Pub., III edition, 2008.

References:

- 1. Oza, Nair, Mehta and Makwana, Power System Protection and Switchgear, MGH pub., 2011.
- 2. C.R. Mason, Art and Science of Protective Relaying, GE e-book.
- 3. Y.G. Paithankar and S.R. Bhide, Fundamentals of Power System Protection, PHI pub., I edition, 2004.

Course Objectives :

This course is designed to develop hands on skills to test and verify protective relay operation, used in power system protection. A mix of electromagnetic and digital relays will be used to demonstrate their operating characteristics. Students will also gain experience to use power system analysis software for developing protection schemes for simple electrical systems.

Co	Course Learning Outcomes:										
С	0	After the completion of the course the student will be able to	Bloom's Cognitive								
			level	Descriptor							
С	:01	Demonstrate the working of over current, earth fault relays and plot the I-t	3	Applying							
		characteristics.									
C	202	Execute experimental study of a microcontroller based relays.	3	Applying							
С	:03	Devise a scheme for over current relay co-ordination using simulation	6	Creating							
		software/hardware.									
	_										

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1				3										
CO2					3									
CO3			2										3	

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents: (Experiments)

- 1. Arrange the set-up & perform an experiment to verify the Current-Time characteristics of a shaded pole type over current relay.
- 2. Arrange the set-up & perform an experiment to verify the Current-Time characteristics of a shaded pole type earth fault relay.
- 3. Arrange the set-up & perform an experiment to demonstrate the operation & use of Directional over Current relay.
- 4. Assemble a circuit to obtain & verify various Current-Time curves for Digital over Current Relay.
- 5. Demonstrate the application of Quadrilateral Distance relay for detection of fault on transmission lines.
- 6. Conduct a simulation study to develop relay co-ordination scheme of over current relays for a simple radial feeder system.
- 7. Conduct an experiment to illustrate the over current relay co-ordination on the Transmission Line Simulator.
- 8. Conduct a simulation study to explain the Circuit Breaker operation under fault condition.

Computer Usage / Lab Tool: MiPOWER/ MATLAB/ NRDE

			Indus	strial I	Orives	and C	ontrol	Lab				L	Т	Р	Cr
Course	Code	4EL3	872									0	0	2	1
Pre-Re	quisite	Cour	ses: D	OC Ma	chines	and Tr	ansfor	mer, A	C Mac	hines a	nd Powe	er Elect	tronics	5	
Fextbo	oks:														
1. "	Funda	nental	s of El	ectrica	ıl Driv	<i>es</i> ", G.	K. Du	ıbey, N	arosa j	publicat	ion, 2 nd	edition	1.		
Referer	nces:														
2. " V	<i>Power</i> Viely a	<i>Electr</i> nd sor	<i>ronics</i> 18	- Conv	verter a	applica	tion" E	By N. N	/Iohan	T.M. ur	ce Hall o ndeland				Johr
<u> </u>				Conce	pt and	applica	uion	veuam	Subra	manyar	1.				
	0			imna	rtino k	nowle	dge or	n perfo	ormane	e of th	e funda	mental	l cont	rol nra	ctice
				-	-		-	-			, pluggi			-	
							•		0	Ũ	ased and	0	,	0	
										-	n and su	•			
	peratic					1	2			1			5	1	
Course	-		utcom	es:											
CO		0			the co	ourse t	he stud	dent w	ill be a	ble to		Bl	oom's	Cognit	ive
			-									leve	el	Descrip	tor
CO1	Demo	onstra	te expe	erimen	ts on b	asics c	f DC a	and AC	drives	5.		3		Applyi	ng
CO2	Analy	ze th	ne per	forma	nce o	f driv	es usi	ing ha	ardwar	e circu	its and	4		Analyzi	ing
	simul	ation.													
CO3	Evalı	ate pe	erforma	ance of	fdrive	s using	hardw	vare cir	cuits a	nd simu	lation.	5		Evaluat	ing
CO-PO) Mapj	oing :													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	1 PSO2	2
CO1 CO2		$\frac{3}{2}$												2	
		2	2											2	
CO3			•												
Lab As			onento	of lab	966466	mont		A2 I	12 and	I ah HV	SE				
Lab As There a	re four	comp					LA1, L	LA2, LA	A3 and	Lab ES	SE.				
L ab As There a	re four	comp					LA1, L	LA2, LA	A3 and	Lab ES	SE.				
L ab As There a MP: La	re four	comp comp c is a so	eparate Base	e head	of pass	sing.	LA1, L		Con	duction	and Mar		nissior	n Ma	rks
Lab As There a IMP: La Asses	re four ab ESE	comp comp is a se	eparate Base Lab act	e head ed on tivities,	of pass	sing. Co		l by	Con Durir	duction 1g Week	and Mar 1 to Wee	ek 4		n Mar	
Lab As There a IMP: La Asses L	re four ab ESE	comp c is a so att	eparate Base	e head ed on tivities, e, journ	of pass	sing. Co Lab C	nducted	l by Faculty	Con Durir Subrr	duction g Week ission a	and Mar	ek 4 of Wee			5

Lab ESELab Performance and
related documentationLab Course facultyDuring Week 15 to Week 18
Submission at the end of Week 18

Week 1 indicates starting week of Semester.

LA3

Lab activities,

attendance, journal

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

Lab Course Faculty

During Week 10 to Week 14

Submission at the end of Week 14

25

25

The experimental lab shall have typically 8-10 experiments.

Course Contents:

- 1. To verify Speed Torque characteristics of chopper fed D. C. series motor.(Hardware)
- 2. To analyze the performance of chopper fed D. C. drive for closed loop speed control (simulation).
- 3. To demonstrate operation and application of single phase full wave, half controlled converter for open loop speed control of D. C. shunt motor.(Hardware)
- 4. To demonstrate operation and application of single phase full wave, full controlled converter for open loop speed control of D. C. shunt motor.(Hardware)
- 5. To analyze the performance of converter fed D. C. drive for closed loop speed control.(Simulation)
- 6. To study the operation of two quadrant single phase converter fed 5 HP DC drive (Simulation).
- 7. To study the four quadrant operation of 5 HP DC motor using single phase converter.(Simulation).
- 8. To study the operation of four quadrant chopper fed DC drive (simulation).
- 9. To assess the performance of rotor resistance control method for speed control of Slip Ring Induction motor.(Simulation)
- 10. To demonstrate speed control of Induction motor using V/f method.(Hardware)
- 11. To analyze the operation of Induction motor drive with Six step VSI control (Simulation).
- 12. To demonstrate the operation of brushless DC motor drive with software Simulation.(Simulation)
- 13. To demonstrate speed control of Induction motor using Kramer speed control method.(Hardware)

Computer Usage / Lab Tool:

Simulation on Matlab/ Scilab.

Title of the Course: Microcontroller and Applications Lab	L	Т	Р	Cr
Course Code: 4EL373	0	0	2	1
Pre-Requisite Courses: Analog and Digital Circuits			1 1	
Textbooks:				
 Muhammad Mazidi, Janice Mazidi and Rolin McKinlay, 'The 8051 Micro systems using Assembly and C', Pearson Education, 2nd Edition, 2007 Kenneth Ayala, '8051 Architecture, Programming and Applications', 3rd Massimo Banzi and Michael Shiloh, Make: Getting Started With Arc Electronics Prototyping Platform, Shroff/Maker Media; 3rd edition, 2014 Raj Kamal, "Embedded System", 2nd Edition, TATA McGraw Hill, 2009 	Edition luino -	, 200	7	
References:				
 Subrata Ghoshal, 'Embedded Systems and Robots- Projects using th Cengage Learning, 1st Edition, 2009 Michael Margolis, 'Arduino Cookbook', Shroff/ O'Reilly,2nd Edition,2011 Texas Instruments MSP 430/C2000 microcontrollers, Guide and Datashee Mazidi, RolinMc Kinlay and Danny Causey, 'PIC Microcontroller and Assembly and C for PIC18', Pearson Education. 	2 et			
Course Objectives :				
1. This course is designed to develop the necessary skills required for programicrocontroller to implement real world applications.	amming	g 805	1 and Ar	duin
2. The course aims at understanding the practical problems in electrical s programs for same.	systems	and	impleme	entin
3. This course introduces various programming software's to impleme	nt mic	raca	ntrollar	haca
applications.	in nin	1000	nuonei	Uase
Course Learning Outcomes:				
CO After the completion of the course the student will be able to	Blo	om's	Cognitiv	7e
	leve		Descript	
CO1 Use simulation tools to analyze microcontroller based systems.	3		Applyir	
CO2 Apply programming techniques to implement counters, timers, interrupts and other peripherals.			Applyir	-
	+			

CO3Execute programs to interface microcontrollers with electrical and
electronics systems.3ApplyingCO4Construct programs for electrical applications using microcontrollers.3Applying

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3											
CO2					3									
CO3					3									
CO4			3											

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

1

LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25	
2.11	attendance, journal	Luc Course Faculty	Submission at the end of Week 5	20	
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25	
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23	
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25	
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23	
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25]
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

- 1. Introduction to Keil/Arduino IDE, Using Keil/Arduino IDE to assemble a program, Hex file format, Downloading and running the program
- 2. Demonstrate the flashing of GPIO ports of using delay.
- 3. Implement a 8-bit up and down counter using microcontroller.
- 4. Devise a running light scheme using GPIO pins of microcontroller.
- 5. Demonstrate the process of serial communication using 8051 and Arduino microcontroller
- 6. Construct a C program using 8051 to generate pulses using various timer modes
- 7. Execute programs to demonstrate interrupts for 8051.
- 8. Construct a C program to interface LCD with 8051 LCD.
- 9. Devise a Arduino based system interfaced with relay to control a single phase ac load.
- 10. Construct a C program to interfacing stepper motor with Arduino.
- 11. Implement digital sensor based control using TI Launchpad.
- 12. Demonstrate the operation of analog to digital converters using TI launchpads.

Computer Usage / Lab Tool:

C programming of 8051 using KEIL IDE. Introduction to C programming for 8051, Proteus and ISIS, Arduino IDE

Title of the Course: Mini Project	L	Т	Р	Cr
Course Code: 4EL341	0	0	2	1
Pre-Requisite Courses:				

Textbooks:

References:

Course Objectives:

- 1. To acquire the skills related to electrical and electronic circuit designing and assembly.
- 2. To develop the skills related to programming, analysis and fault diagnosis of the electrical and electronic circuit.
- 3. To implement the electrical and electronic circuit assembly to meet desired specifications.

Course Learning Outcomes: After the completion of the course the student will be able to Bloom's Cognitive CO Descriptor level 4 **CO1** Analyzing Analyze the reference literature critically and efficiently. 5 **CO2** Evaluating **Evaluate** the performance of the project Construct the project model to meet desired specifications using 6 CO3 Creating suitable hardware **CO4** | **Develop** the report for the complete project. 6 Creating

CO-PO Manning :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							2		3				2	2
CO2			2						3		2			
CO3					3							3		
CO4								3		3				

Assessment:

There are four components of mini-project assessment, LA1, LA2, LA3 and Project ISE.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Project Topic Selection	Mini project panel	During Week 1 to Week 4	25
LAI	and Literature Review	Willin project parier	Submission at the end of Week 5	23
LA2	Simulation / Basic	Mini project panel	During Week 5 to Week 8	25
LAZ	Project design	Willin project parier	Submission at the end of Week 9	23
LA3	Software /Hardware	Mini project panel	During Week 10 to Week 14	25
LAS	Implementation	Milli project paller	Submission at the end of Week 14	23
Project ISE	Presentation, Project	Mini project panel	During Week 15 to Week 18	25
Floject ISE	report submission	Milli project paller	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester. ISE is based on performance of student in project reports, demonstration, presentation, oral, etc. The mini-project guide/panel shall use at least two assessment tools as mentioned above for ISE.

Course Contents:

- 1. Students may visit to nearby industry for the study of problems.
- 2. Prepare the problem statement and design the hardware.
- 3. Analyze the performance of project and results to meet desired specifications.

4. Prepare a report on the same.

Module wise Measurable Students Learning Outcomes:

- 1. Students will be able to do literature review efficiently.
- 2. It is expected that the students will be able to analyze the problem, work on hardware circuits/software and evaluate the project performance.
- 3. Students will be able to prepare the project report and develop presentation skills.

Computer Usage / Lab Tool: MATLAB/Simulink, Mipower, LabView, Proteus, Keil, PSpice, etc

Professional Elective (Theory) Courses

Title of the Course: Professional Elective III: Artificial Neural Network	L	Т	Р	Cr
Course Code: 4EL331	3	0	0	3

Pre-Requisite Courses: Nil

Textbooks:

- 1. Simon Haykin, "Neural Network, Pearson Publications, 2005
- 2. Bishop, C. M. Neural Networks for Pattern Recognition. Oxford University Press. 1995.

3. Neural Networks, Fuzzy Logic and Genetic Algorithms, by S.Rajasekaran and G.A. Vijayalakshmi Pai., 2012.

References:

1. Neuro-Fuzzy Systems, Chin Teng Lin, C. S. George Lee, PHI.pub. 2007.

Course Objectives :

- 1. To develop basic knowledge of neural networks and their features.
- 2. To provide skills for programming ANN for applications in Electrical Engineering.
- 3. The course aims to enable students to understand and program different neural network algorithms.

Course Learning Outcomes:

СО	After the completion of the course the student will be able to	Bloo	m's Cognitive
		level	Descriptor
CO1	Explain the architecture and features of neural networks	2	Understanding
CO2	Explain programming techniques to implement of neural networks	2	Understanding
CO3	Implement the applications related to electrical and electronics	3	Applying
	systems using of neural networks.		

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			2											
CO2			2											
CO3					3									2

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1: Neural Networks and Architecture	Hrs.
Fundamentals of Neural Networks: What is Neural Network, Model of Artificial Neuron,	
Learning rules and various activation functions, Single layer Feed-forward networks, Perceptron	6
learning, MLP structures.	
Module 2: Back propagation Networks	Hrs
Delta and LMS rules, Back propagation Networks, Architecture of Back-propagation (BPN)	7
Networks, Back-propagation Learning, Variation of Standard Back propagation algorithms.	/
Module 3: Unsupervised networks	Hrs
Associative Memory: Auto correlators, Heterocorrelators, Multiple Training Encoding Strategy,	_
Exponential BAM, and Associative Memory for Real coded pattern pairs, Applications.	7
Module 4: Adaptive Resonance Networks	Hrs
Adaptive Resonance Theory: Cluster Structure, Vector Quantization, Classical ART Network,	
Simplified ART Architecture, ART1 and ART2 Architecture and algorithms, Applications,	7
Sensitivities of ordering of data.	
Module 5: Radial and Convolution Networks	Hrs
Convolution networks, pooling, working and design, radial basis function network, working	6
Module 6:Application to Electrical	Hrs
Control system design with neural network- controller design, tuning and learning, power	
system applications, load forecasting and fault analysis	6
Module wise Measurable Students Learning Outcomes :	
After completion of the course students will be able to:	
1. Describe the architecture and features of Neural Networks	
2. Use the BPN algorithm and develop different application programs.	
3. Implement the programs related to unsupervised learning.	
4. Construct programs using ART network.	
5. Describe the architecture and features of convolution and RBF networks.	

Describe the arctificeture and reatures of convolution and KBF network
 Construct programs for applications in control and power system area

ntrol			Profess	ional H	Elective	e III: N	online	ear an	d Digi	tal			ΓI		С
	System											3	0 ()	3
	Code: 4 uisite			ntrol S	vstem	Engin	eering						[
extboo	-	00020			<u></u>	8									
		, "Disc	crete T	'ime Co	ontrol	Svstem	<i>is"</i> . Pe	arson l	Educat	ion, Sec	cond E	dition.	2015		
	•									n,2010		,			
eferen															
	•	-	-				0	0		0			th Editi	on, 2	201
			tal Co	ntrol S	ystems	;", Oxi	ford U	niversi	ty Pres	ss, Seco	nd Edi	ition, 20)12.		
	Object							C	1.						
									onlinea	ar syster	ns.				
	o devel o make	-			0		•								
	Learni				ini uig		11101 5	ystem.							
CO	After	0			the co	urse fl	ne stud	lent w	ill he s	able to		Bloom	's Cogn	itive	
			pieti				50ul				F	level	Descrip		
CO1	Calcu	late m	athema	atical r	nodels	of dig	ital co	ntrol s	ystem.			3	Applyi		
						U								U	
CO2	Identi	•	proper	ties of	nonlir	near sy	stems	using a	approp	riate		4	Analyz	ing	
000	metho					1	11								
CO3			e com	pensato	ors and	l contr	ollers i	tor digi	ital coi	ntrol sys	stem.	5	Evalua	ing	
)-PO N	Aappin	ng :													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PS	02
			105	104	105	100	107	100	107	1010	1011	1012	1501	15	02
C01	3														
CO1 CO2		2													
			2												
CO2 CO3	3		2												
CO2 CO3	3 ent:	2		estor D	voluoti	on (IS	E) On	a Mid	Samai	tor Evo	minati		E) and		
CO2 CO3 ssessm wo con	3 ent: nponen	2 ts of Ir	n Seme										E) and	one	
CO2 CO3 ssessm wo con	3 ent: nponen nester E	2 ts of Ir Examin	n Seme							ster Exa htage re	especti	ively.	E) and	one	
CO2 CO3 ssessm wo con	3 ent: nponen nester E	2 ts of Ir	n Seme									ively.	E) and	one	
CO2 CO3 ssessm wo con	3 ent: nponen nester E	2 ts of Ir Examin	n Seme	ESE)							especti Marl	ively.	E) and	one	
CO2 CO3 ssessm wo con	3 ent: nponen nester E	2 ts of Ir Examin	n Seme ation (ISE 1 MSE	ESE)]							especti Mari s 10 30	ively.	E) and	one	
CO2 CO3 ssessm wo con	3 ent: nponen nester E	2 ts of Ir Examin	n Seme ation (ISE 1 MSE ISE 2	ESE)							especti Mari <u>s</u> 10 30 10	ively.	E) and	one	
CO2 CO3 ssessm wo con nd Sem	3 ment: nponen nester E Asses	2 ts of In Examin	1 Seme ation (ISE 1 MSE ISE 2 ESE	ESE)	having	20%,	30% a	nd 509	% weig	htage r	especti Mari <u>s</u> 10 30 10 50	k			
CO2 CO3 ssessm wo con nd Sem	3 nent: nponen nester E Asses nd ISE	2 ts of In Examin Soment 2 are I	n Seme ation (ISE 1 MSE ISE 2 ESE pased o	ESE)	gnmer	20%,	30% a	nd 509	% weig t (surp	htage ro	especti Mari s 10 30 10 50 elared/o	k quiz), a	nd grou	p	
CO2 CO3 ssessm wo con nd Sem	3 nent: nponen nester E Asses nd ISE ion.[Or	2 ts of In Examin ssment 2 are I ne asse	I Seme ation (ISE 1 MSE ISE 2 ESE pased c ssmen	ESE)	having gnmer per ISE	t, oral	30% a	nd 509	% weig t (surp ool use	htage ro rise/dec d for IS	especti Mari <u>s</u> 10 30 10 50 Elared/0 E 1 sh	vely. k quiz), a all not	nd grou be used	p	SE
CO2 CO3 ssessm wo con nd Sem [SE 1 a discuss] 2] MSE	3 nent: nponen nester E Asses nd ISE ion.[Or E: Asses	2 ts of In Examin ssment 2 are I ne asse ssment	ISE 1 ISE 1 MSE ISE 2 ESE Dased c ssment i is bas	ESE)	gnmer ber ISE 50% o	t, oral	30% a	nd 50%	<pre>% weig t (surp pol use prmall;</pre>	thtage re rise/dec d for IS y first th	especti Mari s 10 30 10 50 Elared/0 E 1 sh nree m	quiz), a all not odules)	nd grou be used	p	SE
CO2 CO3 ssessm wo con nd Sem ISE 1 a discussi 2] MSE ESE: A	3 nent: nponen nester E Asses nd ISE ion.[Or E: Asses	2 ts of In Examin ssment 2 are I ne asse ssment ent is 1	ISE 1 ISE 1 MSE ISE 2 ESE Dased of ssmen is bas based of	ESE)	gnmer gnmer 50% o % cou	t, oral, The structure of course cour	30% a	nd 50%	<pre>% weig t (surp pol use prmall;</pre>	htage ro rise/dec d for IS	especti Mari s 10 30 10 50 Elared/0 E 1 sh nree m	quiz), a all not odules)	nd grou be used	p	
CO2 CO3 sseessm wo con nd Sem ISE 1 a discussi 2] MSE	3 nent: nponen nester E Asses nd ISE ion.[Or E: Asses ssessm lly last	2 ts of Ir Examin ssment 2 are I ne asse ssment ent is I three r	ISE 1 ISE 1 MSE ISE 2 ESE Dased of ssmen is bas based of	ESE)	gnmer gnmer 50% o % cou	t, oral, The structure of course cour	30% a	nd 50%	<pre>% weig t (surp pol use prmall;</pre>	thtage re rise/dec d for IS y first th	especti Mari s 10 30 10 50 Elared/0 E 1 sh nree m	quiz), a all not odules)	nd grou be used	p	

Woulde 1. Nommean System	1115.
P roperties of nonlinear system, Multiple Equilibrium States, Chaos, Sensitive to input	
amplitude, Limit Cycle, Bifurcation, Jump Phenomenon, Common Physical	
Nonlinearities, Dead Zone, Saturation, Hysteresis, Backlash, Classification of	4
Nonlinearities.	

Module 2: Analysis of Nonlinear System	Hrs.
Linearization, Phase Plane Analysis, Classification of Equilibrium States, Node, Focus, Saddle Point, Centre, Prediction of Limit Cycle using Phase Plane, Describing Function Method, Lyapunov Stability for Non-linear and Linear Systems.	8
Module 3: Digital Control System	Hrs.
Review of Z transforms, Z transform method for solving difference equation, Impulse	
Sampling and Data Hold, Pulse Transfer Function, Sampling Theorem, Mapping between S Plane and Z Plane, Stability Analysis, Transient and Steady State Analysis.	8
Module 4: Design of Digital Control System	Hrs.
Construction of Root Locus, Design based on Root Locus, P,PI,PD,PID Controllers, Lead, Lag, Lead-Lag Compensators, Frequency Response Analysis, Bode Diagram.	7
Module 5: State Space Analysis of Digital Control System	Hrs.
State Space representation of Digital System, Controllable Canonical form, Observable Canonical form, Diagonal form, Jordan form, Solving State Space Equations, State Transition Matrix, Properties of State Transition Matrix, Pulse Transfer Function Matrix. Discretization of Continuous Time State Space Equation.	7
Module 6: State Space Design of Digital Control System	Hrs.
Controllability, Controller Design in State Space, Design via Pole Placement for Controller Design, Ackermann's Formula for Controller Design, Observability, Observer Design, Design via Pole Placement for Observer Design, Ackermann's Formula for Observer Design, Deadbeat Design, Design for Deadbeat Response.	5
Module wise Measurable Students Learning Outcomes :	
 After completion of the course students will be able to: Identify the properties of nonlinear systems. Analyze the nonlinear system using various techniques. Inspect the stability, transient and steady state response of digital control system. Assess the Compensators for digital control system using Root locus and Bode plot. Employ State Space model for digital control system. 	
 Estimate the controllers for digital control system in State Space domain. 	

Title of the Course: Professional Elective III: Introduction to Electric	L	Т	Р	Cr
Vehicle	3	0	0	3
Course Code: 4EL333				

Pre-Requisite Courses: Electrical Machines, Power Electronics

Textbooks:

- 1. Iqbal Husain, 'Electric and Hybrid Vehicles: Design Fundamentals', CRC Press, 2003
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", Wiley, 2nd edition, 2012

References:

- 1. Sheldon Williamson, ' Energy Management Strategies for Electric and Plug-in Hybrid Electric Vehicles', Springer-Verlag, 2012
- 2. M. Ehsani, Y. Gao, S. Gay and A. Emadi , Modern Electric, Hybrid Electric, and Fuel Cell Vehicles, CRC Press, 2005.

Course Objectives :

- 1. To develop basic knowledge related to architecture of Electric Vehicles
- 2. To provide knowledge related to design aspects and dynamics of Electric vehicles
- 3. The course aims at enabling students to understand the motor specifications and charging standards for Electric vehicles.

Course Learning Outcomes: After the completion of the course the student will be able to Bloom's Cognitive CO level Descriptor 2 **CO1** | **Explain** the architecture and features of Electric Vehicles Understanding CO2 | Interpret the topologies and various design considerations for 2 Understanding Electric vehicles **CO3** | **Calculate** the vehicle dynamics for Electric propulsion systems 3 Applying

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2		3												
CO3		3												

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally

last three modules) covered after MSE.

Course Contents:	
Module 1: Introduction to Electric Vehicles	Hrs.
Background of Electric Vehicles, Electric Vehicle System, Components of Electric Vehicles,	
Advantages of Electric Vehicles, Efficiency, Pollution Comparison with conventional vehicles,	5
Fundamentals of Electric Vehicles	
Module 2: Types of Electric Vehicles and Architecture of EVs	Hrs.
Concept of Electric, Hybrid and Plug-in Electric Vehicles, Typical configuration of Hybrid	
Electric Vehicle, Topologies of HEVs: Series, Parallel and Series-Parallel Configuration,	-
Topologies of Plug-in Hybrid Electric Vehicles, Fuel Cell Electric Vehicles, Solar Powered	7
Electric Vehicles	
Module 3: Design Considerations for Electric Vehicles	Hrs.
Introduction to EV design fundamentals, Aerodynamic Consideration, Rolling resistance,	
Transmission efficiency, Consideration of vehicle mass, Basics of Electric vehicle chassis and	6
body design, general issues in Electric vehicle design	
Module 4: Vehicle Dynamics	Hrs.
Roadway fundamentals, Vehicle Kinetics, Dynamics of Vehicle Motion, Propulsion power:	
Force velocity characteristics, Vehicle gradability,	
Velocity and Acceleration: Velocity Profile, Distance traversed, tractive power, Energy	6
Required, Propulsion System Design for EV systems	
Module 5: Electric Machines in EV systems	Hrs.
Motor and Engine ratings, EV and HEV motor requirements, Three phase AC machines for	
Electric vehicles: Induction Machines, SRM machines, PMSM machines, Design aspects for EV	6
systems, Numericals	
Module 6: Electric Vehicle Chargers and Charging Standards	Hrs.
EV charging: requirements and Classification, Charging standards for Electric vehicles,	
Introduction to AC and DC chargers for EV systems, Working of Electric Vehicle Supply	6
Equipment (EVSE), Fast Chargers for EV systems	
Module wise Measurable Students Learning Outcomes :	
After completion of the course students will be able to:	
1. Describe the types and features of Electric Vehicles.	
2. Interpret the different topologies and configuration of Electric Vehicles.	
3. Calculate the vehicle dynamics for Electric propulsion systems.	
4. Identify and select appropriate machines for Electric vehicles.	
5. Summarize the power electronics converters used in Electric vehicles.	
6. Determine the performance of electric vehicle chargers and explain the charging standards.	

Professional Elective (Lab) Courses

Open Elective -II Courses

Title o	of the (Course	: Oper	n Elect	ive II:	Renev	vable l	Energy	7		Ι	L I	P P	Cr
Cours	e Code	e: 40E	350									3 0	0	3
Pre-R	equisit	te Cou	rses: B	asic M	echani	ical En	gineeri	ng & I	Basic E	lectrical	Engine	ering.		
Textb	ooks:													
										d Univer				
													c Sons, 2	
3.					Solar	Photov	oltaics	: fund	amenta	als, tech	nologie	s and a	pplication	ons. PHI
D.f		ing Pv	t. Ltd.,	2015.										
Refere		1	(N T.			1 D.		с т		° DI II	D-11:		10	Com I
1.										", PHI Company		tion 20	12.	Gary-L.
2												lection	and Stor	rage (3 rd
2.		n), Tat						- 11110	ipics (JI IIICII		lection	and Sto	lage (J
Cours		ectives:		1400 11	in r uo	11041101								
	•			ess abo	out the	e impo	rtance	of rer	newabl	e resou	rces and	their	classifica	ation for
		nable f				I.								
2.	To im	part th	e know	vledge	of sola	r powe	er gene	ration a	and wi	nd powe	r genera	ation.		
3.	To in	troduce	e other	renewa	able res	sources	s and th	neir tec	hnolog	gies.				
		ıdy ene			ystems	s in ren	ewable	gener	ation.					
Cours	e Lear	ning (Outcon	ies:										
CO	Afte	r the c	omple	tion of	the co	ourse t	he stu	lent w	ill be a	ble to		Bloom	's Cogni	tive
											10	evel	Descri	ptor
CO1	Desc	ribe 1	need a	and ty	pes of	f renev	wable	energy	reso	urces w	vith	2	Understa	anding
	susta	ainabili	ty.											
CO2	Inte	rpret	workin	g of s	solar a	and wi	ind po	wer ge	enerati	on and	its	3	Apply	ving
		zation.		-			-	-						-
CO3	Dist	inguisl	1 vari	ious 1	enewa	ble e	nergy	sourc	es lik	e biog	as.	4	Analy	zing
		hermal					0,				, ,		5	0
CO4					ion of	variou	s energ	y stora	ge tech	nologie	s.	3	Apply	ving
CO-P	0 Mar	ping :												
	PO1			PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1						3							
CO2	3													
CO3			3											
CO4	3												1	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared MSE: Assessment is based on 50% of course content ESE: Assessment is based on 100% course content last three modules) covered after MSE.	tent (Normally first three modules)	mally
Course Contents:	a	TT
Module 1: Introduction to Renewable Energy S		Hrs
Energy sources: classification of energy sources energy trends, and key factors affecting renewable renewable energy sources, policies of the gove advantages and disadvantages of renewable energy	le energy supply, global and Indian scenario of ernment, sustainable development, challenges,	4
Module 2: Solar Energy		Hrs
solar earth geometry, solar radiations and me absorption of light, solar thermal power genera basics, solar concentrator and tracking system, fla and two axes axis tracking collectors, selective co	ation, heat transfer, solar thermal conversion: at plate and concentrating collectors, single axis	6
Module 3: PV System Design		Hrs
PV power generation, basic principle of pow		
different electrical parameters on I-V & P-V cur configuration of PV power generation system - design methodology, stand-alone PV system, grid	off-grid system & grid-connected PV system,	8
different electrical parameters on I-V & P-V cur configuration of PV power generation system -	ves, manufacturing of Si, solar cell production, off-grid system & grid-connected PV system,	8 Hrs
different electrical parameters on I-V & P-V cur configuration of PV power generation system - design methodology, stand-alone PV system, grid	ves, manufacturing of Si, solar cell production, off-grid system & grid-connected PV system, I-connected PV systems. er & torque characteristics, types of rotors, I turbine, local effects, wind shear, turbulence & I speed statistics, wind power calculations and nd turbines, airfoil, lift & drag characteristics,	0
different electrical parameters on I-V & P-V cur configuration of PV power generation system - design methodology, stand-alone PV system, grid Module 4: Wind Energy Power available in wind, wind turbine power characteristics of wind rotor, components of wind acceleration effects, measurement of wind, wind Betz limit, capacity factor, aerodynamics of win power coefficient & tip speed ratio characteristic	ves, manufacturing of Si, solar cell production, off-grid system & grid-connected PV system, l-connected PV systems. er & torque characteristics, types of rotors, l turbine, local effects, wind shear, turbulence & d speed statistics, wind power calculations and nd turbines, airfoil, lift & drag characteristics, es, electrical generator machines in wind energy	Hrs
different electrical parameters on I-V & P-V cur configuration of PV power generation system - design methodology, stand-alone PV system, grid Module 4: Wind Energy Power available in wind, wind turbine power characteristics of wind rotor, components of wind acceleration effects, measurement of wind, wind Betz limit, capacity factor, aerodynamics of win power coefficient & tip speed ratio characteristic systems, wind energy conversion system. Module 5: Biomass Energy and other renewab Overview of biomass as energy source, physicoc as fuel, biochemical conversion of biomass for en- bio-diesel, geothermal energy generation, magne	ves, manufacturing of Si, solar cell production, off-grid system & grid-connected PV system, l-connected PV systems. er & torque characteristics, types of rotors, l turbine, local effects, wind shear, turbulence & d speed statistics, wind power calculations and nd turbines, airfoil, lift & drag characteristics, es, electrical generator machines in wind energy ele energy systems chemical and thermal characteristics of biomass nergy production, gasification, bio-refinery and eto hydro dynamic power generation- working,	Hrs 7
different electrical parameters on I-V & P-V cur configuration of PV power generation system - design methodology, stand-alone PV system, grid Module 4: Wind Energy Power available in wind, wind turbine power characteristics of wind rotor, components of wind acceleration effects, measurement of wind, wind Betz limit, capacity factor, aerodynamics of win power coefficient & tip speed ratio characteristic systems, wind energy conversion system. Module 5: Biomass Energy and other renewab Overview of biomass as energy source, physicoc as fuel, biochemical conversion of biomass for en	ves, manufacturing of Si, solar cell production, off-grid system & grid-connected PV system, l-connected PV systems. er & torque characteristics, types of rotors, l turbine, local effects, wind shear, turbulence & d speed statistics, wind power calculations and nd turbines, airfoil, lift & drag characteristics, es, electrical generator machines in wind energy ele energy systems chemical and thermal characteristics of biomass nergy production, gasification, bio-refinery and eto hydro dynamic power generation- working,	Hrs 7 Hrs

Module wise Measurable Students Learning Outcomes :

After completion of the course students will be able to:

- 1. Explain the need and types of renewable energy sources.
- 2. Explain solar radiations and solar thermal power generation
- 3. Explain solar cell and the designing of on-grid & stand-alone PV systems
- 4. Explain the wind energy and its conversion systems
- 5. Explain other renewable energy sources like biomass, geothermal and MHD
- 6. Compare the operation of different energy storage technologies.

Mandatory Life-skill Courses

Value Added Professional Courses

Value Added Life-Skill Courses

Minor Specialization Courses

Walchand College of Engineering, Sangli (An Autonomous Institute) Minor in Electrical Engineering Structure

Semester Course Name		Credits	Faculty and its Address	Available on	
Semest	er- VI	Industrial Drives - Power Electronics	3	Prof. K. Gopakumar IISc, Bangalore.	NPTEL

Semester	VI
Credits	3

Honors Specialization Courses

	B. Tech	Walchand Co (An A Teaching and Evalua in Electrical Engineering	Autono ation S with S	mous cheme	Institu effect izatio	te) tive from 2	2020-21	hnolog	y	
		Course		Teachi	ng Sch	neme	Evalua	tion Sc	heme	
Semester	Code	Name	L	Т	Р	Credits	Component	Max		s lin for assing
			4				ISE 1	10		0
		Core 2: Introduction to Electrical Vehicles				4	MSE	30		40
6 th							ISE 2	10		
		Licultar venicles					ESE	50	20	
							ESE	50	20	

Sitle of the Course: Introduction to Electric Vehicle	L	Т	Р	Cı						
	3	0	0	3						
Pre-Requisite Courses: Electrical Machines, Power Electronics										
Textbooks:										
 Iqbal Husain , 'Electric and Hybrid Vehicles: Design Fundamentals ', C. James Larminie, John Lowry, "Electric Vehicle Technology Explained" 				012						
References:										
 Sheldon Williamson, 'Energy Management Strategies for Electric a Vehicles', Springer-Verlag, 2012 M. Ehsani, Y. Gao, S. Gay and A. Emadi , Modern Electric, Hybrid Elec CRC Press, 2005. 	-		-							
Course Objectives : 1. To develop basic knowledge related to architecture of Electric Vehicles										
2. To provide knowledge related to design aspects and dynamics of Electric v	vehicles									
3. The course aims at enabling students to understand the motor specification for Electric vehicles.	is and ch	argin	g standa	rds						
Course Learning Outcomes:	OAfter the completion of the course the student will be able toBloc									
	Blo	om's	Cognitiv	/e						
	Bloe		Descripto							
		Ι	•	or						
CO After the completion of the course the student will be able to	level 2	I Un	Descripto	or ling						

CO-PO Mapping :

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3													
CO2		3												
CO3		3												

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:						
Module 1: Introduction to Electric Vehicles	Hrs.					
Background of Electric Vehicles, Electric Vehicle System, Components of Electric Vehicles,						
Advantages of Electric Vehicles, Efficiency, Pollution Comparison with conventional vehicles,						
Fundamentals of Electric Vehicles						
Module 2: Types of Electric Vehicles and Architecture of EVs	Hrs.					
Concept of Electric, Hybrid and Plug-in Electric Vehicles, Typical configuration of Hybrid						
Electric Vehicle, Topologies of HEVs: Series, Parallel and Series-Parallel Configuration,	-					
Topologies of Plug-in Hybrid Electric Vehicles, Fuel Cell Electric Vehicles, Solar Powered	7					
Electric Vehicles						
Module 3: Design Considerations for Electric Vehicles	Hrs.					
Introduction to EV design fundamentals, Aerodynamic Consideration, Rolling resistance,						
Transmission efficiency, Consideration of vehicle mass, Basics of Electric vehicle chassis and	6					
body design, general issues in Electric vehicle design						
Module 4: Vehicle Dynamics	Hrs.					
Roadway fundamentals, Vehicle Kinetics, Dynamics of Vehicle Motion, Propulsion power:						
Force velocity characteristics, Vehicle gradability,						
Velocity and Acceleration: Velocity Profile, Distance traversed, tractive power, Energy	6					
Required, Propulsion System Design for EV systems						
Module 5: Electric Machines in EV systems	Hrs.					
Motor and Engine ratings, EV and HEV motor requirements, Three phase AC machines for						
Electric vehicles: Induction Machines, SRM machines, PMSM machines, Design aspects for EV	6					
systems, Numericals						
Module 6: Electric Vehicle Chargers and Charging Standards	Hrs.					
EV charging: requirements and Classification, Charging standards for Electric vehicles,						
Introduction to AC and DC chargers for EV systems, Working of Electric Vehicle Supply	6					
Equipment (EVSE), Fast Chargers for EV systems						
Module wise Measurable Students Learning Outcomes :	<u></u>					
After completion of the course students will be able to:						
1. Describe the types and features of Electric Vehicles.						
2. Interpret the different topologies and configuration of Electric Vehicles.						
3. Calculate the vehicle dynamics for Electric propulsion systems.						
4. Identify and select appropriate machines for Electric vehicles.						
5. Summarize the power electronics converters used in Electric vehicles.						
6. Determine the performance of electric vehicle chargers and explain the charging standards.						

This is Last Page