Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Third Year B. Tech. (Electronics Engineering) Sem – V to VI

AY 2020-21

Professional Core (Theory)

	f the Course: 4EN 301 Digital Signal Processing				
		L	Т	Р	Cr
		3	0	0	3
Pre-R	equisite Courses: Signals and Systems				
Fextbo	ooks:				
	1. "Digital Signal Processing: A Computer Based Approach", McGraw-Hill Publication.	Sanjit K. N	Mitra, 4	th Editi	on, Ta
	2. "Discrete Time Signal Processing", Oppenheim & Schafer,2 nd	¹ Edition, Pea	arson e	ducatior	1.
Refere	ences:				
	1. "Digital Signal Processing", J. G. Proakis, Prentice Hall India				
Cours	e Objectives :				
1.7	Γο illustrate the fundamental concepts of Signal Processing.				
2.7	Fo explain the different techniques for design of filters and multir				
	to explain the unrefer teeningues for design of mers and mutur	ate systems.			
3.7		•			
	Γο enable the students for the design and development of DSP sys	•			
Cours	Γο enable the students for the design and development of DSP system e Learning Outcomes:	stems.			
	To enable the students for the design and development of DSP system Learning Outcomes: After the completion of the course the student should be able	•	Cognitiv	ve	
Cours	Γο enable the students for the design and development of DSP system e Learning Outcomes:	stems.		ve criptor	
Cours	To enable the students for the design and development of DSP system Learning Outcomes: After the completion of the course the student should be able	stems. Bloom's C		criptor	
Cours CO	To enable the students for the design and development of DSP system Learning Outcomes: After the completion of the course the student should be able to	Bloom's C	Des	criptor ly	
Cours CO CO1	To enable the students for the design and development of DSP systemeters in the course the student should be able to Solve Discrete Fourier Transform in efficient manner	Bloom's C level	Dese App	criptor ly ssify	

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3													2
CO2		3												2
CO3				2										2
CO4	2													2

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1 :Discrete Fourier Transform and its Computation	Hrs.
Introduction, The Discrete Fourier Series and its Properties, The Fourier Transform of	
Periodic signals, Sampling of the Fourier Transform, The Discrete Fourier Transform	
and its Properties, Efficient Computation of the Discrete Fourier Transform, Decimation-	10 Hrs
in-Time FFT Algorithms, Decimation-in-Frequency FFT Algorithms, Implementation of	
FFT Algorithms for IIR Systems.	

Module 2 :Structures for Discrete-Time Systems	Hrs.
Introduction, Block Diagram Representation of Difference Equations, Signal Flow Graph	
Representation of Difference Equations, Basic Structures of FIR Systems, Basic Network	6 Hrs
structures	
Module 3 :Filter Design Techniques-FIR Filters	Hrs.
Introduction, Design of FIR Filter by Windowing, Properties of commonly used	
windows, Linear Phase property of FIR Filter, Kaiser Window Filter design, Discrete	6 Hrs
Time Differentiator	
Module 4: Filter Design Techniques-IIR Filters	Hrs.
Introduction, Design of Discrete-time IIR Filters from Continuous-time Filters, Filter	
Design by Impulse Invariance, Filter Design by Bilinear Transformation, Frequency	6Hrs
Transformations of Low pass IIR Filters	
Module 5:Multirate Digital Signal Processing	Hrs.
Introduction, Decimation and interpolation, Sampling rate conversion, Multistage	
Implementation of Sampling rate conversion, Sampling rate conversion for Bandpass	6 Hrs
signals, Sampling rate conversion by arbitrary factor, Applications of Multirate DSP	
Module 6: Introduction to Wavelet Transform	Hrs.

Module wise Measurable Students Learning Outcomes :

Module 1: Students will become familiar with efficient computation of Discrete Fourier Transform.

Module 2: Students will get introduced to basic structures for Discrete-Time systems

Module 3: Students will be able to design FIR filter for given specifications

Module 4: Students will be able to design IIR filter for given specifications

Module 5: Students will know fundamentals of Multirate Digital Signal Processing

Module 6: Students will be able to explain fundamentals of Wavelet transform

	Embedded System Design	3	0	0	
-			Ū	0	3
Textboo	uisite Courses: : Microcontroller, Peripherals and Interfacing 4EN224				
	ks:				
1. NXP, L	PC 2148 data sheet, NXP inc., NA, 2011				
2. NXP, L	PC 2148 user manual, NXP inc., NA, 2012				
Referenc	ces:				
1. ARM i	nc, ARM Reference Manual, ARM, inc., NA, 2011				
2. Andre	w Sloss, ARM System Developer's Guide, Elsevier India, 2005				
3. Comp	uter Organization and Design, ARM Edition, Elsevier, 2010				
Course C	Dbjectives :				
1. To illu	istrate the features of ARM7 architecture.				
2. To pro	ovide the knowledge of different hardware peripherals and programing of diff	erent p	periphe	rals of	
ARM7	' based controller, LPC2148.				
3. To en	npower the students for the design and development of embedded system.				
Course L	earning Outcomes:				
60			Bloom'	s Cognitiv	/e
CO	After the completion of the course the student should be able to	lev	el	Descrip	tor
CO1	illustrate architecture and operation of internal peripherals of ARM7 LPC2148 microcontroller.	11		Applyii	∩g
CO2	write assembly and C program to configure and use internal peripherals of LPC2148 microcontroller.		,	Applyiı	ng
CO3	analyze program and find operating parameters of peripheral in LPC2148 microcontroller.	IV	,	Analyzi	ng
CO4	design and develop small embedded system using embedded C programming and LPC2148 microcontroller.	VI	,	Creatir	ng

CO-PO Mapping :

РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	3													
CO2	3													
CO3		3			3									
CO4			3											1

3 - H, 2 - M, 1 – L

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared test,	/quiz/seminar/orals etc.	
MSE: Assessment is based on 50% of course content (I	Normally first three modules)	
ESE: Assessment is based on 100% course content wit	h 70-80% weightage for course content (normally la	ast
three modules) covered after MSE.		
Course Contents:]
Module 1 : ARM7 Architecture		Hrs.
ARM7 Architecture, Memory organization, Programmers	model, Pipelining, Memory, Register Structure,	

Current Program Status Register, Exception Modes, System buses and peripherals, Memory Accelerator **7** module, Compare features / architecture of ARM7 with 8051.

Hrs.

Module 2 : Embedded C language programming

Introduction to ARM7 programming example, Software documentation method, Development Tools,	
ARM C Programming, Startup code, LPC2148 pin layout, PLL configuration, Pin Connect block, I/O	8
programming, boot-loader, In Application Programming.	
Module 3 : Interrupt Structure of ARM7 LPC2148	Hrs.
Interrupt system in ARM7, VIC, FIQ, IRQ, Non-vectored interrupt, Software interrupt, Interrupt latency,	
Nested interrupts, External interrupts, Interrupt configuration and Programming examples.	7
Module 4 : Peripherals of ARM7 LPC2148	Hrs.
Dealy discreme of Timerro uple of presenter. Conturn and Match facility of timer and confirmation of it	
Block diagram of Timers, role of prescaler, Capture and Match facility of timer and confirmation of it	•
using registers, Pulse Width Modulator, RTC operation and Programming, Watch dog timer, Analog to	8
digital converter, Digital to analog converter and their programming.	
Module 5 : Communication Protocols	Hrs.
On chip serial ports, Serial port programming, Setting baud rate, Using UART buffer, printf for serial data	
transfer, interrupt based serial port handling, I2C protocol, Using I2C for interfacing external EEPROM,	6
SPI protocol and programming.	
Madula C. Annihestica Development	11
Module 6 : Application Development	Hrs.
	Hrs.
Finite state machine in designing Embedded Systems, Design considerations for embedded system	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications.	Hrs.
Finite state machine in designing Embedded Systems, Design considerations for embedded system	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications.	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes :	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes :	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to Module 1: illustrate operating modes, exception and addressing modes of ARM7.	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to Module 1: illustrate operating modes, exception and addressing modes of ARM7. Module 2: write assembly and C programs for LPC2148 microcontroller.	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to Module 1: illustrate operating modes, exception and addressing modes of ARM7. Module 2: write assembly and C programs for LPC2148 microcontroller. Module 3: write C program for LPC2148 microcontroller to handle interrupts.	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to Module 1: illustrate operating modes, exception and addressing modes of ARM7. Module 2: write assembly and C programs for LPC2148 microcontroller. Module 3: write C program for LPC2148 microcontroller to handle interrupts. Module 4: write C program for LPC2148 microcontroller to configure peripherals. Module 5: use communication protocols.	
Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM7 kit, Case studies of some ARM based applications. Introduction to ARM cortex core Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to Module 1: illustrate operating modes, exception and addressing modes of ARM7. Module 2: write assembly and C programs for LPC2148 microcontroller. Module 3: write C program for LPC2148 microcontroller to handle interrupts. Module 4: write C program for LPC2148 microcontroller to configure peripherals.	

4HS 307 Fundamentals of Management and Economics for Engineers

Professional Core (Lab)

	Course: 4EN	N35 1	L Dig	gital	Sign	al P	roce	ssir	ng La	ıb				L	Т	Р	Cr	
														0	0	2	1	
re-Requisi	te Courses:	Sigr	nals	and	Syste	ems								•				
Tex	2. "[Publ	icati rete	on Tim			_		-					a McGraw [.] 2 nd Editior				
Ref	erences: 1.	"Dig	ital	Sign	al Pro	oces	sing	", J	. G. F	roal	kis, Pr	entice	Hall In	dia.				
ourse Obje	activos :																	
-	The object	tive	of t	he c	ours	se is	to v	vor	·k ου	t foi	r the a	convol	ution	correlatio	n, DFT.	IDFT.	. Block	
	convolutio												,				,	
	signals usi	,	U				0,		8				0.11					
	ning Outco				0													
СО	After the	com	plet	ion	of th	e co	urse	th	e stu	den	t shou	uld be a	able to	Bloom	n's Cogniti	ve		
														Level	Descr			
CO1	Illustrate t	the k	basio		eratio	ons	of Si	gna	l pro	cess	ing				Solve	•		
CO2	Analyze th								•		-			IV	Expla			
CO3	Create IIR,												and	VI		Design		
_	high pass				-		r	_		_	.,	1.5			0			
CO4	Demonstra			tirate	e DSI	P an	d wa	ivel	et tra	ansf	orm			11	Descr	ibe		
L	1													I	1			
D-PO Map	ping :																	
				•	_	-		7	8	•		11	12	PSO1	PSO2	7		
		1	2	3	4	5	6		0	9	10	**	12					
O Wap	C01	1 H	2	3	4	5	6		•	9	10		12		2	_		
	C01 C02		2 H	3	4	5	6	/	•	9	10		12			-		
5-r 0 (Map				3	4 M	5	6		0 	9	10				2			
5-r 0 101ap	CO2		Н	3		5	6			9	10				2 2	-		
	CO2 CO3 CO4	H	Н	3		5	6			9	10				2 2 2	-		
ssessment	CO2 CO3 CO4	H	Η		M	5	6		0 	9	10				2 2 2	-		
ssessment eacher Ass	CO2 CO3 CO4 ts : sessment: L	H M ab A	H	ssme	M ent:										2 2 2	-		
sessment acher Ass here are fo	CO2 CO3 CO4	Ab A	H sse	ssme ab a	M ent: ssess	sme									2 2 2	-		
sessment acher Ass here are fo	CO2 CO3 CO4 ts : sessment: L our compon E is a separa	ab A ents	H sse	ssme ab a	M ent: ssess	sme	nt, L	A1,		LA3	and I			and Marks	2 2 2 2		Marks	

t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Course Contents:

- 1. Generation of different signals using MATLAB
- 2. Calculate FFT AND plot Magnitude and Phase response for the same
- 3. Find circular convolution of given sequences
- 4. Implementation of Moving average filter
- 5. Implementation of Median filter
- 6. Overlap and save method illustration
- 7. Design of simple filter
- 8. Design of FIR filter
- 9. Observe the effect of length of filter on the magnitude response of a filter
- 10. Design of FIR filter using different window functions
- 11. Design of FIR filter using Kaiser window
- 12. Illustration of up sampling of signal
- 13. Illustration of down sampling of signal
- 14. Use of Wavelet transform for data compression
- 15. Use of Wavelet transform for de noising

Module wise Measurable Students Learning Outcomes :

- 1. Experiments 1 to 3 :Learning Outcome is demonstration of DSP basics
- 2. Experiments 4 to 7 : Learning Outcome is illustration of time domain filters in DSP
- 3. Experiments 7 to 11 :Learning Outcome is demonstration frequency domain filtering
- 4. Experiments 12 to 15: Learning Outcome is demonstration of multi rate DSP and Wavelet transform

Title of	f the Course:														L	Т	Р	Cr
4EN35	2 Embedded Syste	m Desig	gn La	ıb											0	0	2	1
Pre-Re	quisite Courses: M	licrocon	troll	er, F	Perip	hera	als ar	nd In	terf	acin	ig th	eory a	nd lab					
Textbo	oks:																	
1. NXP	, LPC 2148 data she	eet <i>,</i> NXP	inc.	., NA	, 20	11												
2. NXP	, LPC 2148 user ma	nual, N	XP ir	nc., N	NA, 2	2012												
3. MD2	148 kit manual																	
Refere	nces:																	
1. ARM	l inc, ARM Referen	ce Manı	ual, I	ARIV	I, inc	c., NA	۹, 20)11										
2. Andı	rew Sloss, ARM Sys	tem Dev	velo	per'	s Gu	ide,	Elsev	vier	Indi	a, 20	005							
3. Intei	rnet resources rela	ted to tl	his to	opic	for	mini	-proj	ject										
Course	Objectives :																	
1. Writ	e, simulate and de	bug asse	emb	ly ar	nd C	prog	gram	is foi	r LP(2214	18 m	icroco	ontrolle	er.				
2. Writ	e, simulate, downl	oad and	l tes	t C p	rogr	rams	for	LPC2	2148	8 mio	croc	ontrol	ler in Ll	PC214	6 kit			
3. Deve	elop C program for	implem	enti	ng g	iven	n or r	equi	red	syst	em o	oper	ation						
Course	Learning Outcom	es:																
<u> </u>	After the comple	tion of	****									lata			Bloor	n's Co	gnitive	
СО	After the comple		the	coui	rse t	ne s	luae	int S	nou		e ab	ie to			evel	D	escriptor	
CO1	apply programm controller, LPC21	-	s to i	inte	grate	e har	dwa	ire p	erip	hera	als o	f ARN	17 base	d	111		Applyi	ng
CO2	test and debug p	orogram	s for	· LPC	214	8 mi	croc	ontr	olle	r					IV		Analyz	ing
соз	develop and den programming an LPC2148.							•			-		,		VI		Creati	ng
CO-PO	Mapping :															1		
		РО	1	2	3	4	5	6	7	8	9	10	11	12				
		CO1	3				1											
		CO2		3														

	CO3	3	3	
		3 - H, 2 - M, 1 -		
		5 - 11, 2 - 101, 1 -		
sessments :				
b Assessment	:			
ere are four o	components of lab assessm	ient. LA1. LA2. LA3 and	Lab ESE.	
IP: Lab ESE IS a	a separate head of passing			
Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
1.0.1	Lab activities,		During Week 1 to Week 4	25
LA1	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25
LA2	Lab activities,		During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25
	Lab activities,		During Week 10 to Week 14	
1 4 2	Lab activities,	Lab Course Faculture		25
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25
LA3 Lab ESE	•	Lab Course Faculty	, i i i i i i i i i i i i i i i i i i i	25

Submission at the end of Week 18

Course Contents:

Following experiments will be conducted and the reports (journal) be submitted as documentation of

the experiments.

1. Introduction of the development tools and kit

2. Simple assembly language program and study of startup.s file

related documentation

3. GPIO Programming

4. PLL Programming

5. Interrupt programming (IRQ and NV-IRQ)

- 6. FIQ programming
- 7. Programming Timer as Timer
- 8. Programming Timer as Counter
- 9. Programming Timer to perform capture operation and match facility of timer
- 10. Programming Timer to perform match operation
- 11. Programming PWM
- 12. Programming ADC
- 13. Programming DAC
- 14. Programming UART
- 15. Programming RTC
- 16. Study of power saving modes
- 17. Mini-Project Demo

Measurable Students Learning Outcomes :

After the completion of the course the student should be able to:

- 1. Use the embedded software development tools.
- 2. Write C program for using GPIOs in LPC2148
- 3. Write C program to use the peripherals in LPC2148
- 4. Design a small embedded system such as temperature indicator

itle of	f the Course:					
EN35	3 Mini Project	L	т	Р	Cr	
		0	0	2	1	
Pre-Re	quisite Courses:					
Textbo	ooks:					
	Electronics Projects For Dummies, by by Earl Boysen and Nancy Muir Publishing, Inc., 2006 Make: Electronics, by Charles Platt, Published by Maker Media, 2015	r, Publ	lished	by Wile	у	
Refere	nces:					
	1. A. E. Ward, J.A.S. Angus, "Electronic Product Design", Stanley Thrones (P	ublishe	rs) Lim	ited <i>,</i> 199	6.	
	2. Paul Horowitz, Winfield Hill, "The Art of Electronics", Cambridge Univers	itv Pres	s. 1989)		
Course	e Objectives :					
1. 2. 3.	-	npeteno ain proj	cy part ject.	of techr	nical	
1. 2. 3. 4.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u	npeteno ain proj	cy part ject.	of techr	nical	
1. 2. 3. 4.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj	cy part ject. f infra:	of techr	nical	
1. 2. 3. 4.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj Isage o	cy part ject. f infra:	of techn structure		
1. 2. 3. 4.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj Isage o	cy part ject. f infra:	of techr structure	tor	
1. 2. 3. 4. Course	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u- facilities.	ain projusage o	cy part ject. f infra: oom's (vel	of techn structure Cognitive Descrip	tor bering	

CO-PO Mapping : PO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 3 2 2 **CO2** 3 2 CO3 3 2

1- Low , 2 - Medium, 3 - High

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Mini Project Description

A project group shall consist of *not more than 3 students* per group. The mini project will involve the design, construction, and debugging of an electronic system approved by the department. Each student should conceive, design develop and realize an electronic product. The electronic part of the product should be an application of the analog & digital systems covered up to the 4th semester. The schematic and PCB design should be done using any of the standard schematic capture & PCB design software. The realization of the product should include design and fabrication of PCB.

Each student must keep a project notebook/logbook. The project notebooks will be checked periodically throughout the semester, as part of in-semester-evaluation. The student should submit a soft bound report at the end of the semester. The final product as a result of mini project should be demonstrated at the time of examination.

Broad Areas of Mini Project

The Mini Projects may be from the following areas/domains, but not limited to:

- Embedded Systems
- Electronic Control Systems
- Electronic Communication Systems
- · Biomedical Electronics
- Power Electronics
- Robotics and Mechatronic Systems
- Electric Vehicles
- Artificial Intelligence and Machine Learning
- Applications of Electronics to Agriculture

ASSESSMENT

A demonstration and oral examination on the mini project **shall be conducted at the** end of the semester. The examination will consist of demonstration and viva voce on the mini project.

Professional Electives (Theory)

Professional Elective-1

Title of	the Course: 4EN311 Biomedical Engineering	L		Т	Р	Cr
		2		1	0	3
Pre-Re	quisite Courses: Electronics Measurement and Instrumentation					
extbo	oks: (NOT MORE THAN 3)					
1.	"Medical Instrumentation", John. G. Webster, John Wiley, 2009					
2.	"Principles of Applied Biomedical Instrumentation", Goddes& Baker,	John Wile	y, 200	08		
3.	"Biomedical Instrumentation & Measurement", Carr & Brown, Pearso	on, 2004				
Refere	nces: (NOT MORE THAN 3)					
	1. Hand book of Medical instruments by R.S. Khandpur – TMH, New	Delhi, 198	7.			
	2. Medical Electronics and Instrumentation by Sanjay Guha – Univer			n, 200.		
	3. Introduction to Biomedical electronics by Edwand J. Bukstein –sa	ne and Co	. Inc,	1973		
Course	Objectives :					
1.	To explain the basics body cell structure and different types of transc	lucers				
2.	To explain the different types of patient monitoring system					
3.	Understand the design concept of different Medical instruments					
4.	To demonstrate different medical instruments					
Course	Learning Outcomes:					
со	After the completion of the course the student should be able to	Bloom's	s Cogi	nitive]
		level	De	escripto	r	-
CO1	Understand CNS-PNS and Cardio pulmonary system	11	Un	nderstar	nding	-
CO2	Apply proper sensors for sensing biomedical signals to biomedical	111	Ар	plying		
	instrumentation setup					
CO3	Design ECG,EEG and EMG amplifier	VI	Cro	eating		
CO4	Explain block diagram of patient monitoring systems, X-ray		Un	nderstar	nding	
	machine, CT scan and Ultrasonography machine.					

CO-PO Mapping :

РО	1	2	3	4	5	6	7	8	9	10	11	PSO1	PSO2
CO1	3											2	
CO2					3	2						2	
CO3			3									2	
CO4									3			2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module1: Fundamentals of Medical Instrumentation							
Physiological Systems of the body, Sources of Biomedical signals, Basic Medical Instrumentation system, Micro-Electro-Mechanical System (Mems), Wireless Connectivity in Medical Instruments, General Constraints in design of Medical Instrumentation Systems	8						
Module2: The Origin of Bio potentials, Bio potential Electrodes &							
Biosensors	5						
Electrical activity of Excitable Cells, Functional Organization of the Peripheral Nervous System, Electrocardiogram (ECG), Electromogram (EMG), Electroencephalogram (EEG),							

Electroretinogram(ERG) and their recording system, Biomedical signal Analysis and Processi Techniques.	ing
Module3: Patient Monitoring Systems	8
System Concepts, Cardiac Monitor, Bedside patient Monitoring Systems, Central Monito Measurement of Heart rate, Measurement of Temperature, Measurement of respiration Ra Biomedical Telemetry Systems	
Module4: Modern Imaging Systems	
X-ray machines And Digital Radiography, X-ray Computed Tomography, Nuclear Media Imaging Systems, Magnetic Resonance Imaging Systems, Ultrasonic Imaging Systems a Thermal Imaging Systems.	
Module5: Assisting and Therapeutic Equipment's	7
Cardiac Pacemakers, Defibrillators, Diathermy, Hemodialysis Machines, Ventilators	
Module6: Laser Application in Biomedical Field	3
The Laser, Types of Lasers, Laser Application, Laser Safety	
Module wise Measurable Students Learning Outcomes :	
Module 1 Explain CNS-PNS system and various types of transducers	
Module 2 Describe different Bio signals and their recording systems	
Module 3 Explain bio signal and recording system	
Module 4 Explain Patient Monitoring system	
Module 5 Demonstrate the X-Ray machine	
Module 6 Explain therapeutic equipments	

	f the Course: 4EN312 Microelectronics	L	Т	P	
		2	1	0	3
re-Re	quisite Courses:				
extbo	ooks:				
1.	B.G. Streetman, S. K. Banerjee, "Solid State Electronic Devices ", 7th editi Service Pvt. Ltd., 2017.	on, Pe	earson	India Edu	ucatio
efere	nces:				
	S. M. Sze, "Physics of Semiconductor Devices", 2 nd Edition, PHI, 2005. Donald. A. Neamen, "Semiconductor Physics and Devices: Basic Principles", 3 ^r Education, 2003.	^d Editic	on, McC	Graw Hill	Highe
ourse	Objectives :				
	studies of electronic circuits and systems.				
3.	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semicor. To <i>develop</i> capability in students to learn on their own about the new reservering in the market in future and lay the foundation for of their a construction. To <i>prepare</i> the students for GATE in order to motivate them for higher studies.	onducto archec ant ca	or device	ces. es as the	y kee
3. 4.	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semice. To <i>develop</i> capability in students to learn on their own about the new rese emerging in the market in future and lay the foundation for of their a const education.	onducto archec ant ca	or device	ces. es as the	y kee
3. 4.	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semicor. To <i>develop</i> capability in students to learn on their own about the new reserver emerging in the market in future and lay the foundation for of their a construction. To <i>prepare</i> the students for GATE in order to motivate them for higher studies.	archec archec ant ca	or device	ces. es as the odating a	y kee
3. 4.	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semicor. To <i>develop</i> capability in students to learn on their own about the new reservering in the market in future and lay the foundation for of their a construction. To <i>prepare</i> the students for GATE in order to motivate them for higher studies to be the students and the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate the form for higher studies to be the students for GATE in order to motivate th	archec archec ant ca	or device d device reer up om's Co	ces. es as the odating a	y kee nd se
3. 4. ourse	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semicor. To <i>develop</i> capability in students to learn on their own about the new reservering in the market in future and lay the foundation for of their a construction. To <i>prepare</i> the students for GATE in order to motivate them for higher studies to be the students and the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate them for higher studies to be the students for GATE in order to motivate the form for higher studies to be the students for GATE in order to motivate th	Bloc	or device d device reer up om's Co	ces. es as the odating a gnitive	y kee nd se
3. 4. ourse CO	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semicor. To <i>develop</i> capability in students to learn on their own about the new reserve emerging in the market in future and lay the foundation for of their a construction. To <i>prepare</i> the students for GATE in order to motivate them for higher studies e Learning Outcomes: After the completion of the course the student should be able to Explain the formation of bandgaps in solids, formation of depletion-diffusion layer capacitance in p-n junction diodes and characteristics of illuminated p-	Bloc	or device d device reer up om's Co	ces. es as the odating a gnitive Descripto	y kee nd se r
3. 4.	To <i>explain</i> carrier transport phenomena in solids on the basis of energy transport equation which forms the basis of electrical characteristics of semico. To <i>develop</i> capability in students to learn on their own about the new rese emerging in the market in future and lay the foundation for of their a consteducation. To <i>prepare</i> the students for GATE in order to motivate them for higher studies. Elearning Outcomes: After the completion of the course the student should be able to Explain the formation of bandgaps in solids, formation of depletion-diffusion layer capacitance in p-n junction diodes and characteristics of illuminated p-n junction, incoherent (LEDs) and coherent light sources (Lasers) Apply continuity equation and Poisson's equation to derive time dependence of carrier concentration on electric fields and potentials by	Bloc leve	or device d device reer up om's Co	ces. es as the odating a gnitive Descripto Understa	y kee nd se r anding

CO5	Interp	Interpret C-V characteristics of MOS capacitor and I-V characteristics of															
	JFETs, MOSFETs, with relevance to their electrical parameters like pinch-off voltage, threshold voltage etc.										n-off	5	Evalu	uating			
	voltage, threshold voltage etc.																
CO-PO I	Mapping	g :															
		_		-			-				-	_				_	
	POs	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
	CO1	2													1	-	
	CO2	3															
	CO3	3															
	CO4		3												1		
	CO5				2										1		
													1 -L	ow , 2 -N	Aedium,	3 -High	
Assessn	nents :																
Teacher	r Assessi	ment:															
Two cor	mponen	ts of In	i Seme	ester E	valuat	ion (IS	E), On	e Mid	Seme	ster Ex	kamina	ation (MSE)	and one E	ind Seme	ster	
	ation (ES					-											
Assess	ment								Marks								
ISE 1									10								
MSE									30								
ISE 2									10								
ESE									50								
ISF 1 a	nd ISE 2	are ba	ased o	n assie	nmen	it/decl	ared t	est/au	liz/sen	ninar e	etc.						
	Assessme			-								nodule))				
									-								
	lssessme modules					irse co	ntent	with 7	0-80%	weig	htage	for co	urse c	ontent (n	ormally la	ist	
Course	Content	s:															
Modul	le 1: Ene	rgy Ba	inds a	nd Cha	arge C	arriers	s in Se	micon	ducto	rs						Hrs.	
	ng forces f carriers						-							ier concentration, . 3		3	

Module 2: Excess Carriers in Semiconductors	Hrs.
Diffusion of carriers, Diffusion current, Drift current, Mobility of carriers, Recombination, Continuity equation, Quasi Fermi levels, Gradients in Quasi Fermi levels, resistivity of materials.	4
Module 3: Junctions	Hrs.
Formation of p-n junctions, Equilibrium conditions, Steady state conditions, Transient and AC conditions, deviations from simple theory, Metal-Semiconductor Junctions.	4
Module 4: Field Effect Transistors	Hrs.
JFET (characteristics), MOS capacitor (threshold voltage, C-V characteristics), MOSFET: I-V characteristics, Equivalent circuits for the MOSFET.	6
Module 5: Bipolar Junction Transistors	Hrs.
Minority carrier distributions and terminal currents, Generalized Biasing: The Coupled-Diode Model, Charge control analysis; switching, drift in base region, base narrowing, avalanche breakdown, thermal effects, Kirk effect.	6
Module 6: Optoelectronic Devices	Hrs.
Photodiodes: I-V characteristics in an illuminated junction, Solar Cells, Photodetectors; LEDs, Semiconductor Lasers.	3

Module wise Measurable Students Learning Outcomes :

After the completion of the course the student should be able to:

- **1.** *Explain* how bandgaps are formed in solids and calculate carrier concentration and current using Fermi-Dirac statistics.
- 2. *Apply* continuity equation to derive time dependence of carrier concentration.
- **3.** *Apply* Poisson's equation to calculate electric fields and potentials by considering band diagram of p-n junction in equilibrium.
- **4.** *Explain* the formation of depletion layer capacitance and diffusion capacitance and current flow components in an ideal diode. *Interpret* C-V characteristics of MOS capacitor and I-V characteristics of JFETs, MOSFETs, with relevance to their electrical parameters like pinch-off voltage, threshold voltage etc.
- Analyze BJT band diagram and explain current gain, base transport factor, and emitter injection efficiency. Explain the operation of bipolar junction transistor in three regions (cut-off, linear and saturation) using Ebers Moll coupled diode model.
- 6. *Explain* the characteristics of an illuminated p-n junction, incoherent light sources (LEDs) and coherent light sources (Lasers) and relate those to their physical structures.

Tutorial: The problems based on the theoretical concepts explained/discussed in the theory class will be solved in the tutorial class. The Think-Pair-Share activity may be conducted while solving examples on p-n junction diode, BJT

and MOSFET. This will provide students further insight and better understanding about the working of solid state electronic (semiconductor) devices. The tutorial hour will be used to conduct short Quizzes, Seminar, and MCQs-type Tests.

Title of the Course : 4EN313 Linear Algebra and Statistics				
	L	т	Ρ	Cr
	2	1	0	3
Pre-Requisite Courses: Applied Mathematics I & II				
Textbooks:				

- 1. Introduction to Linear Algebra: 5th edition, Gilbert Strang, Wellesley-Cambridge Press, 2016
- 2. Introduction to Linear Algebra with Applications: Jim Defranza and Daniel Gagliardi McGraw Hill Education (India) Edition 2012
- 3. Introduction to Applied Linear Algebra: Stephen Boyd and Lieven Vandenberghe, Cambridge University Press, 2018

References:

- 1. Linear Algebra Theory and Applications: Ward Cheney and David Kincaid, Jones and Bartlett publishers, Indian Edition 2010
- Linear Algebra and its Applications: David C. Lay, Steven R. Lay and Judi J. McDonald, Pearson, 5 edition, 2015

Course Objectives :

Course Leonaine Outcomes

- To provide the students understanding of Linear transformations, Matrix algebra, Vector space, Inner product of vector space.
- To prepare students to solve systems of linear equations and counting problems,
- To illustrate applications of Linear Algebra in Electrical networks, Control systems and computer graphics.

со	After the completion of the course the student should be able to	Bloom's Cognitive			
		level	Descriptor		
CO1	Describe vector and matrix algebra rules, vector space, inner product space, Eigen values and Eigen vectors	II	Understanding		
CO2	Solve systems of linear equations, inner product space problems, problems of Eigen values and Eigen vectors		Applying		
CO3	Examine linear algebra techniques to electrical and electronics circuits and	111	Applying		

	data smo	othing	g, Line	ear Tr	ansfo	orma	tions	to C	Comp	uter G	raphic	S						
CO-PO I	Mapping :																	
	РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2			
	CO1		3												1			
	CO2	3	3												1			
	CO3	3													1			
2															1			
2- Assessm	Low , $2 - $	Med	ium,	3 - H	igh													
Teacher	Assessme	nt:																
Two cor	nponents o	of In S	emes	ter Ev	/aluat	tion (ISE),	One	Mid	Seme	ster Ex	aminat	ion (M	SE) and o	ne End Sem	ester		
Examina	ation (ESE)	havin	g 20%	5, 30%	6 and	50%	wei	ghts	respe	ctivel	y.							
Assess	ment								1	Marks								
ISE 1									:	10								
MSE									:	30								
	IVISE																	
ISE 2									-	10								
ESE									ļ	50								
ISE 1 a	nd ISE 2 are	e base	ed on	assig	nmer	nt/de	clare	d te	st/qu	iz/sen	ninar e	tc.						
MSE: A	Assessment	is bas	sed o	n 50%	6 of c	ourse	e con	tent	(Nor	mally	first th	ree mo	dules)					
	ssassmant	ic had		100	% cou		onto	nt v	/ith 7	, U 0 U0/	woigh	tago fo	rcour	so conton	t (normally	lact		
	modules) co					ii se (Junie			0-00/0	weign	lage IC		se conten	t (normany	last		
Course	Contents:																	
																T		
Modul	e 1 Syster	ms of	Linea	r Equ	atior	IS										Hrs.		
	s and Linea					•	•			-								
	Matrices, E			-						-			nverse	of a matr	ix,	7		
charact	terization o	of inve	rtible	matr	1x, pa	artitic	oned	matr	1x, m	atrix i	actoriz	ation				/		
Modul	e 2 Vecto	r Spac	ces													Hrs.		
Vector	spaces and	d subs	spaces	s, nul	l spac	ce, C	olum	in an	d rov	v spac	es, Du	al spac	e, trans	sformation	ns, linearly	7		
indepe	ndent sets,	bases	s and	dime	nsion	i, coo	ordin	ate s	syster	ns, ap	plicatio	ons to	Electric	cal circuit	ts and data			

Module 3 Inner product of Vector Spaces	Hrs.
Length and dot product in R ⁿ , Inner product Spaces	
Orthonormal Bases: Gram-Schmidt Process, Mathematical models and Least squares analysis, Applications of Inner product spaces	6
Module 4 Linear Transformations	Hrs.
The Idea of a Linear Transformation, The Matrix of a Linear Transformation, Diagonalization and the Pseudo-inverse	6
Module 5 Eigen values and Eigen vectors	Hrs.
Eigen values and eigen vectors, characteristic equations, linear transformations, digonilzations, Applications to differential equations, complex Eigen values, orthgonality	7
Module 6 Applications	Hrs.
Matrices in engineering, single value decomposition, Computer Graphics, Least squares approximation,	7
Nodule wise Measurable Students Learning Outcomes :	
fter the completion of the course the student should be able to:	
Nodule 1: Solve systems of linear equations	
Nodule 2: Describe vector spaces and solve problems	
Nodule 3: Solve inner product space problems,	
Nodule 4: Examine Linear Transformations to Computer Graphics	
Nodule 5: Describe Eigen values and Eigen vectors and solve problems	
Aodule 6: Examine linear algebra techniques in various fields	

Title of	the Cou	irse:																	
4EN314	Autom	otive El	lectr	onic	S										L		т	Р	Cr
															2		1	0	3
Pre-Rec	quisite (Courses	: Ba	sic E	Elect	ronio	cs, C	ontr	ol Sy	yste	m								
Textboo	oks:																		
2.	Butter	worth-l 's Tech	Hein nnici	iem an ^T	ann ™: A	is ai	n im moti	prin ive l	t of	Els	sevie	er, 20	17	-	ive by W th Editic				ıbeak,
Referer	nces:																		
	Publis	hing Sv	witze	erla	nd 2	015	-					-	-		an, Sprin ringer Vi	-			
Course	Objecti	ves :																	
1	To lea	rn tha k	noic		ntro	1	tom	one	1.00	naoi	r rac	uirad	Engi	20.000	trol				
	To lear					•							0		101				
	To enh				omr	nuni	cati	on i	n at	iton	noti	ve vel	nicle						
Course	Learnin	g Outco	ome	5:															
СО	After	the con	nple	tion	of t	he c	ours	e th	e sti	ude	nt sł	ould	be abl	e to		Blo	om's C	ognitive	
																lev	el	Descrip	tor
CO1	Classi	fy vario		nso	or sve	stem	toc	ontr	role	ngir	ne ar	nd its o	levice	5				Understandin	
		-			-					-									
CO2	Apply	knowl	eage	01 0	com	muni	catio	on to) dev	vice	IOr	contro	lling d	evices				Apply	
CO3	-	rse a p ol instru				ide	ntify	the	e co	mpi	uting	g requ	ireme	nts for	engine	IV		Analyze	
CO-PO	Mappin	g •																	
		-	—	-	-	-	_	-	r	_	-		1		T			_	
		РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1		PSO2		
		CO1	3													:	2		
		CO2			3								1		2				
		CO3	1	3													2	-	
3-	Low,	2 – Me	 ediur	n. 3	 	ligh													
	,			, 0	-	0													

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: The Basics of Electronic Engine Control	Hrs.
Motivation for Electronic Engine Control. Exhaust Emissions, Fuel Economy, Federal Government Test Procedures, Concept of an Electronic Engine Control System, Definition of Engine Performance Terms, Exhaust Catalytic Converters, Electronic Fuel Control System, Analysis of Intake Manifold Pressure, Idle Speed Control, Electronic Ignition	
Module 2: Sensors and Actuators	Hrs.
Automotive Control System Applications of Sensors and Actuators, Throttle Angle Sensor, Temperature Sensors, Typical Coolant Sensor, Sensors for Feedback Control, Knock Sensors, Angular Rate Sensor, LIDAR, Digital Video Camera, Flex-Fuel Sensor, Automotive Engine Control Actuators, Variable Valve Timing, Electric Motor Actuators, Stepper Motors, Ignition System	
Module 3: Digital Powertrain Control Systems	Hrs.
Digital Engine Control, Control Modes for Fuel Control, Discrete Time Idle Speed Control, EGR Control, Variable Valve Timing Control, Turbocharging, Direct Fuel Injection, Flex Fuel, Electronic Ignition Control, Integrated Engine Control System, Summary of Control Modes	

Module 4: Vehicle Motion Controls	Hrs.
Representative Cruise Control System, Cruise Control Electronics, Antilock Braking System, Electronic Suspension System, Four-Wheel Steering CAR	
Suspension System, Electronic Suspension Control System, 1 our Wheel Steering Critic	
Module 5: Automotive Instrumentation	Hrs.
Modern Automotive Instrumentation, Input and Output Signal Conversion, Display Devices, Fuel Quantity	
Measurement, Coolant Temperature Measurement, Oil Pressure Measurement, Vehicle Speed Measurement,	
Module 6: Vehicle Communications	Hrs.
IVN, CAN, Local Interconnect Network (LIN), FlexRay IVN, MOST IVN, Vehicle to Infrastructure	
Communication, Vehicle-to-Cellular Infrastructure, Short-Range Wireless Communications, Satellite Vehicle Communication, GPS Navigation, Safety Aspects of Vehicle-to-Infrastructure Communication	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Relate the basic concepts of Engine control	
Module 2: Classify the various sensors required for various control technique	
Module 3: Understanding the engine control system	
Module 4: Understand cruise control electronics	
Module 5: Distinguish input output Signal Conversion	
Module 6: Analyse vehicle communication technique	
Tutorial:	
Case Studies on Electronic Safety-Related Systems	
Airbag Safety Device	
Blind Spot Detection	

Automatic Collision Avoidance System

Lane Departure Monitor

Tire Pressure Monitoring System

Enhanced Vehicle Stability

Professional Elective-2

Title of	f the Course	م. /۲۱	N315	Digi	ital (omr	nunic	ation) Eng	inee	ring				L	Т	-	Р	Cr
inte of		 40	CTCN	ואיס		J	unic	auor	' L'IB		шg				2	C)	0	2
Pre-Re	quisite Cou	irses:	: Co	mmu	nicat	ion E	Ingin	eerin	g						<u> I </u>			1	
Textbo	ooks:																		
1. T.L. S	Singal, "And	alog a	nd D	igital	Com	mun	icatio	on",6	th Ed	lition	, Mc	Graw	/ Hill,	2012					
2. Roy	Blake , " <i>Ele</i>	ctron	ic Coi	mmu	nicat	ion S	yster	п", Т	hom	son l	Publi	catio	ns, 2n	id Edi	tion,200)2			
Refere	nces:																		
1. Simo	on Hykin, "C	Comm	unico	ation	Syste	em",	4th E	ditio	n, Jo	hn W	/iley a	& Sor	ns, 20	00					
2. Bern	hard Sklar, "	Digita	al Coi	mmu	nicat	ions	- Fun	dame	ental	s and	d App	licati	ons",	Pears	son Publ	ication	ıs, 2	2001	
Course	Objectives	5:																	
1. To e	equip the st	udent	ts wit	th the	e adv	ance	d kno	owled	dge o	f dig	ital co	omm	unica	tion.					
2. To e	estimate the	e perf	orma	ance	of m	oderi	n digi	tal co	omm	unica	ation	in pr	esenc	e of n	oise				
Course	e Learning C	Outco	mes:																
со	After the		alatio	on of	tha d		o the		lont	chou		able	**			Bloo	om's	S Cognitiv	/e
	After the	com	Jietit	11 01	ine (.ours	eine	siut	Jent	snou		able	10		ļ	evel		Descrip	tor
CO1	Explain re	elevar	nce o	f pro	babil	ity th	ieory	in di	gital	comi	muni	catio	n			11	ι	Indersta	nding
CO2	Apply cha	annel,	, soui	rce ar	nd er	ror c	ontro	ol cod	ling t	echn	ique	s effe	ctivel	y		<i>III</i>		Applyi	ng
СОЗ	Analyze t AWGN	he pe	erforr	manc	e of (digita	ıl mo	dulat	tion s	chen	nes ir	n pre:	sence	ofus	ing	IV		Analyzi	ng
CO4	Discuss th	ne sys	stems	s requ	uired	for a	soft	ware	-defi	ned ı	radio					11	ι	Indersta	nding
СО-РО	Mapping :									•					1		L		
		РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO	2		
		01	2																
	L		1	I	I		I	I	I		1	I	1	II		1			

Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)		CO2	3														
CO4 2 1 - L, 2 - M, 3 - H Assessments : reacher Assessment: woo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment: woo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment: Marks ISE 1 ISE 1 ISE 2 ISE 1 and ISE 2 are based on assignment/declared test/quit/seminar/orals etc. MSE: Sasessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content (Normally first three modules) ESE: Assessment is based on 100% course content (Normally first three modules) ESE: Course Contents: Vodule 1 : Probability and Random Process Wodule 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; ime average; Ergodic Process; Wide sense stationary Process Vodule 2 : Information Theory and Coding Weasure of Information, Awg, and Mutual Information. Joint and conditional entropy, Rate of fuformation, Awg, and Mutual Information. Joint and conditional entropy, Rate of fuformation, Channel capacity, Shannon's Theorem, Shannon-Fano coding)	_	<u> </u>		2								<u> </u>	<u> </u>				
Image:		03		3									2				
issessments : ieacher Assessment: wo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester xamination (ESE) having 20%, 30% and 50% weights respectively. Assessment Marks ISE 1 10 ISE 1 10 ISE 2 10 ESE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Fourse Contents: Module 1 : Probability and Random Process Module 2 : Information, Central limit theorem , Classification of Random Processes, Stationary; The average; Ergodic Process; Wide sense stationary Process Module 2 : Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of fnormation, Channel capacity, Shannon's Theorem, Shannon-Fanc coding) Module 3 : Erro Control Coding		CO4		2									2				
Assessments : 'reacher Assessment: 'wo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr Weasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Fanc coding) Gource to increase average information pr bit—(Huffman , Shannon-Fanc coding) Module 3 : Error Control Coding Hr	L						1 1		I	1							
Feacher Assessment: 'wo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Hr. Module 1 : Probability and Random Process Hr. Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Mr. Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Hr.						1 -	L, 2 - N	M, 3 – H	ł								
wo components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Sourse Contents: Wodule 1 : Probability and Random Process Module 1 : Information function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Avg. and Mutual Information. Joint and conditional entropy, Rate of Information. Avg. and Mutual Information. Harney theorem, BE-SNR Trade off, four theorem is theorem, Shannon-Hartley theorem, BE-SNR Trade off, four to increase average information per bit—(Huffman , Shannon-Fano coding)	Assessments :																
Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE MSE: Assessment is based on 50% of course content (Normally first three modules) ESE ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Hr Course Contents: Wodule 1 : Probability and Random Process Hr Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Hr Weasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, four course average information per bit—(Huffman , Shannon-Fano coding) Hr	eacher Assessm	ent:															
Assessment Marks ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Hr. Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processs. Mr. Module 2 : Information Theory and Coding Hr. Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, fource to increase average information per bit—(Huffman , Shannon-Fano coding) Hr. Module 3 : Error Control Coding Hr.	wo components	s of In Sen	nester	Evalua	tion (IS	SE), Or	ne Mid	Semes	ter Exa	amina	ition	(MSI	E) an	d one	End Se	mester	
ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Module 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr: Veasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:	•				-							·	,				
ISE 1 10 MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Fourse Contents: Module 1 : Probability and Random Process Module 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr: Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:		Ass	essmer	nt								Ma	rks				
MSE 30 ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. So MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Sourse Contents: Module 1 : Probability and Random Process Hr. Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Hr. Module 2 : Information Theory and Coding Hr. Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, source to increase average information per bit—(Huffman , Shannon-Fano coding) G Module 3 : Error Control Coding Hr.																	
ISE 2 10 ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Sourse Contents: Module 1 : Probability and Random Process Module 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; i'me average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr: Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of forormation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, fource to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding			ISE 1									10	0				
ESE 50 ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Fourse Contents: Module 1 : Probability and Random Process Module 1 : Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; "ime average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr: Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, fource to increase average information per bit—(Huffman , Shannon-Fano coding) Hr: Module 3 : Error Control Coding Hr:			MSE					30									
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade offf, iource to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:			ISE 2									1	0				
ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar/orals etc. MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade offf, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:			ESE									5	0				
MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:					/ .]]			• /• • • •									
ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, novement generation function, Central limit theorem , Classification of Random Processes, Stationary; Filme average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr.	ISE I and ISE Z a	ire based	on assi	Ignmei	nt/deci	ared t	.est/qu	iz/sem	inar/o	rais e	IC.						
three modules) covered after MSE. Course Contents: Module 1 : Probability and Random Process Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process Module 2 : Information Theory and Coding Hr: Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr:	MSE: Assessme	nt is base	d on 50)% of c	ourse o	conter	nt (Nor	mally fi	irst th	ree m	odul	es)					
Course Contents:Hr.Module 1 : Probability and Random ProcessHr.Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process6Module 2 : Information Theory and CodingHr.Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr.	ESE: Assessmer	nt is based	d on 10	0% со	urse co	ntent	with 7	0-80%	weigh	tage f	or co	ourse	e con	tent (r	normal	ly last	
Module 1 : Probability and Random ProcessHr.Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process6Module 2 : Information Theory and CodingHr.Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr.	three modules)	covered a	after M	SE.													
Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process6Module 2 : Information Theory and CodingHrMeasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr	Course Contents	:															
Review of Probability concept, Random variables and it's types, CDF, PDF, Expectation, variance, movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Fime average; Ergodic Process; Wide sense stationary Process6Module 2 : Information Theory and CodingHrMeasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr	Module 1 · Proh	ahility an	d Rand	om Pr	ncess											Hrs	
movement generation function, Central limit theorem , Classification of Random Processes, Stationary; Time average; Ergodic Process; Wide sense stationary Process6Module 2 : Information Theory and CodingHrMeasure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of nformation, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr		-															
Time average; Ergodic Process; Wide sense stationary Process Hr Module 2 : Information Theory and Coding Hr Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Hr Module 3 : Error Control Coding Hr			•														
Module 2 : Information Theory and Coding Hr Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, 6 Source to increase average information per bit—(Huffman , Shannon-Fano coding) Hr Module 3 : Error Control Coding Hr	-								lon of	Rand	om i	roce	esses	, Statio	onary;	6	
Measure of Information. Avg. and Mutual Information. Joint and conditional entropy, Rate of Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding		-					.,										
Information, Channel capacity, Shannon's Theorem, Shannon-Hartley theorem, BE-SNR Trade off, Source to increase average information per bit—(Huffman , Shannon-Fano coding)6Module 3 : Error Control CodingHr	Module 2 : Infori	mation TI	neory a	ind Co	ding											Hrs	
Source to increase average information per bit—(Huffman , Shannon-Fano coding) Module 3 : Error Control Coding Hr	Measure of Infor		-									• • •					
Module 3 : Error Control Coding		nnel capa	icity, Sł										R Tra	de off	,	6	
	Information, Cha			nation	per bit	t—(Ηι	uttman	, Shani	non-Fa	ano co	oding	5)					
Rationale for coding Discrete memory less channels Linear Block Codes, Hamming codes, Convolutional 7	nformation, Cha		e inforr	nation													
A A A A A A A A A A A A A A A A A A A	Information, Cha Source to increas	se average														Hrs.	

codes -Time domain approach, Transform domain approach, Turbo Code, Code tree, Code Trellis,	
Maximum likelihood decoding of convolutional codes: Viterbi algorithm.	
Module 4 : Detection and Estimation Theory	Hrs.
Model of Digital Communication System, Gram-Schmidt Orthogonalization Procedure, Geometric representation and interpretation of signals, Signal Constellation diagram, Conversion of continuous	
AWGN channel into a vector channel, Likelihood functions, Coherent detection of signals in noise : Maximum likelihood decoding.	8
Module 5 : Optimum Receivers for AWGN channel	Hrs.
Review of quadrature, M-ary modulation techniques, Probability of bit error rate, Demodulation : correlation demodulation, matched filter demodulation, Optimum Detection, Performance of optimum receiver for Binary and M-ary modulation schemes,	7
Module 6 : Introduction to Software Defined Radio	Hrs.
Foundation of software defined radio, Definition and potential benefits, Software radio architecture, Technology trade off and architecture implementation.	6
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to	
Module 1: Explain importance of probability theory in digital communication.	
Module 2: Analyze performance of communication system using source and channel statistics.	
Module 3: Apply error control coding techniques to improve performance of digital communication system.	
Module 4: Apply detection and estimation algorithms to recover signal in presence of noise.	
Module 5: Design optimum receivers for AWGN channel.	
Module 6: Gain insight into software defined radio	

ue oi	the Course: Object Oriented Programming 4EN316				
		L	т	Р	Cr
		2	0	0	2
re-Re	quisite Courses: C programming				
extbo	oks:				
4.	Object Oriented Programming in C++, Robert Lafore, SAN ISBN: 0-672-32308-7 (If needed the relevant language book will be referred).	1S Publishi	ing,	Fourth	Editio
efere	nces:				
	4. The C++ Programming Language, 4th Edition, Bjorne Stroustrup, Add 978-0321563842	lison-Wesley	/ Profe	essional, I	SBN:
	 Web tutorials on C++ and Object Oriented programming NPTEL lectures, Object-Oriented Programming by IITBx (free audit context) 	ourse)			
ourse	Objectives :				
5. 6. 7. 8. 9.	To introduce the students the concepts of object oriented programming To explain and illustrate the basic concepts of OOP, classes, objects etc. To explain and illustrate the concepts of operator overloading etc. To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the	etc.	end ir	n industry)
ourse	Learning Outcomes:				
со	After the completion of the course the student	Bloom's Co	ogniti	ve	
	should be able to	Level		Descri	ptor
CO1	Apply the understanding (of OOP) to identify how the problem can be solved using OOP approach (for a given situation)	3		Apply	
CO2	Write a program to Illustrate the functioning of OOP facilities	6		Create	
		4		Apoluzo	
CO3	Analyze the give OOP program and identify the functionality	4		Analyze	

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	н												Н	
CO2			Μ											Μ
CO3		Н											Н	
CO4			Н											Н

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

OOP Programming Fundamentals:	5 Hrs.
Need of Object oriented programming, Differences between procedural and OOP approach, Program Construction, input output and formatting, directives, data types, type conversion, library and header files, loops, decisions, logical operators, precedence, control constructs,	
structures, enumerations, functions, scope and storage classes, arrays, strings manipulation	
Objects and Classes:	5 Hrs.
Need of a class, real life examples of class, class and objects, class and data types, access specifiers, objects as function arguments, constructor, destructor, default constructor, copy constructor, scope resolution, UML Diagram of a class.	
Operator Overloading:	4 Hrs.
Need of Operator overloading, Overloading unary operators, overloading binary operator, data conversion between objects and basic types, Pitfalls of operator overloading and conversion	
Inheritance and polymorphism:	4 Hrs.
Base class and derived class, derived class constructor, overriding member functions, abstract base class, class hierarchy, public and private inheritance, avoiding ambiguity of multiple inheritance, polymorphism	
Pointers:	4 Hrs.
Address and pointers, Pointers and arrays, pointers and functions, strings, memory management using new and delete, pointers to objects, applications of pointers with objects, Linked list example, pointer to pointer	
Virtual Functions and OOP development:	4 Hrs.
Virtual functions, friend functions, static functions, this pointer, Stream class, stream errors, file I/O, error handling in file I/O, Multi-file project handling.	

Module wise Measurable Students Learning Outcomes :

At the end of the semester, the students should be able to

Module1:

Explain the (C and C++) programming fundamental such as data types, constructs, input output, strings and array and illustrate the OOP approach.

Module2:

Write the (C++) programs for illustrating classes, objects, constructor, destructor facilities, drawing UML diagrams.

Module3:

Write (C++) programs for illustrating operator overloading and handling complex data type such as date, complex number etc.

Module 4:

Write (C++) programs for illustrating inheritance and its uses.

Module 5:

Write (C++) programs for illustrating Pointers and application of pointers to solve problems

Module 6:

Write multi-file programs to solve a given problem and to illustrate use of virtual functions.

	the Cour		J																
ata Co	ommunica	ation a	nd I	Vetv	vork	Σ.									L		Т	Р	Cr
															2		0	0	2
're-Req	quisite Co	ourses:	Ana	log	and	Digit	tal Co	omn	nuni	cati	on								
	Textboo	ks:																	
	"Data Co							•				rouzar	n, 2013	3.					
2.	"TCP/IP I	Protoco	ol Su	ite"	, TN	1H <i>,</i> B	S. For	rouza	an, 2	201()								
Referen	ices:																		
1.	"Internet	workir	ıg w	ith [ГСР	/IP",	Pea	rson	, Do	ougla	as C	omer,	Sixth 1	Editior	n, 2016.				
	Objective		<u> </u>						<u> </u>						·				
1.	To expla	in conc	ept	of D	ata	Com	mur	nicat	ion										
2.	To provi	de func	tior	n of o	diffe	rent	laye	ers											
3.	To demo	onstrate	e an	d an	alys	is of	TCP,	/IP p	roto	ocol	suit	e and	netwo	rking					
ourse	Learning	Outco	mes	:															
со	After th	ne com	plet	ion	of tl	ne co	ourse	e the	e stu	iden	t sh	ould b	e able	to		Bloor	n's C	ognitive	
			•															_	
																level		Descrip	tor
CO1	Illustra	te data	a co	mm	unic	atior	n and	d net	wor	rking	g cor	ncepts				II		Underst	tanding
CO2	Apply p	protoco	ols ai	nd s	ugge	est d	esigr	ו for	spe	cific	: app	olicatio	ons					Apply	
CO3	Analyze	e applic	catic	on la	yer	prote	ocols	s and	d pe	rime	eter	securi	ty			IV		Analyzir	ng
													•						•
:0-P0 I	Mapping	:																	
		РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO	02		
	-	CO1	2												2			_	
	-	CO2			2										2				
	_	CO3		3											2			_	
1	Low, 2	Mad	linn	2 2	LI	iah													
4- Assessn		- wiec	uun	1, J	- П	ıgn													
eacher	r Assessn	nent:																	

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/dec	clared test/quiz/seminar etc.	
MSE: Assessment is based on 50% of course	e content (Normally first three modules)	
ESE: Assessment is based on 100% course c three modules) covered after MSE.	content with 70-80% weightage for course content (normally	last
Course Contents:		
Module 1		Hrs.
	etwork, Communication tasks, Transmission media, del, TCP/IP Model Comparison, Networking components.	6
Module 2		Hrs.
	ontrol, Medium Access Control, Elementary Data link layer m access sub layer- Multiple access protocols.	7
Module 3		Hrs.
	ess-full Classless addressing, Internet protocol, (ARP, RARP), ICMP-Types of messages ,Message formats, n to IPV6	7
Module 4		Hrs.
	s delivery, User Datagram Protocol, Transmission Control	7
Duties of Transport layer, Process to Process Protocol TCP, Flow Control, Error Control, C	Congestion control in TCP, TCP Timers	
	Congestion control in TCP, TCP Timers	Hrs.
Protocol TCP, Flow Control, Error Control, C Module 5 Domain Name System (DNS) - Name space,	Congestion control in TCP, TCP Timers Distribution of Name space Resolution, Remote Login- al (NVT), File Transfer Protocol (FTP), SNMP, Email SMTP,	Hrs.

ntroduction to Multimedia traffic on network, protocol RTP, RTCP.	6								
Basics of security, Design issues, Network Security Firewall, Types, configurations, VPN									
Module wise Measurable Students Learning Outcomes :	1								
After the completion of the course the student should be able to:									
Module 1 Describe fundamentals of data communication and networking									
Module 2 Explain Data link layer in detail									
Module 3: Explain addressing and routing in networking.									
Module 4 Explain TCP and UDP									
Module 5Analyse Application layer Protocol									
Module 6 Analysis of security and other industrial Protocol									
Tutorial:									

Professional Electives (Lab)

Professional Elective-2 Lab

Title of the Course: 4EN365 Digital Communication Engineering Lab				
	L	т	Р	Cr
	0	0	2	1
Pre-Requisite Courses: Communication Engineering	l	1	1	L

Textbooks:

- George Kennedy, "Electronic Communication System", McGraw Hill, 4th Edition, 2009
 Roy Blake, "Electronic Communication System", Thomson Publications, 2nd Edition, 2002
 Taub Schilling, "Principle of communication system", TMH publication, 4th Edition, 2013

References:

- 1. Wayne Tomasi, "Adavnced Electronic Communications Systems", Pearson education, 5th Edition, 2014
- 2. Simon Hykin, "Communication System", 4th Edition, John Wiley & Sons, 2000
- 3. Manuals of Software Defined Radio, LabVIEW

Course Objectives :

- 10. To enable the students for design and development of applications of communication system.
- 11. To illustrate the different blocks used to improve performance of digital communication system.

Course	Learning	Outcon	nes:														
СО	After th	e comp	oleti	on c	of th	e co	urse	the	stu	dent	: sho	uld be	able t	0		Bloor	n's Cognitive
																level	Descriptor
CO1		Analyze the performance of different modulation and demodulation schemes in terms of bandwidth, power requirement presence of noise. Compare the performance of different error control coding and decoding.															Analyzing
CO2	Compar	e the p	erfo	orma	ince	of d	iffer	ent e	erro	r coi	ntrol	codin	g and o	decodi	ng.	II	Understanding
СО3	Demons (MATLA Mapping	B, Emo										-	oftwa	re pao	ckages		Applying
	[РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2]
	-	CO1					2								2		-
	-	CO2					2									2	1
	-	CO3					3				2				2		4

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

List of Experiments :

1. Digital Modulation Techniques

- 2. Delta Modulation and Demodulation
- 3. Adaptive Delta Modulation and Demodulation
- 4. Linear block coder and decoder
- 5. Convolutional Coder and Decoder
- 6. Design and comparison of optimum receivers for different modulation schemes using MATLAB
- 7. Detection and Estimation of signal in presence of AWGN using MATLAB
- 8. Introduction to Software Defined Radio
- 9. Implementation of digital modulation and demodulation schemes using GNU radio.

		L	т	Р	Cr
		0	0	2	1
re-Re	quisite Courses: C programming				
extbo	oks:				
5. 6.	Object Oriented Programming in C++, Robert Lafore, SAM ISBN: 0-672-32308-7	1S Publisł	ning,	Fourth	Editio
	(If needed the relevant language book will be referred).				
eferei	nces:				
	 The C++ Programming Language, 4th Edition, Bjorne Stroustrup, A 978-0321563842 Web tutorials on C++ and Object Oriented programming NPTEL lectures, Object-Oriented Programming by IITBx (free audit context) 		esley Pr	rofession	al, ISB
ourse	Objectives :				
1/					
15.	To explain and illustrate the concepts of operator overloading etc. To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the		rend in	industry)
15. 16.	To explain and illustrate the concepts of inheritance and polymorphism e To facilitate practicing to solve problems using OOP approach.		rend in	industry)
15. 16.	To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the)
15. 16. ourse	To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the Learning Outcomes:	ne current t	Cognitiv		
15. 16. ourse CO	To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the Learning Outcomes: After the completion of the course the student	e current t Bloom's C	Cognitiv	/e	ptor
15. 16. ourse	To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the Learning Outcomes: After the completion of the course the student should be able to Demonstrate use of at least one IDE for OOP program development and awareness of various other IDEs. Demonstrate use of helper	Bloom's C	Cognitiv	/e Descri	ptor
15. 16. ourse CO	To explain and illustrate the concepts of inheritance and polymorphism of To facilitate practicing to solve problems using OOP approach. (The language will be mostly C++. However it can be decided based on the Learning Outcomes: After the completion of the course the student should be able to Demonstrate use of at least one IDE for OOP program development and awareness of various other IDEs. Demonstrate use of helper utilities. Write and Debug programs to illustrate the functioning of OOP	Bloom's C Level	Cognitiv	/e Descri App	ptor ly ite

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1					Н								Н	
CO2			Н										Н	
CO3										Н				Н
CO4			Н						Н					Н

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,

programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents:

OOP Programming Fundamentals:

Expt 1: Revision of Procedural language-1 (based on language constructs, operators, argument passing and returning)

Expt 2: Revision of Procedural language-2 (based on Header files, Library, Array, string etc. facilities)

Objects and Classes:

Expt 3: Example OOP based programs. Program/s based on class, objects, member access specifiers etc)

Expt 4: Programs based on Constructor, Destructor, UML diagram components

Operator Overloading:

Expt 5: Program for illustration of operator overloading, operators

Expt 6: Program for operator overloading and data conversion, UML diagram for simple applications.

Inheritance and polymorphism:

Expt 7: Program for base and derived classes, overriding member functions,

Expt 8: Program for public and private inheritance, addressing ambiguity of multiple inheritance.

Pointers:

Expt 9: Programming related pointer, arrays, new and delete operators

Expt 10: Programs for pointers to objects, Linked list or related program, Pointer to pointer

Virtual Functions and OOP development:

Expt 11: Program for implementing Virtual functions, friend functions, static functions, this pointer,

Expt 12: Program to implement file I/O, multifile programs, Templates, UML for OOP based software architecture.

Expt 13: A mini project that uses all facilities in OOP. The problem statement is preferred to be relevant to industry needs.

Title of	the Cours	e: 4EN	367	Dat	a Co	omm	unio	atio	n ar	nd N	etw	orking	Lab						
															L	Т		Р	Cr
															0	0		2	1
Pre-Rec	quisite Cou	urses:C	Comi	mun	icati	on E	ngin	eeri	ng										
Textboo	oks:																		
	"Data Cor							-				ouzan,	2013.						
4.	"TCP/IP P	rotoco	l Sui	ite",	TMI	Ч, В.	For	ouza	n, 2	010									
Referen	nces:																		
4.	"Internetv	working	g wi	th T	CP/I	P ", 1	Pear	son,	Doi	ugla	s Co	mer, 2	016.						
Course	Objective	s :																	
	To study l							pute	er ne	etwo	ork								
	To implen									ممام		م ام م	. .	din a					
6.	To demor	Istrate	anu	ldlid	iiysis	5 01 1	CP/	і рі	010		uite	anu n	etwori	cing					
Course	Learning (Outcon	nes:																
со	After the	e comp	oleti	on c	of the	e coi	urse	the	stu	dent	sho	uld be	able t	:0		Bl	oom	n's Cogn	itive
															_	level		Desc	riptor
CO1	Analyze	the pe	rfor	man	ce o	f cor	າກເ	inica	itior	n net	wor	k.				IV		Anal	yzing
CO2	Compare	e the p	berfo	orma	ance	of c	liffe	rent	pro	toco	ols a	t data	link aı	nd Trai	nsport			Unders	tanding
	layer																		
CO3	Demons	trate	a si	mall	cor	າກເ	inica	tion	ne	etwo	rk	syste	m usi	ng sof	ftware	111		Арр	lying
	package	S																	
CO-PO	Mapping :																		
	Γ	РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSC	02		
		CO1					2								2				
	\vdash	CO2			2											2			
	\vdash	CO3					3				2				2				
		_																	
Assessn	nents :																		
Lab Ass	essment:																		
There a	re four coi	mpone	ents	of la	b as	sess	men	it, LA	\1, L	A2,	LA3	and La	b ESE.						
inere d		mpone			n 92	3522		ι, L/ ²	\1, L		LH3		J EJE.						

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

List of Experiments :

- 1. Implement UART serial communication
- 2. Study of different transmission media and LAN topologies
- 3. Demonstrate LAN communication using trainer
- 4. Demonstrate Data link layer protocols
- 5. Implement UDP socket
- 6. Implement TCP socket
- 7. Study of TCP timers
- 8. Using wire-shark capture packets for FTP, Telnet, DNS and study behavior
- 9. Study Firewall VPN security solutions of networks
- 10. Design and analyze network on various performance parameters

Open Elective Courses

xtbooks: 1. R. Bo Intern	Courses: Basic	Electron											
xtbooks: 1. R. Bo Intern	Courses: Basic	Flectron								3	0	0	
1. R. Bo Intern		Lieution	nics Engi	ineerii	ng								
Intern													
	ylestad and L aational, 2005. d Kumar, "Fu Sawhney, "M	ndamenta	als of D	Digital	circui	ts", 2 nd	^l Editic	on, PHI, ź	2009.			ice Ha	all
ferences:													
11. Ra 12. M	P. Jain, "Mode amakant Gaik .D. Singh and K ww.spoken-tute	wad, "Oj (B Khanch	p-amps handani	s and I i,_"Pov	Linear ver Eleo	Integra	ated Ci					2011.	
urse Object		entanorg		ombay									
5. To <i>ill</i>		0 1						id its app		ns in j	power	elect	ronics
	<i>ustrate</i> the imng Outcomes:	plement	ation o	of Ard	uino b	ased en	mbedd	ed system	ns.	ns in j n's Co			ronics
	ng Outcomes:	plement	ation o	of Ard	uino b	ased en	mbedd	ed system	ns.	n's Co		2	ronics
COs A	ng Outcomes:	letion of	the cou	of Ard	uino b ne stude	ased en	mbedd ould be	ed system able to	ns. Bloor	n's Co	gnitive Descri	2	
COs A CO1 E CO2 D	ng Outcomes: After the comp	letion of	the cou	of Ard urse th	uino b n e stud sed in t	ased en ent sho he elec	mbedd ould be	able to	ns. Bloor Level	n's Co	gnitive Descri	e ptor standi	
COs A CO1 E CO2 E S CO3 A	ng Outcomes: After the compl Explain the wor Develop a digita	letion of king of co al circuit	the cou ompone	of Ard urse th ents us ven lo	uino b ne stud sed in t gic anc	ased en ent sho he elec I <i>build</i>	mbedd ould be tronic : circuit :	able to	ns. Bloor Level II III	n's Co	gnitive Descri Jnder	e ptor standi ng	

CO1	3								2
CO2	3		2						2
CO3		3							3
C04	3		2						3

1 -Low , 2 -Medium, 3 –High

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Electronic System Components	Hrs.
Transducers-Types, Classification, Characteristics: Signal Conditioning of inputs, Instrumentation Amplifiers, Capacitive type, Inductive type sensors, Limit switches, Temperature sensors: RTD, thermistor, Thermocouple, semiconductor diode sensor, piezoelectric transducer photovoltaic cell, LDR, Speed measurement using magnetic photoelectric pickup. Distance measurement: LVDT, capacitive transducers, Resistive, Glass scales, Magnetic scales. Concept of Quadrature output and index pulse.PH Sensors, Proximity Sensors, Motion Sensors.	7
Module 2: Operational Amplifier	Hrs.
Differential amplifier, Basic op-Amp configuration, Ideal op-amp analysis, Op-amp characteristics, Inverting and Non inverting amplifiers, Adder, Subtractor, voltage to current converters, current to	8

application, waveform generators: multivibrators, oscillators.	
Module 3: Digital Systems	Hrs.
Flip-flops, Counters, Up-counters, Down Counters, Mod-N counters, State diagram.	5
Module 4: Data Acquisitions System	Hrs.
Digital to Analog Converter (DAC), Analog to Digital converter (ADC), Data Acquisition System (DAS): introduction, objectives of DAS, single and multichannel, data conversion, sample and hold circuit, elements of DAS, interfacing of transducers-multiplexing.	7
Module 5: Power Semiconductor Devices and its Applications	Hrs.
SCR, TRIAC, DIAC, UJT, AC voltage regulator, Controlled rectifiers, Inverters, Speed control of AC and DC motors, SMPS, UPS, Electronics lamp ballast.	8
Module 6: Embedded Systems	Hrs.
Introduction to microcontroller based system: Arduino board, Arduino based systems, Simple Arduino program, interfacing display board to Arduino, Speed control of DC motor, motor driver IC: L293D.	5

- 1. *Explain* the working of various components used in electronics systems.
- 2. *Explain* the working of operational amplifier and *analyze* op-amp based circuits.
- 3. *Analyze* digital circuits using FSM
- 4. *Explain* uses of ADC- DAC in Data Acquisition System.
- 5. *Explain* the working of power semiconductor devices and *analyze* the performance of Power Electronics Circuits.
- 6. *Explain* microcontroller based systems and *develop* embedded systems using Arduino board.

T. Y. B. Tech. (Electronics Engineering) Sem VI AY 2020-21

Professional Core (Theory)

L	Т	Р	Cr
3	1	0	4

Pre-Requisite Courses: Basic Electrical Engineering

Textbooks: (NOT MORE THAN 3)

- 1. "Engineering Electromagnetics", W. H. Hayt and J A Buck, 7th Edition, Tata McGraw-Hill, 2007.
- 2. "Elements of Electromagnetics", Matthew N. O. Sadiku, 3rd Edition, Oxford University Press, 2007
- 3. "Principles of Electromagnetics", S. C. Mahapatra and Sudipta Mahapatra, Tata McGraw-Hill, 2011.

References: (NOT MORE THAN 3)

- 1. "Electromagnetic Waves and Radiating Systems", E. C. Jordan & K. Balman, 2nd edition, PHI, 2007
- 2. "Field and Wave Electromagnetics", David K. Cheng, Pearson Education, 2015
- 3. "Electromagnetics with Applications" Kraus & Fleisch, 5th Edition, McGraw Hill International Edition, 1999.

Course Objectives :

Electromagnetics is the foundation for telecommunications. This course provides an introduction to electromagnetic theory and principles. The applications of electromagnetics include antennas, radio wave propagation, radar sensors, microwave and RF circuitry.

- 17. To understand the Electric fields, electric energy and potential.
- 18. To understand the Magnetic flux and forces, energy stored in magnetic field.
- 19. To develop in-depth understanding of time-varying fields and electromagnetic waves.
- 20. To study the electromagnetic wave transmission methods like transmission lines, antennas and waveguides.

Course Learning Outcomes:

со	After the completion of the course the student should be able to	Bloom's Cognitive				
		Level	Descriptor			
CO1	Explain the principles of static and time-varying electric and magnetic fields.	II	Understanding			
CO2	Compare the behavior of electromagnetic waves in free space and guided medium like two-wire transmission line.	II	Understanding			
CO3	Solve problems on static and time-varying electromagnetic fields.		Applying			
CO4	Analyze the effects of electromagnetic radiation and electromagnetic interference.	IV	Analyzing			

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		2											2	
CO2		2		1									2	
CO3	3												2	
CO4	3			2									2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Electrostatics:	8 Hrs.
Review of vector analysis and coordinate systems. Coulomb's Law, electric field intensity, field	
due to line charge, sheet charge; electric flux density, Gauss's Law and it's applications,	
divergence theorem; energy and potential, potential gradient, electric dipole; energy density in	
electrostatic field.	
Module 2 : Conductors, Dielectrics and Capacitance:	5 Hrs.
Current and current density, continuity of current, conductor properties and boundary	
conditions; boundary conditions for perfect dielectric materials, Poisson's and Laplace's	

equations; Capacitance.	
Module 3 : Steady Magnetic Field:	7 Hrs.
Magnetic field intensity, Biot-Savart Law, Ampere's circuital Law, Stokes' theorem, magnetic	flux
and magnetic flux density; scalar and vector magnetic potential; Force on a moving charge,	
orce between differential current elements, properties of magnetic materials, energy stored	d in
magnetic field, forces on magnetic materials, inductance, magnetic boundary conditions.	
Module 4 : Time Varying Fields and Maxwell's Equations:	5 Hrs.
Faraday's Law, displacement current, Maxwell's equations in point (differential) form and	
ntegral form, time varying potentials, time-harmonic fields.	
Module 5 : Uniform Plane Electromagnetic Waves :	8 Hrs.
Nave propagation in free space and dielectrics, Power flow in uniform plane wave, Poynting	;'s
heorem, wave propagation in conductors: skin depth, reflection of plane waves, standing w	ave
atio, polarization of uniform plane waves.	
Module 6: Transmission Lines :	7 Hrs.
Γypes of two-conductor transmission lines, equivalent circuit, transmission line parameters,	
ransmission line equations, lossless propagation, wave reflection, standing waves and voltag	ge

- 1. Comprehend the principles of electrostatics.
- 2. Apply the fundamentals of electrostatics to solve boundary value problems.
- 3. Explain the existence and effects of magnetic field.
- 4. Compare and contrast difference between static and time- varying electromagnetic fields.
- 5. Understand the behavior uniform plane electromagnetic waves in free space and dielectrics.
- 6. Evaluate the performance of a two-wire transmission line in terms of characteristic impedance, input impedance, propagation constant, reflection coefficient, VSWR using analytical methods and graphical methods-Smith Chart.

Title of	the Course:							
4EN322	2 FPGA Based System Design	L	Т	Р	Cr			
		3	0	0	3			
Pre-Re	quisite Courses: Pre-Requisite Courses: Digital Design (S,Y.), Microco	ontrolle	er (S.Y.)					
Textbo	oks:							
1.	FPGA Based Digital Design : Wayne Wolf, Pentice Hall, 2012							
Refere	nces:							
1.	Digital System Design using VHDL, Charles H. Roth, PWS Pu Thomson Learning	ıblishin	ng, a bi	anch o	of			
2.	FPGA product catalog from Xilinx and Altera,							
	Objectives :							
2. 3. 4.	 To expose the students to the various FPGA fabrics in terms of FPGA architectures, To explain how combinational logic is modeled using hardware description language. To illustrate with example combinational network delays. To illustrate the difference between behavioral simulation, post-synthesis simulation an post-implementation simulation. To demonstrate sequential machine design process using register transfer models and 							
	finite state machine, To explain the design of a microprocessor using memory unit, blocks.							
Course	Learning Outcomes:							
СО	After the completion of the course the student should be able to	Bloom	n's Cog	nitive				
		level		Desc	riptor			
CO1	Compare various types of FPGA architectures with justification	V		Com	oare			
CO2	Model combinational and sequential components by developing	Ш		Mod	el			
	synthesizable and optimized (for delay) HDL code.							
CO3	Analyze the given HDL code to generate synthesized RTL	IV		Analy	/ze			
CO4	Design a sequential block using state table and register transfer model for the implementation in FPGA.	VI		Desi	gn			
CO5	Design a n-bit processor by developing its instruction set and various hardware blocks viz. I/O unit, ALU, memory and control	VI		Desi	gn			

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1				2										2
CO2	3													2
CO3		3												2
CO4			2											2
CO5			2											2

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively. This is for submitting to Exam Cell for the final grade of that course. However teacher will have cumulative assessment of all Cos from all assessment tools used by him throughout the semester.

Assessment	Marks
ISE1	10
MSE	30
ISE2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 10% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents	
Module Contents	No of
	Hours
Module 1:	5
FPGA Architectures, SRAM based FPGAs, Permanently programmed FPGAs (Anti-fuse	
type), Chip I/O,FPGA fabric, Interconnect architectures, logic element parameters	
Module 2:	5
Modeling combinational logic with HDL, combinational network delays, Gate and wire	
delays, Fanout, path delay, power optimization by glitching analysis ,	
Module 3:	7
Sequential Machines, Sequential Machine Design process, Sequential Machine Design	
Styles, Rules for clocking, Clock skew, timing parameters	
Module 4:	8
Fast arithmetic logic blocks (Adders, Multipliers, ALUs), Data path controller architecture,	
Scheduling and Allocation, Pipelining,	
Module 5:	7
Memory units, ROM, SRAM, DRAM, Virtual Memory, Cache memories, Paging, Memory	
organization	
Module 6:	8
Design of a n-bit processor by developing its instruction set and integrating memory units,	
ALU, control unit .	

Module wise Measurable Students Learning Outcomes : After the completion of each module the student should be able to:

Module 1: Understand FPGA architecture, fabrics and logic implementation parameters

Module 2: Model combinational logic circuit and analyze path delay

Module 3: Model sequential logic circuit and analyze parameters

Module 4: Understand fast arithmetic logic block

Module 5: Understand memory and organization

Module 6:Design n-bit processor, instruction

Professional Core (Lab)

itle of	f the Course:				
EN37	1 Mini Project	L	т	Ρ	Cr
		0	0	2	1
Pre-Re	equisite Courses:	1		I	1
Textbo	poks:				
	Electronics Projects For Dummies, by by Earl Boysen and Nancy Muir Publishing, Inc., 2006 Make: Electronics, by Charles Platt, Published by Maker Media, 2015	r, Publ	ished	by Wile	у
Refere	nces:				
	1. A. E. Ward, J.A.S. Angus, "Electronic Product Design", Stanley Thrones (P	ublishe	rs) Lim	ited, 199	6.
	2. Paul Horowitz, Winfield Hill, "The Art of Electronics", Cambridge Univers	ity Pres	s 1980	2	
Course	e Objectives :				
5. 6. 7.	-	npetenc ain proj	ect.	of tech	nical
5. 6. 7. 8.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal up	npetenc ain proj	ect.	of tech	nical
5. 6. 7. 8.	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj usage of	ect. f infra	of tech	nical e
5. 6. 7. 8. Course	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj usage of	ect. f infra	structure	
5. 6. 7. 8. Course	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ain proj Isage of Blc	ect. f infra	structure	nical e tor
5. 6. 7. 8. Course	To provide students hands on experience on, troubleshooting, maintener record keeping, documentation etc thereby enhancing the skill and con- education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u- facilities.	ain proj Isage of Blo	ect. f infra	of techn structure Cognitive Descrip	tor bering

CO-PO Mapping : PO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 3 2 2 **CO2** 3 2 CO3 3 2

5- Low, 2 - Medium, 3 - High

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Mini Project Description

A project group shall consist of *not more than 3 students* per group. The mini project will involve the design, construction, and debugging of an electronic system approved by the department. Each student should conceive, design develop and realize an electronic product. The electronic part of the product should be an application of the analog & digital systems covered up to the 5th semester. The schematic and PCB design should be done using any of the standard schematic capture & PCB design software. The realization of the product should include design and fabrication of PCB.

Each student must keep a project notebook/logbook. The project notebooks will be checked periodically throughout the semester, as part of in-semester-evaluation. The student should submit a soft bound report at the end of the semester. The final product as a result of mini project should be demonstrated at the time of examination.

Broad Areas of Mini Project

The Mini Projects may be from the following areas/domains, but not limited to:

- Embedded Systems
- Electronic Control Systems
- Electronic Communication Systems
- · Biomedical Electronics
- Power Electronics
- Robotics and Mechatronic Systems
- Electric Vehicles
- Artificial Intelligence and Machine Learning
- Applications of Electronics to Agriculture

ASSESSMENT

A demonstration and oral examination on the mini project **shall be conducted at the** end of the semester. The examination will consist of demonstration and viva voce on the mini project.

Title of t	the Course	e: 4EN372 FPGA Based System Design Lab	L	т	Ρ	Cr
		-	0	0	2	1
References:	Text Book	<s:< th=""><th></th><th></th><th></th><th></th></s:<>				
	1. F. Reference	PGA Based Digital Design: Wayne Wolf, Pentice Hal Books:	1, 2012	2		
	O	vigital System Design using VHDL, Charles H. Roth, I f Thomson Learning, 2008 PGA product catalog from Xilinx and Altera,	PWS I	Publish	ing, a t	oranch
Course Objectives :	 Demo system Expla techn Demo 	onstrate the flow of Xilinx EDA tools for designing and s ms by modelling the components in HDL in the terms functional simulation, timing simulation pology mapping, onstrate how to write and use constraint files.	on, sy	nthesis	, trans	ate and
	the d	onstrate how to download the bit streams of the designs i ata and observing the outputs. are the students for good documentation discipline.	in FPG/	As and	test by	inputting
Course Learning Outcomes	CO	At the end of the course, student will be able to	E	Bloom's	s Cognit	ive
Outcomes			l	evel	Descr	iptor
	CO1	Develop error free HDL code for the components of the system and then for the main design entity by integrating the tested components	1	II	Apply	ing
	CO2	Demonstrate the complete flow of Xilinx tools from HDL design entry to functional simulation, synthesis, and implementation with final download in chosen FPGA device.	II		Unde g	rstandin
	CO3	Justify the superiority of structural architecture over Datapath architecture and behavioral architecture with few examples.	V		Evalu	ating
	CO4	Apply the user constraints for speed, power, group of ports etc by defining user constraint files.			Apply	ring
	CO5	Design systems by developing the codes as well as calling the available IP cores from Xilinx sites and evaluate those	111		Apply	ing
	CO6	 Exhibit following technical and professional skills. i. Hands on skills of using modern EDA tools ii. Communication Skills iii. Collaborative work spirit iv. Research Skills v. Lifelong learning attitude vi. Ethical behavior 			VI th psych ive dom	iomotor ain and

assessed thr' rubric on a scale of 1 to 5

Professional Electives (Theory)

Elective Foundation Course in Humanities

Professional Elective-3

Title of	the Cou	urse:																		
4EN331	1 Introd	uction t	o Ma	achi	ne L	earni	ing								1	L	Т	Р		Cr
																2	1	0		3
Pre-Rec	quisite (<u>^ourses</u>	· nr	roha	hility	v & s	tatis	tics												
		.001303	• pi	0.00	bint	yœs	itatis													
Textbo	oks:																			
1.	Machi	ne Lea	rnin	g. T	om	Mite	chel	l. Fi	rst l	Edit	ion,	, McG	raw- I	Hill, 1	997.					
2.	Introdu	uction	to m	nach	ine	learr	ning	by	Ethe	em .	Alp	aydin.	, 2nd	editio	n, The N	MIT	Press,	2004	-	
Referer	nces:																			
1.			to M	Iach	nine	Lea	rnin	g by	Al	ex S	Smo	la and	I S.V.I	N. Vis	hwanatl	han,	Camb	oridge	Uni	iversit
r	Press 2		anit:	ion	and	Maa	hin	<u>م</u> ۲ م	0.000	nc	hu	Chrict	onhar	Bich	n Cani	nga	· 2004	5		
4.	ratteri	I Keco	giiiti		anu	wiac	.111116	z Le	am	ng	UY (CHIIS	opner	DISH	op, Spri	ingel	, 2000).		
Course	Objecti	ves :																		
				-																
Course	Learnin	g Outco	ome	s:																
COUISE		g Outco			of t	he co	ours	e th	e sti	udei	nt sh	nould l	be able	e to		Bl	oom's	Cogni	tive	
		-			of t	he co	ours	e th	e sti	udei	nt sł	nould I	be able	e to				1		or
со	After	the cor	nple	tion												lev	oom's vel	Desc	cript	or
	After Apply	the cor	nple	tion	comj	putin	ıg an											1	cript	or
со	After Apply proble	the cor v knowl ems, mo	nple edge odels	tion	comj 1 alg	putin orith	ig an ms	id m	athe	mat	ics t	o macl	hine le	arning		lev		Desc	cript	or
со	After Apply proble Analy	the cor knowl ems, mo	nple edge odels	tion	comj 1 alg	putin orith	ig an ms	id m	athe	mat	ics t	o macl	hine le	arning		lev	vel	Desc	cripto ly	or
CO CO1	After Apply proble	the cor knowl ems, mo	nple edge odels	tion	comj 1 alg	putin orith	ig an ms	id m	athe	mat	ics t	o macl	hine le	arning		lev III	vel	Desc App	cripto ly	or
CO CO1	After Apply proble Analy its sol	the cor knowl ems, mo	edge odels	e of of and m and	comj 1 alg nd id	putin orith entif	ig an ms y the	id mi e cor	athe npu	mat	ics t	o macl	hine lea	arning propria		lev III	vel	Desc App	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo yse a pro ution n, imple	edge odels	e of of and m and	comj 1 alg nd id	putin orith entif	ig an ms y the	id mi e cor	athe npu	mat	ics t	o macl	hine lea	arning propria		III III	vel	Desc App Ana	cripto ly lyse	or
CO CO1 CO2 CO3	After Apply proble Analy its sol	the cor knowl ems, mo yse a pro ution n, imple	mple edge odels obler	tion e of of s and m an	comj d alg nd id nd e	putin orith entif	g an ms y the	id mi e con n alg	athe npu ⁻ gorit	mat ting hm	ics t requ to m	o macl uireme neet de	hine le. nts app sired n	arning propria leeds	ite for	III III	vel	Desc App Ana Desi	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo yse a pro ution n, imple	edge odels	e of of and m and	comj 1 alg nd id	putin orith entif	ig an ms y the	id mi e cor	athe npu	mat	ics t	o macl	hine lea	arning propria		III III	vel	Desc App Ana Desi	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo yse a pro ution n, imple	mple edge odels obler	tion e of of s and m an	comj d alg nd id nd e	putin orith entif	g an ms y the	id mi e con n alg	athe npu ⁻ gorit	mat ting hm	ics t requ to m	o macl uireme neet de	hine le. nts app sired n	arning propria leeds	ite for	III III	vel	Desc App Ana Desi	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo vse a pro ution n, implo g: PO CO1	mple edge odels obler emen 1 3	tion e of c and m an nt, a	comj d alg nd id nd e	putin orith entif	g an ms y the	id mi e con n alg	athe npu ⁻ gorit	mat ting hm	ics t requ to m	o macl uireme neet de	hine le. nts app sired n	arning propria leeds	ite for	III III	PSO2	Desc App Ana Desi	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo yse a pro ution n, imple g: PO	mple edge odels obler emer	tion e of of s and m an	comj d alg nd id nd e	putin orith entif	g an ms y the	id mi e con n alg	athe npu ⁻ gorit	mat ting hm	ics t requ to m	o macl uireme neet de	hine le. nts app sired n	arning propria leeds	ite for	III III	PSO2	Desc App Ana Desi	cripto ly lyse	or
CO CO1 CO2 CO3	AfterApply probleAnaly its solDesig	the cor knowl ems, mo vse a pro ution n, implo g: PO CO1	mple edge odels obler emen 1 3	tion e of c and m an nt, a	comj d alg nd id nd e	putin orith entif	g an ms y the	id mi e con n alg	athe npu ⁻ gorit	mat ting hm	ics t requ to m	o macl uireme neet de	hine le. nts app sired n	arning propria leeds	ite for	III III	PSO2	Desc App Ana Desi	cripto ly lyse	or

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Machine Learning	Hrs.
Introduction, Supervised Learning, Learning a Class from Examples, Learning Multiple Classes, Regression, Dimensions of a Supervised Machine Learning Algorithm, Bayesian Decision Theory, Discriminant Functions, Association Rules	6
Module 2: Parametric, Multivariate and Nonparametric Methods	Hrs.
Maximum Likelihood Estimation, Evaluating an Estimator: Bias and Variance, The Bayes' Estimator, Parametric Classification, Multivariate Data, Multivariate Normal Distribution, Multivariate Classification, Multivariate Regression, Nonparametric Density Estimation, Nonparametric Classification, Nonparametric Regression: Smoothing Models	6
Module 3 Dimensionality Reduction, Clustering and Decision Trees	Hrs.
Principal Components Analysis, Factor Analysis, Linear Discriminant Analysis, Locally Linear Embedding, Mixture Densities, k-Means Clustering, Expectation-Maximization Algorithm, Supervised Learning after Clustering, Hierarchical Clustering, Univariate Trees, Rule Extraction from Trees,	8

Learning Rules from Data, Multivariate Trees	
Module 4 Linear Discrimination and Multilayer Perceptrons	Hrs.
Generalizing the Linear Model, Geometry of the Linear Discriminant, Parametric Discrimination Revisited, Gradient Descent, Logistic Discrimination, Discrimination by Regression, The Perceptron, Training a Perceptron, Learning Boolean Functions, Multilayer Perceptrons, Backpropagation Algorithm, Training Procedures, Bayesian View of Learning, Dimensionality Reduction, Learning Time	6
Module 5 Kernel Machines and Bayesian Estimation	Hrs.
Optimal Separating Hyperplane, The Nonseparable Case: Soft Margin Hyperplane, v-SVM, Kernel Trick, Vectorial Kernels, Multiple Kernel Learning, Multiclass Kernel Machines, Kernel Machines for Regression, Estimating the Parameter of a Distribution, Bayesian Estimation of the Parameters of a Function, Gaussian Processes	6
Module 6 Hidden Markov Models and Graphical Models	Hrs.
Discrete Markov Processes, Hidden Markov Models, Three Basic Problems of HMMs, Evaluation Problem, Finding the State Sequence, Learning Model Parameters, Model Selection in HMM, Canonical Cases for Conditional Independence, Example Graphical Models, d-Separation, Belief Propagation, Undirected Graphs: Markov Random Fields, Learning the Structure of a Graphical Model, Influence Diagrams	8
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Relate the basic concepts and methods of machine learning.	
Module 2: Classify estimation technique	
Module 3: Contrast classification using clustering technique	
Module 4: Choose training and back propagation algorithm for classification	
Module 5: Distinguish kernel machines for regression	
Module 6: Evaluate Hidden Markov model for learning and classification	
Tutorial:	

itle of	the Course: 4EN332 Optical Communication					
		L		т	Р	Cr
		2		1	0	3
Pre-Red	quisite Courses:					
extbo	oks: (NOT MORE THAN 3)					
7.	Optical Fiber Communications by Gerd Keiser, 4th Edition , Mc Graw H	lill , 2017.				
8.	Optical Fiber Communication by John M. Senior , PHI/Pearson, 2009					
Referen	nces: (NOT MORE THAN 3)					
14.	Fiber optical communication Technology by Djafar Mymbaev & Lowell	L, Schein	ner, P	earson,	2000.	
15.	Fiber optic Communication Systems by G. Agrawal, John Wiley and so	ns, 2010.				
Course	Objectives :					
21	To learn the basic elements of optical fiber transmission link, fiber mo	des confi	gurat	ions and	d struct	ures
	To understand the different kind of losses, signal distortion in optical v		-			ures.
22.	degradation factors. Design optimization of SM fibers, RI profile and c	-			Signal	
				ngtii.		
23.	To learn the various optical source materials, LED structures, qu	iantum e	fficie	ncy, La	ser dio	des ar
	different fiber amplifiers.					
24.	To learn the fiber optical receivers such as PIN APD diodes, noise per	formance	e in p	hoto de	etector,	receiv
	operation and configuration.					
25.	To learn fiber slicing and connectors, noise effects on system perfo	rmance,	opera	ational	principle	es WDI
	and solutions.					
Course	Learning Outcomes:					
со	After the completion of the course the student should be able to	Bloom'	s Cog	nitive		1
		level	De	escripto	r	-
		1.1	Kr		re	
CO1	Relate light waves into small optical components with high precision from sources and detectors.			nowledg	,-	
CO1 CO2	precision from sources and detectors. Calculate the attenuation and signal degradation due to intermodal	IV				-
	precision from sources and detectors.					-

CO-PO Mapping :

РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		3											2	
CO2			3										2	
CO3			3										2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: INTRODUCTION	Hrs.
Introduction, Ray theory transmission, Total internal reflection, Acceptance angle, Numerical aperture, Skew rays, Electromagnetic mode theory of optical propagation, EM waves, modes in Planar guide, phase and group velocity, cylindrical fibers, SM fibers.	5
Module 2: TRANSMISSION CHARACTERISTICS OF OPTICAL FIBERS	Hrs.
Attenuation, Material absorption losses in silica glass fibers, Linear and Non linear Scattering losses, Fiber Bend losses, Midband and farband infra red transmission, Intra and inter Modal Dispersion, Over all Fiber Dispersion, Polarization, non linear Phenomena. Optical fiber	7

Connectors	
Module 3: SOURCES AND DETECTORS	Hrs.
Optical Sources : Semiconductor Physics background, Light emitting diode (LEDs)- structures,	
materials, Figure of merits, characteristics & Modulation. Laser Diodes -Modes & threshold	
conditions, Diode Rate equations, resonant frequencies, structures, characteristics and figure of	
merits, single mode lasers, Modulation of laser diodes, Spectral width , temperature effects, and	7
Light source linearity. Optical Detectors: PIN Photo detectors, Avalanche photo diodes,	
construction, characteristics and properties, Comparison of performance, Photo detector noise	
-Noise sources, Signal to Noise ratio, Detector response time.	
Module 4 :Coupling and Receiver operation	Hrs.
Power Launching and Coupling : Source to fiber power launching, Lensing schemes, fiber-to-	
fiber joints, LED coupling to single mode fibers, fiber splicing, Optical fiber connectors.	
	7
Optical Receiver Operation : Receiver operation, Preamplifier types, receiver performance and	
sensitivity, Eye diagrams, Coherent detection, Specification of receivers	
Module 5 :Optical Transmission System	Hrs.
Transmission Systems : Point –to-point link –system considerations, Link power budget and rise	
time budget methods for design of optical link, BER calculation	
Ontical Amplificate Comicanductor ontical Amplificat EDEA Doman Amplificat Wideband Ontical	7
Optical Amplifiers : Semiconductor optical Amplifier, EDFA, Raman Amplifier, Wideband Optical Amplifiers	
Module 6: Measurements and Advances in Optical Fiber Systems	Hrs.
. ,	
Fiber Attenuation measurements- Dispersion measurements – Fiber Refractive index profile	
measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture	
Measurements – Fiber diameter measurements Principles of WDM, DWDM,	7
Telecommunications & broadband application, SONET/SDH, MUX, Analog & Digital broadband,	
optical switching	

Module 1 Students are able to understand optical transmission theory

Module 2 Students are able to discuss optical fiber characteristics

Module 3 students are able to differentiate the sources and detectors

Module 4 students are able to understand principle of coupling operation

Module 5 students are able to design optical link budget

Module 6 Students are able to measures the various parameter

Tutorial:

- 1. Design of fiber modes
- 2. Calculation of NA and modes of various fibers
- 3. Design link for single mode fiber.
- 4. Design of link for multimode fiber
- 5. Development of fiber measurement setup
- 6. Capacity calculation of fiber modes

Title of the Course:								
4EN333 Design and Analysis of Algorithm		2	1	0	3			
Pre-Requisite Courses: Data Structure and Algorithms								
Textbook:								
 "Fundamentals of Computer Algorithms", Ellis Horowitz Galgotia Pubication Ltd, 2010 	, Sartaj Sa	hani, Sangut	herar Ra	jasekara	ın.,			
2. "Design and Analysis of Parallel Algorithms", Selim G. A	ki, PH Pub	lication, 198	9.					
3. "Analysis of Computer Algorithms", Horowitz and Sahni,	, Galgotia	Publishers.,	2007					
References:								
1. <i>"Foundation of Algorithms",</i> Richard E. Neapolita & Kum University), D.C. Heath and Company, Publication, 1996.	narss Naim	nipour (North	neastern	Illinois				
2. <i>"Data Structures and Program Design in C",</i> Robert L. Kr 1984.	use & Bru	nce P. Leung	; et. Al, P	HI Publi	catior			
3. <i>"Data Structures and Algorithms, Sorting and Searching</i> publication, 1984	<i>",</i> Kurt Me	hlhorn, Spri	nger, Vei	lag				
4. <i>"Sorting and Searching: The Art of Computer Programm</i> Wesley, Reading HA (1977).	ing Vol-3"	, Knuth D.E.,	Vol.3. A	ddison-				
Course Objectives :								
1. To provide different algorithm approaches like static, dyna	amic, itera	tive and recu	rsive tecl	nniques.				
2. To explain Comparative features of algorithms on the bas	is of space,	, time compu	tational	complex	ities,			
3. To explain the selection criteria for identifying, formula problem.	ting and a	pplying a typ	oical algo	rithm fo	r give			
Course Outcomes :								
		Bloom's C	ognitive					
CO After the completion of the course	Level	Descripto	or					
the student should be able to -								

	iterative and recursive techniques.		
CO2	Compare the different algorithms on the basis of space, time computational complexities	IV	Analyzing
CO3	Identify the optimum algorithm for given problem.	IV	Analyzing

РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		1												
CO2	2													2
CO3			2											

Assessments :

Teacher Assessment:

Two components of In SemesEvaluation (ISE), One Mid Semester Examination (MSE) and one EndSemester Examination (ESE) havin0%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE

Course Contents:

1 Introduction (6)

Static and dynamic structures, stacks, queues, dynamic memory allocation and pointers, linked stacks and queues, trees and recursion, Hashing:- Sparse-table, hash function, collision resolution with open

addressing and collision resolution by chaining, hashing analysis.

2 Searching and Sorting Algorithms(4)

Sequential search, Binary search, Comparison of trees, Insertion sort, Selection sort (Heap sort), Shell sort. Computational Complexity, lower bound, & comparison of searching and sorting algorithm

3 Divide and Conquer (8)

Merge sort, quick sort (portioning), strassen's matrix multiplication algorithm, Detection Thresholds, Limitation of divide and conquer. Computational complexity of divide and conquer algorithms and their

comparisons

4 Dynamic Programming & Greedy Approach(8)

Binomial Coefficients, Floyd's algorithm for shortest path, Chain matrix multiplication, optimal binary search trees and the traveling salesperson problem, Dynamic programming approach to 0-1 knapsack problem, Minimum spanning traces algorithms (Prim's and Kruskal's) and their Comparison, Dijkstra's algorithm for shortest path. Scheduling. Greedy approach for knapsack 0-1 problem. Comparison between Greedy approach for knapsack 0-1 problem

5 Back Tracking & Branch and Bound(8)

Back tracking techniques, the n-queens problem, Back tracking algorithm's efficiency using Monte Carlo algorithm. Graph coloring, the Hamiltomnian circuits' problem. Backtracking Algorithm for 0-1 Knapsack problem and its comparison with dynamic programming approach. 0-1 Knapsack problem:-Breadth – First search with Branch-and-bound pruning and Best first search with Branch – and – Bound pruning, the Traveling sales person problem.

6 Theory of NP (6)

Intractability, the three general categories of problems. The sets P & NP. NP complete problems, NP-Hard, NP-easy, NP – Equivalent problems, NP Hard problems – Traveling sales person problem and Bin packing problem.

Module wise Measurable Students Learning Outcomes :

After completion of respective modules, Students will be able to -

Module 1: Compare advantages and disadvantages of static and dynamic structures.

Module 2: Implement searching and sorting techniques.

Module 3: Understand divide and conquer approach.

Module 4: Compare performance of dynamic programming with greedy approach

Module 5 & Module 6: Analyze different real time problems and technique to find solutions

Professional Elective 4

Titl	e of the	e Course	e: 4E	EN3	34 M	lobil	e Co	omm	unic	catic	on Er	nginee	ring		L	T	P	Cr
Pro	Requi	site Cor	reee	• Dr	ohal	nility	7 Th	eom	and	d ete	nticti		oital C	Ommu	3 nication	0 Enginee	0 ring	3
	tbooks		1 969	• []	obal	Jinty	y 111	cory	all	u sta	usu	cs, DI	gnarC	omnu	meation	Linginice	ing	
	1. T.S 199 2. Pras	.Rappapo 5 shant Kur	nar	Patr	a, Sa	njit	Kun	nar E	Dash	ı, " <i>M</i>	l obil	e Com	puting	", 2 nd E	", II Ed. I Edition, So	citech, 20)14	ons,
		-	.E.V	Vilk	es, "	Prin	icipl	e an	dA	ppli	catic	on of C	GSM" I	Pearson	n Educati	on, 1999).	
]	Mc	liam C. ` Graw Hil scha Schy	ll Pu	ıblic	atio	n, 19	997						-	·	<i>and Appli</i> Cambridg			
		ojectives													~	~		
	syst	ems.			-				-						ss Cellula systems		nunic	ation
		arning (. 01			~ui U					JIGIUI	5,500115	-		
Г		After	the	con	ple	tion	of tl	ne co	ours	se th	ne sti	udent	should	d be	Bloc	m's Cog	gnitiv	e
	CO				•			able							Level		cripto	
	CO1	Apply f								em	desi	gn to i	mprov	re	III	Ap	plying	5
	CO2	Disting	uish	betv	veen	diff	eren	t mu	ltipl	le ac	cess	techn	ology		IV	Ana	alyzin	g
	CO3	Study ev	volu	tion	of n	nobil	e co	mmı	ınic	atio	n ger	neratio	on stanc	lards	IV	Analy	zing	
	CO4	Analyze solution									allen	ges to	provid	e	IV	Ana	alyzin	g
CO	– PO I	Mapping	g :													•		
		РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2]	
		CO1		2														
		CO2			2										2			
		CO3		2														
		CO4			1					İ -					2			
Tea Two	o comp	its : ssessme onents of xaminat	f In S										emester hts res		ination (I ely.	MSE) an	d one	End
			Asse												Marks			
				SE 1 ASE											$\frac{10}{30}$			
				SE 2											$\frac{30}{10}$			
				ESE											50			

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Module 1 : The Cellular Concept – System Design Fundamentals	Hrs.
Introduction of Cells, Channel Reuse, SIR Calculations, Traffic Handling Capacity: Erlang Performance, Cellular system design, Co channel interference ratio, Co channel interference reduction techniques and methods to improve cell coverage, Frequency management and channel assignment, concepts of cell splitting, handover in cellular system.	7
Module 2 : Multiple Access Technologies	Hrs.
Frequency Division Multiple access (FDMA), Time Division Multiple access (TDMA), Code Division Multiple access (CDMA), spectral efficiency calculations, comparison of T/F/CDMA technologies based on their signal separation techniques, advantages, disadvantages and application areas.	
Module 3 : GSM Architecture and Interfaces	Hrs.
Introduction to GSM subsystems, GSM Interfaces, GSM architecture, details of following blocks in GSM (Mobile station, Base station systems, Switching subsystems, Home location registers, Visiting location registers, Equipment identity register, Echo canceller), Mapping of GSM layers onto OSI layers, GSM Logical Channels, Data Encryption in GSM, Mobility Management, Call Flows in GSM. Mobile Management: Handoff, Location and Paging	8
Module 4 : Higher Generation Cellular Standards	Hrs.
2.5 G Standards: High speed Circuit Switch Data (HSCSD), General Packet Radio Service (GPRS), 2.75 G Standards: EDGE, 3G CDMA 2000, 3G W-CDMA, IMT-2000, Wi-Max, 4G LTE, 5G technology	6
Module 5 : Mobile Ad-hoc Network (MANET)	Hrs.
Introduction, properties, applications, architecture, routing in MANET, proactive and reactive routing protocols, hybrid protocol	7
Module 6 : Mobile Security	Hrs.
Introduction, security in wireless network, information security, security techniques and algorithms, Security protocols.	6

After completion of respective modules, Students will be able to -

Module 1: gain insight into methods to improve overall performance and capacity of cellular networks.

Module 2: get introduced to multiple access technologies for wireless network.

Module 3: understand various concepts in GSM architecture.

Module 4: compare performance of mobile communication generation standards.

Module 5 & Module 6: analyze different mobile networks and security standards.

Title of	the Course	e: 4EN	335	CIV	10S \	/LSI	Desi	gn								L	Т	Р	Cr
																3	0	0	3
Pre-Req	uisite Cou	rses: [Digit	tal E	Electr	ronic	s, El	ectro	onic	Circ	uits	Analy	sis and	Desigr	, Micro	electro	onics		
Textbo										_				D: ·· I					
1.	Jan M. Perspect										-			-	-				gn
2.	Sung-Mc McGraw	Kang,	, Yu	suf	Leble	ebici	, "CI	NOS	Dig	ital									on,
Referen	ces:																		
	Neil We Addison William	Wesl	ley/	Pea	arson	n Edi	ucat	ion,	200)8					•	•		-	
Ζ.	2007.	Dally a	unu	1011		ounto	п, I	Jigita	ais	yste		ignee	, ing ,	Callin	luge OI	iiversit	y Pre	ess, keph	IIL
Course	Objectives	:																	
1.	Explain	the lo	mg	and	d sho	ort cl	hanr	nel N	ЛО	S tra	nsis	stor m	odels	with e	mphasi	is on u	nifie	d model.	
	Explain	the o	con	side	eratio	ons	in c	optir	nizi	ing	the	physi			1				
2	obtainin	U							-		-								
	Explain Develop		-													ntial ci	ircuit	te	
	Learning C		0			10512	511 51		01			como	matioi	iui uno	seque	intiai ei	neun		
COs	After the				af t h			* * * *	at					+		Diago	~^~ C	ognitive	
COS	Alter the	comp	Jeu		or th	eco	urse	the	stu	uen	L SHC		able	10		ыоог		ognitive	
																level		Descripto	or
CO1	Explain t manufac			•				etica	l pri	ncip	les i	nvolve	ed in th	ne proc	ess of	2		Understa	nding
CO2	Model su	ih-mic	ron	200	d doc	n cu	ıhmi	cron	MC)S tr	anci	stors				3		Applying	
02	Woderst		.1011	and		-p 3u		cron	IVIC	J J (1	ansi	31013.				5		лрыуша	
CO3	Analyze					•		•								4		Analyzing	5
	intercon requirem				-				to	mee	t th	e area	, spee	d and	power				
	requiren		ЛС	VIU.	5 085	seu s	yste												
CO4	Demons			-					-							6		Creating	
	circuits a		-				•						by cor	nsiderir	ng the				
	performa	ance p	didi	net	ers II	кеа	rea,	spee	eu a	nu p	owe	er.							
CO-PO N	Mapping :																		
	Γ	РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	02		
	-	CO1	2														1		
		CO2			2												1		

	CO3		3	2									2		
	CO4	2		3					2				2	-	
1 Lou	, 2 -Me	diu	m 3	Ц	rh										
1 -L0w	, 2 -IVIE		m, 5	-11	gn										
ssessments :															
eacher Assess	ment:														
wo componen	ts of In S	eme	ester l	Fval	uatior	n (ISF)	. On	e Mid	Semes	er Exar	ninatio	n (MSF) a	nd one F	nd Sem	ester
xamination (ES															
Assessment									Marks						
ISE 1									10						
									10						
MSE									30						
ISE 2									10						
ESE									50						
MSE: Assessm ESE: Assessm	ent is ba ent is bas	sed sed o	on 50 on 10	0% o	f cour	se co	nten	est/qu t (Nor	iz/sem mally fi	rst thre	e mod		ntent (no	ormally	last
MSE: Assessm ESE: Assessme three modules ourse Content	ent is ba ent is bas s) covere :s:	sed sed o d af	on 50 on 10 ter M	0% 0 0% 0 SE.	f cour	se co	nten	est/qu t (Nor	iz/sem mally fi	rst thre	e mod		ntent (no	ormally	
MSE: Assessm ESE: Assessme three modules ourse Content	ent is ba ent is bas s) covere :s:	sed sed o d af	on 50 on 10 ter M	0% 0 0% 0 SE.	f cour	se co	nten	est/qu t (Nor	iz/sem mally fi	rst thre	e mod		ntent (no	ormally	1
MSE: Assessm ESE: Assessm three modules ourse Content Module 1: MC	ent is ba ent is bas covere :s: OS transi s	sed d af	on 50 on 10 ter M theo i	0% 0 0% 0 SE.	f course	se cont	nten ent v	est/qu t (Nor with 7	iz/sem mally fi 0-80%	rst thre	ee mod age for	course co		ormally	
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta	ent is ba ent is bas covere s: S transi atic cond	sed d af stor	on 50 on 10 ter M theo	% 0 0% (SE. ry con(f course course dary e	se cont	nten ent v	est/qu t (Nor with 7	iz/sem mally fi 0-80%	rst thre	ee mod age for	course co		ormally	Hrs. 5
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta Module 2: Ma	ent is ba ent is bas covere :s: OS transi s atic cond nufactur	sed and aff stor itior	on 50 on 10 ter M theo ns, Se Proce	% 0 0% (SE. 	f course course dary e or CN	se cont e cont ffects	nten ent v 5, MC	est/qu t (Nor with 7	iz/sem mally fi 0-80%	rst thre weighta els, Tec	ee mod age for chnolog	course co		ormally	Hrs. 5
ISE 1 and ISE 2 MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta Module 2: Ma Photolithogra	ent is ba ent is bas covere is: DS transi s atic cond nufactur ohy, Desi	sed d aff stor itior	on 50 on 10 ter M theo ns, Se Proce	% 0 0% (SE. 	f course course dary e or CN	se cont e cont ffects	nten ent v 5, MC	est/qu t (Nor with 7	iz/sem mally fi 0-80%	rst thre weighta els, Tec	ee mod age for chnolog	course co		ormally	Hrs. 5 Hrs. 4
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta Module 2: Ma Photolithogra	ent is ba ent is bas covere cs: DS transis atic cond nufactur ohy, Desi OS Inver	sed of after stor	on 50 on 10 ter M theo ns, Sec Proce Rules,	% 0 0% 0 SE. ry cond ess f	f course course dary e or CN kagin	se cont e cont ffects IOS IC g ICs,	nten ent v ;, MC Ss Ther	est/qu t (Nor with 7	iz/sem mally fi 0-80% CE Moc	rst thre weighta els, Tec ations i	e mod age for chnolog	course co gy Scaling.			Hrs. 5 Hrs. 4 Hrs.
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta Module 2: Ma Photolithogra Module 3: CM Static and Dyn	ent is ba ent is bas covere cs: DS transis atic cond nufactur ohy, Desi OS Inver	sed of after stor	on 50 on 10 ter M theo ns, Sec Proce Rules,	% 0 0% 0 SE. ry cond ess f	f course course dary e or CN kagin	se cont e cont ffects IOS IC g ICs,	nten ent v ;, MC Ss Ther	est/qu t (Nor with 7	iz/sem mally fi 0-80% CE Moc	rst thre weighta els, Tec ations i	e mod age for chnolog	course co gy Scaling.			Hrs. 5 Hrs. 4
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta Module 2: Ma Photolithogra Module 3: CM Static and Dyn on inverter.	ent is ba ent is bas covere s: OS transis atic cond nufactur ohy, Desi OS Inver amic beh	sed of after stor	on 50 on 10 ter M theo ns, Se Proce Rules,	% 0 0% 0 SE. ry cond ess f Pac	f course course dary e or CN kagin	se cont e cont ffects IOS IC g ICs, erter,	nten ent v ;, MC Ss Ther Pow	est/qu t (Nor with 7	iz/sem mally fi 0-80% CE Moc	rst thre weighta els, Tec ations i	e mod age for chnolog	course co gy Scaling.			Hrs. 5 Hrs. 4 Hrs. 8
MSE: Assessm ESE: Assessme three modules ourse Content Module 1: MC MOS under sta MOS under sta Module 2: Ma Photolithogra Module 3: CM Static and Dyn on inverter. Module 4: CM	ent is ba ent is bas covere cs: DS transis atic cond nufactur ohy, Desi OS Inver amic beh	sed d aff stor itior itior ring gn F rter navio	on 50 on 10 ter M theorem theorem Rules, or of 0 tiona	% 0 0% 0 SE. (Y ess f Pac CMC	f course course dary e or CN kagin DS inv	se cont e cont ffects IOS IC g ICs, erter,	nten ent v 5, MC Cs Ther Pow	est/qu t (Nor with 7 DS SPIG	iz/sem mally fi 0-80% CE Moc	rst thre weighta els, Teo ations i y-Delay	e mod age for chnolog n Packa	gy Scaling.	nology sc		Hrs. 5 Hrs. 4 Hrs. 8
MSE: Assessm ESE: Assessm three modules ourse Content Module 1: MC MOS under sta Module 2: Ma Photolithogra Module 3: CM	ent is basent is	sed of after stor ition for a stor ition for a stor for	on 50 on 10 ter M theor ns, Sec Proce Rules, or of 0 tiona	% 0 0% 0 SE. ry cond ess f Pac CMC	f course course dary e or CN kagin DS inv gic Cit	se cont e cont ffects IOS IC g ICs, erter, cuits gn, Co	nten ent v 5, MC Cs Ther Pow	est/qu t (Nor with 7 DS SPIG	iz/sem mally fi 0-80% CE Moc	rst thre weighta els, Teo ations i y-Delay	e mod age for chnolog n Packa	gy Scaling.	nology sc		Hrs. 5 Hrs. 4 Hrs. 8 Hrs.

	Ile 6: Interconnect and Semiconductor Memories	Hrs.
Electr	ical models of wires, Lumped RC Model, Distributed rc line, Transmission Line; Memory	_
Classi	fication, Memory Architectures and Building Blocks, Memory Core: ROM, RAM.	7
1odul	e wise Measurable Students Learning Outcomes :	
fter t	he completion of the course the student should be able to:	
1.	<i>Explain</i> the working of MOS transistor and <i>analyze</i> the performance of MOS transistor.	
2.		
3.	Analyze static and dynamic behaviour of CMOS inverter.	
4.	Analyze and design CMOS combinational logic circuits.	
5.	Analyze and design CMOS sequential logic circuits.	
6.	Analyze the effects of on-chip interconnect (wire) on speed (propagation delay) and	-
	dissipation in CMOS circuits. <i>Explain</i> the semiconductor memory classes and	d then
	implementations.	

itle of	the Course: 4EN336 Digital Image Processing	L	Т		Ρ	Cr
		3	0		0	3
Pre-Red	quisite Courses: Digital Signal Processing					
extbo	oks:					
	Digital Image Processing", R.C. Gonzalez and R.E. Woods, 3rd Pratt, W.K., Digital Image Processing, John Wiley and Sons, Net	· · ·		-Ha	11,	
eferer	nces:					
	 Fundamentals of Digital Image Processing - A.K. Jain M Sonka, V Hlavac and R Boyle, Image Processing, Analysi 	s and Ma	chine V	/isio	on, PW	S 1999
Course	Objectives :					
Course •	To develop an overview of the field of image processing.					
•						
•	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation.					
•	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation. To apply image processing algorithms for real problems.	Bloom's				
• • Course	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation. To apply image processing algorithms for real problems. Learning Outcomes:	Bloom's Level		ive)r	
• • Course	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation. To apply image processing algorithms for real problems. Learning Outcomes:		s Cognit	ive ripto		
Course	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation. To apply image processing algorithms for real problems. Learning Outcomes: After the completion of the course the student should be able to Apply digital image enhancement techniques for gray scale	Level	Cognit	ive ripto onsti	rate	
Course CO CO	To develop an overview of the field of image processing. To illustrate the fundamental algorithms and their implementation. To apply image processing algorithms for real problems. Learning Outcomes: After the completion of the course the student should be able to Apply digital image enhancement techniques for gray scale images and colour images	Level	Cognit Desc Dem	ive ripto onstr oare	rate	

CO-PO

Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		Н												2
CO2			Н											2
CO3		Н												2
CO4			Μ											2

Tutorial:----

Professional Elective-4 Lab

															L	Т		Р	Cr
															0	0		2	1
re-Re	quisite Co	ourses:	Adva	ance	d Di	igital	Con	าmu	nica	atior	n Eng	gineeri	ng						
extbo	ooks:																		
5.	T.S.Rap Prashar V.K.Ga	nt Kuma	ar Pa	ıtra,	Sar	njit K	Kum	ar D	Dash	ı, "N	Mob	ile Co	mputi	ing", 2	nd Edit	ion, So	citec	h.2013	
efere	nces:																		
6.	Willian McGrav Mischa 2009.	w Hill F Schwa	Publi rtz, '	icati ''Mo	on. bile	2014	4				U		C	2				-	-
	NetSim	online	reso	ource	es														
26.	• Objectiv . To intro systems . To fam	oduce th s.		once	pts			-								r Com	mun	nication	n
26. 27. ourse	. To intro systems . To fami	oduce th s. iliarize 5 Outcor	with nes:	once 1 stat	pts te o	f art	star	ndar	ds u	ised	l in v	wirele	ss cell	lular s					
26. 27. ourse	. To intro systems . To fami	oduce th s. iliarize	with nes:	once n stat	pts te o	f art	star	ndar	ds u	ised	l in v	wirele	ss cell	lular s		BI	oom	's Cogr	nitive
26. 27. Durse	. To intro systems . To fami Learning	oduce th s. iliarize g Outcor he comp	with nes: pletio	once n star	pts te o	f art e cou	star	the s	ds u	lsed	l in v	wirele	ss cell	lular s <u>i</u>	ystems.	Bl	oom	ı's Cogr Desi	nitive criptor
26. 27. Durse	. To intro systems . To fami e Learning After t Analyze	oduce th s. iliarize 5 Outcor	with nes: pletic	once i stat	te o f the	f art e cou	star Irse	the s	ds u	lsed	l in v	wirele	ss cell	lular s <u>i</u>	ystems.	BI	oom	ı's Cogr Desi	nitive
26. 27. ourse CO	. To intro systems . To fami e Learning After t Analyze of diffe	oduce th s. iliarize g Outcor he comp e the perent per te the p	with nes: oletio	once i stat on o man	te o f the ce c	f art e cou of dif	star Irse Ire	ndar the :	ds t	dent	l in v	wirele uld be	ss cell able t standa	lular s <u>r</u> t o ards in	ystems.	Bl	oom	ı's Cogr Desi Ana	nitive criptor
26. 27. Durse CO CO1	. To intro systems . To fami e Learning After t Analyze of diffe	oduce th s. iliarize g Outcor he comp e the perent per te the p rds.	with nes: oletio	once i stat on o man	te o f the ce c	f art e cou of dif	star Irse Ire	ndar the :	ds t	dent	l in v	wirele uld be	ss cell able t standa	lular s <u>r</u> t o ards in	ystems.	Bl level IV	oom	ı's Cogr Desi Ana	nitive criptor Iyzing
26. 27. Durse CO	. To intro systems . To fami e Learning After t Analyze of diffe Estima standa	oduce th s. iliarize g Outcor he comp e the perent per te the p rds.	with nes: oletio	once i stat on o man	te o f the ce c	f art e cou of dif	star Irse Ire	ndar the :	ds t stuc	dent	l in v	wirele uld be	ss cell able t standa	lular s <u>r</u> t o ards in	ystems.	Bl level IV	oom	ı's Cogr Desi Ana	nitive criptor Iyzing
26. 27. ourse CO CO1 CO2	. To intro systems . To fami e Learning After t Analyze of diffe Estima standa	oduce th s. iliarize g Outcor he comp e the per erent per te the p rds.	with nes: pletion rform erfor	once 1 stat on o man nanc	pts te o f the ce c ce m	f art e cou of dif neasu of di	star Irse Ifere Ire	the s	ds u stuc	dent	l in v	wirele	standa	lular s	terms	Bl level IV V	000m	ı's Cogr Desi Ana	hitive criptor Iyzing
26. 27. ourse CO CO1 CO2	. To intro systems . To fami e Learning After t Analyze of diffe Estima standa	oduce the s. iliarize g Outcor he comp e the perent per te the per rds. g: PO	with nes: pletion rform erfor	once 1 stat on o man nanc	pts te o f the ce c ce m	f art e cou of dif neasu of di	star irse ire ffere 5	the s	ds u stuc	dent	l in v	wirele	standa	lular s	terms curity PSO1	Bl level IV V	000m	ı's Cogr Desi Ana	hitive criptor Iyzing

Teacher Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Based on	Conducted by	Conduction and Marks Submission	Marks
Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
attendance, journal		Submission at the end of Week 5	23
Lab activities,	Lab Course Eaculty	During Week 5 to Week 8	25
attendance, journal	Lab Course racuity	Submission at the end of Week 9	25
Lab activities,		During Week 10 to Week 14	25
attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25
Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
related documentation	Lab Course faculty	Submission at the end of Week 18	23
	Lab activities, attendance, journal Lab activities, attendance, journal Lab activities, attendance, journal Lab Performance and	Lab activities, attendance, journalLab Course FacultyLab activities, attendance, journalLab Course FacultyLab activities, attendance, journalLab Course FacultyLab activities, attendance, journalLab Course FacultyLab Performance and Lab Course facultyLab Course faculty	Lab activities, attendance, journalLab Course FacultyDuring Week 1 to Week 4 Submission at the end of Week 5Lab activities, attendance, journalLab Course FacultyDuring Week 5 to Week 8

List of Experiments :

- 1. Study of GSM system
- 2. Understanding 3G communication system
- 3. Understanding 4G/ LTE communication system.
- 3. Introduction to NetSim
- 4. Modeling and Simulation of simple network using NetSim
- 5. Study of GSM network for different performance measure parameters
- 6. Study how the throughput of LTE network varies as distance between ENB and UB varies.
- 7. Study how the throughput of LTE network varies as the channel bandwidth changes.
- 8. Analysis of LTE handover
- 9. Analyzing the performance of MANET

Title of	the Cou	rse: 4E	EN385	CMOS	S VLSI	Desig	n Labor	ratory						L	Т	Р	Cr
														0	0	2	1
Pre-Rec	uisite C	ourses	: Digit	tal Elec	tronic	cs, Ele	ctronic	Circui	ts Ana	alysis a	and De	esign, I	Micro	electi	onics		I
Textbo	oks:																
3.			· · ·						-		-		-			A Desi	gn
4.	•						all India OS Dig		-							.4. 3 rd Editio	n,
	McGra		-				d., 201								0 /		
Referen	ces:																
3.	Cader	nce Ma	anual.														
4.	Microv	wind N	lanua	I.													
Course	Objectiv	/es :															
1	D			<u> </u>	- f T		1- (4	<u>C. 1</u>		1:		C	1		CMC	Q 1:-:4-	1
1.							ools ()						-	-		OS digita designin	
	digita			nee 1	0015 (Schel		enti y	10 511	nuiau	1011)	U) I	viicit	Jwinc	101	uesigiiii	g
Course				:													
СО	After t	the co	mpleti	ion of	the co	ourse t	he stud	dent sl	hould	be ab	le to			Bloo	n's Co	gnitive	
													-	level		Descripto	r
CO1	-	n and S	Simula	i te sch	emati	cs of C	MOS c	ircuits	using	Cade	nce/ N	licrow	ind	VI	(Creating	
	tools.																
CO2	Desigr	n and	Simul	ate ph	iysical	layou	ıts witł	n optii	mum	area	for ga	tes, pa	ass-	VI	(Creating	
	Transis	stors,	Transr	nissior	gates	s using	Caden	ce/ M	icrow	ind to	ols.						
CO-PO I	 Mappinį	g :															
											-						
	POs	1	2	3	4	5	6	7	8	9	10	11	12	PSC	01	PSO2	
	CO1			3	2	3										3	
	CO2			3	2	3										3	
	1 -Low	, 2 -Me	edium	, 3 -Hi	gh	I	<u> </u>	1	1		1			1]	
Assessn	nents :																
Lab Ass	essment	t:															
There a	re four c	compo	nents	of lab	assess	sment,	. LA1, L	A2, LA	3 and	Lab E	SE.						
IMP: La	b ESE is a	a sepa	rate h	ead of	passi	ng.											

Assessmen t	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Course Contents:

This laboratory course develops professional skills of using EDA (CAD) tools from Cadence and/or Microwind to design the physical layouts with constraints of design rules and simulating CMOS digital circuits for performance. In this laboratory course, students will be able to understand about models and model parameters of MOS transistor, CMOS Inverter etc. which are suited for CMOS Digital IC design.

List of Experiments: (Minimum 8 experiments)

Using Cadence Design Tools:

- 1. MOS Transistor (NMOS and PMOS) characterization
- 2. Implementation of CMOS inverter and its characterization for VTC and power for equal area and equal delay approach
- 3. Implementation of 2-input NAND and NOR gate
- 4. Implementation of AND gate and OR gate using pass transistors logic and transmission logic

Using Microwind Design Tools:

- 1. Demonstration of Microwind tool for layout by explaining DRC and simulation.
- 2. Implementation of inverter, 2 input NAND gate and any other circuit for practice.
- 3. 1-bit RAM/ ROM using MOS transistors.
- 4. Implementation of Ring oscillator.

Module wise Measurable Students Learning Outcomes :

After the completion of the course the student should be able to:

Tutorial:

e or the	Course: 4EN3	86 Digit	tal In	nage	Proc	cessi	ng	Lab					L	Т	Р	Cr
													0	0	2	1
-Requis	ite Courses: D	igital Si	gnal	Proc	essir	ng									1	
tbooks:																
	igital Image I blications	Process	ing"	', R.0	C. G	onza	alez	and	1 R.	E. Wo	oods, 3	3rd Ec	lition, P	Prentice	-Hall	
erences	:															
3.	Fundamenta	ls of D	igita	l Im	age	Proc	cess	ing	- A.	K. Ja	in					
ırse Obj	ectives :															
	Ability to lea	-		mag	e pr	oces	sing	g teo	chni	ques	and ap	oply ir	n practic	cal prob	olems us	ing
	MATLAB/ I	1 1														
		ython														
		-														
ırse Lea	rning Outcome	-														
ırse Lea		-														
Irse Lea		es:		the	cour	se th	ne st	ude	ent s	hould	be abl	le to	Bloor	n's Cog	nitive	
	rning Outcom	es:		the	cour	se th	ne st	ude	ent s	hould	be abl	le to	Bloor			
СО	rning Outcome	es: mpletic	on of										Level	De	escriptor	
	After the con	es: mpletic	on of											De		te
CO CO1	After the con Apply image images	enhano	on of	ent a	lgori	thms	s for	gra					Level	De	escriptor emonstra	te
CO CO1 CO2	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra mpare	te
CO CO1	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level	De De Co	escriptor emonstra	te
CO CO1 CO2	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra mpare	te
CO CO1 CO2	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra mpare	te
CO CO1 CO2	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra mpare	te
CO CO1 CO2	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra mpare	
CO CO1 CO2 CO3	After the con Apply image images Analyze spat	enhano	on of	ent a uenc	lgori y do	thms mair	s for	gra ers	y sca	ale and	d colou	ır	Level III IV	De De Co	escriptor emonstra ompare mpose	
CO CO1 CO2 CO3	After the con Apply image images Analyze spat Develop pro purpose	enhand ial and grams	on of ceme freq for ir	ent a uenc mage	lgorii y do e rest	thms mair orat	ion	gra ers and	y sca	ale and ge seg	d colou menta	ation	Level III IV VI	De De Co Co PSO2	escriptor emonstra ompare mpose	
CO CO1 CO2 CO3	After the con Apply image images Analyze spat	enhand	on of ceme freq for ir	ent a uenc mage	lgorii y do e rest	thms mair orat	ion	gra ers and	y sca	ale and ge seg	d colou menta	ation	Level III IV VI	De De Co	escriptor emonstra ompare mpose	

CO3			2					2	
CO4	2							2	

Assessments : Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
	attendance, journal	Lab Course racuity	Submission at the end of Week 5	25
142	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LA2	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25
	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lab ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	25

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents:

Lab Experiments are as follows

1. To study and develop programs for Image Operations in spatial domain using following

techniques

- Brightness Enhancement
- Brightness Suppression
- Contrast Manipulation
- Histogram Equalization
- Determination of Image Negative
- Threshold Operation
- Gray level slicing without preserving background
- Gray level slicing with preservation of background
- Logarithmic Transformation
- Power Law Transformation
- Spatial domain Filtering
- Noise minimization using averaging filter
- Noise minimization using median Filter
- Un-sharp masking
- Bit-plane slicing

2. To study and develop programs for following Image Operations in Frequency domain

- Low pass filter
- High pass filter
- Band pass filter

3. To write programs for implementing the Image Arithmetic for following operations

- Addition
- Subtraction
- Multiplication
- Division

4. To study Image Restoration and de noising techniques by developing programs for the following

- Create motion blur
- Inverse filtering
- Psudo inverse filter
- Wiener filter

5. To study various Colour Image Processing concepts by developing programs for following

- Extraction of Red Green and Blue Components of colour image
- Removal of RGB Plane
- Histogram of a colour image
- Histogram equalization of a colour image
- Various types of filtering of a colour image
- Pseudo-colouring Operation

Module wise Measurable Students Learning Outcomes :

- 5. Students will be able to demonstrate image enhancement and image filtering operations in spatial domain
- 6. Students will be able to exhibit image filtering operations in frequency domain
- 7. Students will be able to reveal Image Arithmetic
- 8. Students will be able to illustrate image restoration techniques
- 9. Students will be able to apply image processing techniques for colour images

Open Elective Courses

Open Elective-2

Title of	the Course: 4OE366 Biomedical Engineering	L		Т	Р	Cr
		3		0	0	3
re-Rec	uisite Courses: Electronics Measurement and Instrumentation					
extbo	oks: (NOT MORE THAN 3)					
9.	"Medical Instrumentation", John. G. Webster, John Wiley					
10.	"Principles of Applied Biomedical Instrumentation", Goddes& Baker,	John Wile	у			
11.	"Biomedical Instrumentation & Measurement", Carr & Brown, Pearso	on				
Referer	ices: (NOT MORE THAN 3)					
	16. Hand book of Medical instruments by R.S. Khandpur – TMH, New	Delhi, 198	7.			
	17. Medical Electronics and Instrumentation by Sanjay Guha – Univer			n, 200.		
	18. Introduction to Biomedical electronics by Edward J. Bukstein –sa					
Course	Objectives :			·		
28.	To explain the basics body cell structure and different types of transc	lucers				
	To explain the different types of patient monitoring system					
30.	Understand the design concept of different Medical instruments					
31.	To demonstrate different medical instruments					
Course	Learning Outcomes:					
СО	After the completion of the course the student should be able to	Bloom's	s Cog	gnitive		7
		level	D	escript	or	-
CO1	Understand CNS-PNS and Cardio pulmonary system	11	U	ndersta	anding	_
CO2	Select proper sensors for sensing biomedical signals to be applied		A	pplying		-
	to biomedical instrumentation setup					
CO3	Design ECG,EEG and EMG amplifier	VI	C	reating		
CO4	Explain block diagram of patient monitoring systems and X-ray	II	U	ndersta	anding	
	machine, CT scan and Ultrasonography machine.					

CO-PO Mapping :

РО	1	2	3	4	5	6	7	8	9	10	11	PSO1	PSO2
CO1	3											2	
CO2					3	2						2	
CO3			3									2	
CO4									3			2	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Marks
10
30
10
50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module1: Fundamentals of Medical Instrumentation	Hrs.
Physiological Systems of the body, Sources of Biomedical signals, Basic Medical Instrumentation system, Micro-Electro-Mechanical System (Mems), Wireless Connectivity in Medical Instruments, General Constraints in design of Medical Instrumentation Systems	8
Module2: The Origin of Bio potentials, Bio potential Electrodes &	
Biosensors	5
Electrical activity of Excitable Cells, Functional Organization of the Peripheral Nervous System, Electrocardiogram (ECG), Electromogram (EMG), Electroencephalogram (EEG),	

Electroretinogram(ERG) and their recording system, Biomedical signal Analysis and Processing		
Techniques.		
Module3: Patient Monitoring Systems	8	
System Concepts, Cardiac Monitor, Bedside patient Monitoring Systems, Central Monitors,		
Measurement of Heart rate, Measurement of Temperature, Measurement of respiration Rate, Biomedical Telemetry Systems		
biomedical relemently systems		
Module4: Modern Imaging Systems		
X-ray machines And Digital Radiography, X-ray Computed Tomography, Nuclear Medical		
Imaging Systems, Magnetic Resonance Imaging Systems, Ultrasonic Imaging Systems and Thermal Imaging Systems.	10	
Module5: Assisting and Therapeutic Equipment's	7	
Cardiac Pacemakers, Defibrillators, Diathermy, Hemodialysis Machines, Ventilators		
Module6: Laser Application in Biomedical Field	3	
The Laser, Types of Lasers, Laser Application, Laser Safety		
Module wise Measurable Students Learning Outcomes :		
Module 1 Explain CNS-PNS system and various types of transducers		
Module 2 Describe different Bio signals and their recording systems		
Module 3 Explain bio signal and recording system		
Module 4 Explain Patient Monitoring system		
Module 5 Demonstrate the X-Ray machine		
Module 6 Explain therapeutic equipments		

Value added Professional cores

Title of	f the Cou	rse: Au	tomo	tive	Hard	ware	e Dev	ices							L 2	Т 0	P 0	Cr 2
Pre-Re	quisite C	ourses:	Mic	rocoi	ntroll	er, E	mbe	dded	l Syst	ems								
Textbo	ooks:																	
1. 2.	Autom Williar Newne	ns. B. I	Ribbe	ens: '	"Unc												ondon. er Scienc	e,
Refere	nces:																	
2. 3.	Unders Heinen Diesel Unders Autom	nann. Engine tanding	Mar g Au	nager	ment otive	t by I Elec	Robe ctron	ert Bo ics –	osch. Bec	, SAI hfold	E Pu 1 SA	blica	tions				utterwort	h—
	Objectiv						0110											
1. 2.	To und To dev Hardw	elop ur	nders	tand	ing a											choice (of approp	oriate
3.	To desent	cribe va				inica	tion	syste	ems,	wire	d an	d wii	reless	s prote	ocols us	ed in ve	hicle	
4.	To und	0	l Safe	ety s	tanda	ards	and	vehi	cle o	n boa	ard a	nd o	ff bo	ard di	agnosti	cs.		
Course	e Learning	g Outco	mes:															
									• •							Bloom's	Cognitive	9
СО	After t	he com	pletic	on of	the o	cours	se the	e stu	dent	shou	ld be	able	to		le	vel	Descri	ptor
CO1		and au												ication	Unde	rstand	Unders	tand
CO2	Demon microco	strate ontrollers	inter s	facing	g of	aut	tomol	tive	sens	ors	and	actu	ators	with	Ехр	lain	Demons	strate
CO3	Develo	p, simula	ate an	d inte	egrate	e cont	trol al	goritl	nms f	or ECl	Js wi	h har	dwar	e	Арр	lying	Арр	ly
CO4	Apply th	ne know	ledge	for so	olutio	n buil	lding								Crea	ating	Desi	gn
										•								
CO-PO	Mappin	g :																
		РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2]	
		CO1														Н	1	
L		L	1	1	I	I	1		1	1	I	1	1	1		l		

	CO2											1	М			
	CO3				М											
	CO4		н													
					-	L - H, 2	- M,	3 – L								
Assessments	;:															
Feacher Asse																
					()				_				_,			
	ents of In Sem (ESE) having 2								er Exa	mina	tion	(MS	E) and	one	End Ser	nester
Admination		.070, 30.	70 and	1 3070	weig	nts res	pectr	very.								
	Asse	essment	t									Ma	rks			
		SE 1										1	0			
		MSE										3	0			
		VIJL										5	0			
		~ ~ ~														
	I	SE 2										1	0			
		SE 2 ESE										1 5				
ISE 1 and IS		ESE	anme	nt/de	oclared	test/		emin	ar/or		tc					
	E 2 are based	ESE on assig										5				
		ESE on assig										5				
MSE: Assess	E 2 are based	ESE on assig d on 509	% of c	course	e cont	ent (N	orma	lly fir:	st thre	ee m	odul	5 es)	0	ent (n	ormally	/ last
MSE: Assess ESE: Assess	E 2 are based of sment is based	ESE on assig d on 509 l on 100	% of c)% co	course	e cont	ent (N	orma	lly fir:	st thre	ee m	odul	5 es)	0	ent (n	ormally	/ last
MSE: Assess ESE: Assess three modu	E 2 are based sment is based sment is based iles) covered a	ESE on assig d on 509 l on 100	% of c)% co	course	e cont	ent (N	orma	lly fir:	st thre	ee m	odul	5 es)	0	ent (n	ormally	/ last
MSE: Assess ESE: Assess three modu Course Conto	E 2 are based sment is based sment is based iles) covered a ents:	ESE on assig d on 509 l on 100 fter MS	% of c)% co SE.	course urse (e cont	ent (N nt witł	orma 1 70-8	lly fir: 0% w	st thre eight	ee m	odul	5 es)	0	ent (n	ormally	
MSE: Assess ESE: Assess three modu Course Conte	E 2 are based sment is based sment is based iles) covered a	ESE on assig d on 509 l on 100 fter MS	% of c)% co SE.	course urse (e cont	ent (N nt witł	orma 1 70-8	lly fir: 0% w	st thre eight	ee m	odul	5 es)	0	ent (n	ormally	/ last Hrs.
MSE: Assess ESE: Assess three modu Course Conto Module 1 : E	E 2 are based sment is based ament is based ales) covered a ents: /E Architecture o	ESE on assig d on 509 l on 100 fter MS f IC Engi r engine p	% of c)% co SE. ne and	course urse d increa	e conte conte asing tr	ent (N nt with ends of Archit	orma n 70-8 Hybric	lly firs 0% w lisation	st three reight n cro, N	ee m age f	odule or co	5 es) ourse	0 e cont	lug-in	Hybrid	Hrs
MSE: Assess ESE: Assess three modu Course Conto Module 1 : E E/E Architectu /ehicles, Elect	E 2 are based sment is based sment is based iles) covered a ents: /E Architecture o ure of typical IC	ESE on assig d on 509 l on 100 fter MS f IC Engin engine p ents of ty	% of c)% co SE. ne and passer ypical	urse of the second seco	e conte conte asing tr ar, E/E nobile	ent (N nt with ends of Archit and dis	orma n 70-8 Hybric ecture stribut	lly firs 0% w lisation	st three reight n cro, N	ee m age f	odule or co	5 es) ourse	0 e cont	lug-in	Hybrid	
MSE: Assess ESE: Assess three modu Course Conto Module 1 : E E/E Architectu /ehicles, Elect	E 2 are based sment is based ament is based ales) covered a ents: /E Architecture o	ESE on assig d on 509 l on 100 fter MS f IC Engin engine p ents of ty	% of c)% co SE. ne and passer ypical	urse of the second seco	e conte conte asing tr ar, E/E nobile	ent (N nt with ends of Archit and dis	orma n 70-8 Hybric ecture stribut	lly firs 0% w lisation	st three reight n cro, N	ee m age f	odule or co	5 es) ourse	0 e cont	lug-in	Hybrid	Hrs
MSE: Assess ESE: Assess three modu Course Conte Module 1 : E E/E Architectu /ehicles, Elect ntroduction t	E 2 are based sment is based sment is based iles) covered a ents: /E Architecture o ure of typical IC	ESE on assig d on 509 l on 100 fter MS f IC Engin engine p ents of ty nic comp	% of c)% co SE. ne and passen ypical ponen	increa auton hts in E	e conte conte asing tr ar, E/E nobile Electric	ent (N nt with ends of Archit and dis c Vehic	orma n 70-8 Hybric ecture stribut les	lly firs 0% w lisation	st three reight n cro, N	ee m age f	odule or co	5 es) ourse	0 e cont	lug-in	Hybrid	Hrs.
MSE: Assess ESE: Assess three modu Course Conto Module 1 : E, E/E Architectu /ehicles, Elect ntroduction t Module 2 : co	E 2 are based sment is based ales) covered a ents: /E Architecture o are of typical IC tronic Compone to major Electro	ESE on assig d on 509 l on 100 fter MS fIC Engin engine p ents of ty nic comp pols and r	% of c 0% co SE. ne and passen ypical ponen metho	increa auton ts in E ds in A	e conte conte asing tr ar, E/E nobile Electric	ent (N nt with ends of Archit and dis : Vehic tive Ind	orma n 70-8 Hybrid ecture stribut les lustry	lly firs 0% w lisation of Mi ion in	st three reight n cro, M doma	ee m age f 1ild, S iins- E	oduli for cc	5 es) ourse , Para Pow	0 e cont	lug-in h, Chas	Hybrid	Hrs. 4 Hrs.
MSE: Assess ESE: Assess three modu Course Conte Module 1 : E, E/E Architectu /ehicles, Elect ntroduction t Module 2 :co	E 2 are based sment is based ament is based ales) covered a ents: /E Architecture o are of typical IC tronic Compone to major Electro	ESE on assig d on 509 l on 100 fter MS f IC Engir engine p ents of ty nic comp nic comp ools and r	% of c 0% co 5E. ne and passen ypical ponen metho	l increa auton nts in f ds in A	e conte conte asing tr ar, E/E nobile Electric sutomo	ent (N nt with ends of Archit and dis vehic vehic stive Ind	orma n 70-8 Hybric ecture stribut les lustry - NXP	lly firs 0% w lisation of Mi ion in	st three reight n cro, N doma	ee m age f 1ild, S iins- E	odule or cc eries Body, nilies	5 es) ourse , Para Pow	0 e cont allel, P ertrain	lug-in h, Chas	Hybrid	Hrs
MSE: Assess ESE: Assess three modu Course Conte Module 1 : E E/E Architectu Vehicles, Elect Introduction t Module 2 : co DFMEA : Desig microcontrolle	E 2 are based sment is based ament is based ales) covered a ents: /E Architecture o are of typical IC tronic Compone to major Electro ommonly used To gn for Failure, Lo	ESE on assig d on 509 l on 100 fter MS f IC Engin engine p ents of ty nic comp ools and r pow End r	% of c 0% co SE. ne and passen ypical ponen metho microo K fam	l increa auton nts in E ds in A contro	asing tr asing tr ar, E/E Electric oller pl gh Enc	ent (N nt with ends of Archit and dis Vehic tive Inc atform	orma n 70-8 Hybric ecture stribut les lustry - NXP	lly firs 0% w lisation of Mi ion in	st three reight n cro, N doma	ee m age f 1ild, S iins- E	odule or cc eries Body, nilies	5 es) ourse , Para Pow	0 e cont allel, P ertrain	lug-in h, Chas	Hybrid	Hrs. 4 Hrs.
MSE: Assess ESE: Assess three modu Course Conto Module 1 : E, E/E Architectu /ehicles, Elect ntroduction t Module 2 : co DFMEA : Desig microcontrollo	E 2 are based sment is based ament is based ales) covered a ents: /E Architecture o are of typical IC tronic Compone to major Electro ommonly used To gn for Failure, Lo er platform- Rer	ESE on assig d on 509 l on 100 fter MS f IC Engir engine p ents of ty nic comp nic comp ools and r nesas F1 nesas F1	% of c 0% co 5E. ne and passen /pical ponen metho K fam	ds in A contro ily, Hij	e conte conte asing tr ar, E/E nobile Electric sutomo oller pl gh Enc	ent (N nt with ends of Archit and dis Vehic tive Ind atform I micro	orma n 70-8 Hybric ecture stribut les lustry - NXP contro	lly firs 0% w lisation of Mi ion in S32K a iller pl	n cro, N doma	ee m age f 1ild, S iins- E EA far m -Inf	odule for cc eries Body, nilies	5 ourse , Para Pow	0 e cont allel, P ertrain I Rang ix	lug-in n, Chas e	Hybrid sis etc.	Hrs. 4 Hrs. 4

Module 4 : Test and Measurement Instrumentation Introduction to commonly used instrumentation- Oscilloscope, LCR, Meter, Spectrum Analyser, Network Analyser,	
Introduction to commonly used instrumentation- Oscilloscope LCR Meter Spectrum Analyser Network Analyser	Hrs.
Thermal Camera, LISN	7
Selection of Power Switching Devices - MOSFETs/IGBTs/SiC/GaNFETs, Gate Driver Design, Power Loss Calculations, Thermal management, Design Considerations for High Voltage Applications	
Module 5 : Electromagnetic Compatibility and Protection	Hrs.
Introduction to various regulatory requirements and International electrical and EMC standards, Understanding Origin of pulses, disturbances, circuit, and PCB layout design techniques to meet EMC, Protection techniques- protection from over-voltage, reverse polarity, Electrostatic Discharges	4
Module 6: Design for Manufacturability and Testability	Hrs.
PCB layout considerations, dependencies on HW developers, Introduction and examples for Design for Manufacturability, Design for Testability (DFM and DFT), Manufacturing Interfaces and process flow- ICT , AOI, and EOL testing, Visit to PCB Assembly House (TBD)	5
Module wise Measurable Students Learning Outcomes :	
Module 1:Explain IC Engine and increasing trends of Hybridisation	
Module 2:Demonstrate Commonly used Tools and methods in Automotive Industry	
Module 3:Illustrate methods of interfacing and communication in Automotive	
Module 4: Introduction of testing and measurement techniques	
Module 5: Explain Electromagnetic Compatibility and Protection	
Module 6: Describe methods of design for testability	

	se Nan	v	thon I	Progra	mmin	ıg						L	Т	P	Cr
	se Cod											2	0	2	3
	equisi eering								outer P	rogram	min	g fo	r Elec	tronics	
Textb	-	, D'ulu	Bilde	ture un	<u>a 1115</u>		Lucor	utory							
		es R. S	everar	nce, "P	ython	for Ev	erybo	dy ", C	Creativ	e Com	mon	s At	tribut	ion-No	n
	nercial														
	Padm	anabha	an, "P	rogram	nming	with F	ython	", Spri	nger,	2016					
	ences:														
	havan				-						. 01.		A 121	1.0	
	i. Swai ational	1 '		e of P	ytnon	, Crea	nve C	ommo	ns Att	ributior	1-SN	are A	Апке	4.0	
	se Obj														
				ve skill	ls in pr	ogram	nming	in a sv	stema	tic way	and	pre	oaring	g the	
studer	-		1		1	U	U	2		J		1 1			
	licatio		-		-				-						
	nake tl	ne stud	lents u	inderst	and ba	asics o	f pytho	on prog	gramn	ning and	d ad	vant	ages o	of it ov	er
other	~	:		• ~											
	gramm analyze	-			ous me	ethods	to sol	ve the	nrohle	em and	to d	evel	on va	rious	
	orithms		ompa		ous iii	cinous	10 301	ve the	proor	and and	10 U		sp va	inous	
•	se Lea		Outco	mes:											
COs					the co	ourse tl	he stud	lent sł	nould l	be able	to			Cogni	
			1									Lev	vel	Descri	ptor
CO1	vario	us data	a struc	ture	-	-	python			-		П	Ι	Apply	ving
CO2	Writ	e prog	ram to	o imple	ement	algorit	thms a	nd app	olicatio	ons		Π	Ί	Apply	ving
CO3	Desi	gn and	l deve	lop sm	nall ap	plicati	ons us	ing py	thon			V	T	Creat	ing
CO-P	O Maj	pping:	:												
	1	1	1	1	1	1	1	1	1	1				1	
PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	РО	11	PO12	PSO1	PSO
CO1	1	1		1	1										
CO2 CO3	1	1		1	1	2			2						2
05	1	1		1	1	2			2						2
						1 - H,	, 2 - M	, 3 – L							
Asses	sments	s:													
	er Ass		ent:												
50% I	SE and	1 50%	ESE.	ISE wi	ill be b	based of	on cont	inuou	s asses	sment	base	d on	lab		
-		-			-					lication	-	-	-		
groups ESE.	s and o	ral at t	the end	d of se	mester	r. Exte	rnal or	al wit	h perfo	ormanc	e wi	ll be	cond	ucted f	or

Continuous Derformance Evaluation based on dealared tests /a	uizzoa
ISE 50 Continuous Performance Evaluation based on declared tests /q /mini project /seminar/ assignments etc.	uizzes
ESE 50 Based on External practical and oral examination.	
Course Contents:	
	Hours
Module 1:Review of programming and introduction to python programming Review of programming concepts: flow charts, algorithm and pseud code, loops,	nours
functions, decision making blocks	
Python introduction: why python? advantages of python over other programming	4
languages, python versions, installing and using python	
Lab session:	
Lab session to install python, use of terminal to run code / script, installation use of	4
source code editor to prepare script	4
Programs to understand python programming	
Module 2: Basics of Python	
Data Types, Variables, Basic Input-Output Operations, Basic Operators, Logic and	
bit operations in Python, Expressions, storing - retrieving and calculating	4
information from computer memory using python	
Lab session:	
Programs to study data types, variables and constants in python programming and	4
understanding memory mapping Programs to study python operations, expression evaluation and type conversion	
Programs to study python operations, expression evaluation and type conversion Module 3: Function, conditional code, loops and iterations, lists in python	
Writing functions, returning a result from a function, scopes in Python conditional	
code, loops and iterations in python, Lists, Sorting simple lists - the bubble sort	5
algorithm, Lists in advanced applications	C
Lab session:	
Program to implement python functions	(
Program to study conditional code, loops and iterations	6
Program to perform list operations	
Module 4: String, Tuples and dictionaries in python	
String: Operations, library, conversion, indexing, slicing, comparison, looping	
through strings with for and while, concatenating, stripping white spaces.	
Dictionaries: Lists verses dictionaries, constant, common words, dictionary loops,	5
use of get () method, dictionary sorting.	
Tuples: Tuple syntax, immutability, comparability, sorting, Tuples in assignment	
statements, Sorting dictionaries by either key or value. Lab session:	
Programs to study string	
Programs to dictionaries	6
Programs to tuples	
Module 5: Files, Modules and Packages python	
Files: Secondary storage, file handle, file structure, reading a file line by line with a	
for loop, searching in file, dealing with files	5
Modules: What is a Module? Create and use module, Variables in Module.	
Lab Session :	
Programs to study file operations	4
Programs to modules	
Module 6: Applications of Python	

Overview / demonstration / case study of some python applications like python in web development, web scrapping, machine learning and Artificial inelegance, audio and video applications.	3	
Lab sessions:	2	
Programs to implement small application using python		
Computer Usage / Lab Tool: Windows / Linux based system, python source code editor		
Module wise Measurable Students Learning Outcomes:		
After the completion of the course the student should be able to		
Module 1: Understand the working principle of a computer and identify the purpose of a		
computer programming language		
Module 2: demonstrate operations of python		
Module 3: implement algorithm to sort list		
Module 4: understand and use string, tuples and dictionaries		
Module 5: understand and use files, modules and packages		
Module 6: develop and demonstrate application using python		