Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Final Year B. Tech. (Electronics Engineering) Sem – VII to VIII

AY 2020-21

Title of	the Course: Real Time Operating System 3EN401	L- 3	T- 0	P- 0	Cr- 3
Pre-Req	uisite Courses:				
Courses	with C programming, Microcontroller, Peripherals and Inter	facing, E	mbedded	System I	Design
Textboo	oks:				
1. "Micr	roC OS II: The Real Time Kernel" Jean J. Labrosse, CMP books	ISBN: 97	78-157820)1037	
2. <i>"Real</i> ISBN	- <i>Time Concepts for Embedded Systems"</i> , Qing Li, CarolineYac : 978-1578201242) Elsevier			
3. "Simp ISBN	ole Real-time Operating System: A Kernel", Chowdary Venkat : 978-1425117825	eswara A	Amazon,		
Referen	ices:				
1. 2. 3. 4.	www.micrium.com for uCOS-II related documents, tuto www.nxp.com for processor specific documents. www.wikipedia.org for general OS related basic literatu www.NPTEL.org for OS and RTOS related video cours	orials, do ure. ses.	ownloads		
Course	Objectives :				
1. To ex	plain/illustrate/demonstrate need of RTOS and services prov	vided by i	it.		
2. To ex	plain/illustrate/demonstrate services provided by RTOS and	their imp	olementat	ion	
3. To ex	plain/illustrate/demonstrate how to design of applications u	sing RTC	S.		
(The RT	OS used is uCOS-II as a case study).				
Course	Learning Outcomes:				
				Bloom's (Cognitive
СО	After the completion of the course the student should be	able to	leve	el D	escriptor
CO1	Apply the knowledge of RTOS to decide whether a given sy suitable for RTOS based implementation.	stem is	2		Apply
CO2	Apply the theory and implementation of task, time and ever management, inter-task communication and memory mana	ent agement	. 2		Apply
CO3	Analyze the given program/problem or solve given RTOS be problem by Applying the theoretical knowledge acquired.	ased	4		Analyze
CO4	Design the tasks and their interactions by using appropriate services for writing application programs for a given multita based (RTOS based) embedded system.	e uCOS-I asking	6		Create
CO-PO I	Mapping : Use H: High M: Moderate L:Low for mapping;				

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	н												М	
CO2	М												М	
CO3		н											Н	
CO4			Н											Н

Assessments

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 1: 10 Marks to be submitted before MSE marks.

ISE 2: 10 Marks to be submitted before ESE.

MSE: 30 Marks to be submitted within 10 days after MSE examination is over (Generally on module 1-3)

ESE: 50 Marks to be submitted within 10 days after ESE examination (60-70% weight for module 4-6 and 30-40% on module 1-3)

Course Contents:

Module 1: Real-time Systems Concepts (6)

Foreground/Background Systems, Multitasking, Kernels, Priority inversion, Synchronization, Intertask communication, Advantages and disadvantages of real time kernel.

Module 2: Task management in uCOS-II (5)

uCOSII initialization, creating and deleting a task, changing task priority, suspending and resuming a task.

Module 3: Time and Event management in uCOS-II (8)

Clock tick, delaying a task, resuming the delayed task, getting system time, case study of application based on time management, initializing an ECB, making a task wait for an event, making a task ready on occurrence of event and timeout.

Module 4: Semaphore and Mutex in uCOS-II (7)

Creating and deleting a semaphore, waiting and signaling semaphore, creating and deleting mutex, waiting and signaling mutex, case study of application based on semaphore and mutex.

Module 5: Mail box and Message queue in uCOS-II (7)

Creating and deleting a mailbox, sending and receiving a message using mail box, using mailbox as binary semaphore, creating and deleting message queue, sending and receiving a message using message queue, case study of application based on mailbox and message queue.

Module 6: Event flag and Memory management in uCOS-II (6)

Creating and deleting event flag group, waiting and signaling an event flag, memory control block, creating a partition, obtaining and returning memory block, case study of application based on event flag and memory.

Module wise Measurable Students Learning Outcomes

Module 1: Classify RTOS and explain services provided by RTOS

Module 2: Explain implementation details of task and task management in uCOS-II

Module 3: Illustrate how time and events are handled by uCOS-II

Module 4: Explain and use semaphore and mutex, Solve problems using semaphores

Module 5: Explain and use mail box and message queue, Solve problems using mailbox and queue

Module 6: Explain the basics of event flag and memory management.

Title of	the Course:	3EN402	C	Com	pute	r Net	twor	k an	d Pi	roto	cols			L- 3	T- 1	P-	Cr- 4
Pre-Rec	uisite Courses: [Digital C	omn	nuni	catio	on											
Textboo	ok:																
1. 2.	"Data Communio "TCP/IP Protoco	cation a I Suite",	nd N TMF	etw I, B.	orkir Forc	rg" ,T Juzar	า ท	, B. F	oro	uza	n						
Referen	ices:																
1.	"Internetworking	g with T	CP/II	P", P	ears	on, [Doug	glas (Com	er							
Course	Objectives :																
1.	To explain conce	ept of Da	ata C	omr	nuni	catio	n										
2.	To provide funct	ion of d	liffere	ent l	ayer	S		مامي		and	nati	vorkir					
S. Course	Learning Outcom	nes:	aiysis	011	CP/I	ie pro		orsu	inte a	anu	netv	VOLKII	ıg				
	0																
СО	After the comp	letion c	of the	e cou	urse	the s	stude	ent s	shou	uld k	be al	ole to	E	loom's	s Cognit	ve	
													le	evel	Desc	riptor	
CO1	Illustrate data	commu	inicat	tion	and	netw	/orki	ng c	onc	epts	;			2	Unde	rstand	ing
CO2	Explain detail p	rotocol	func	tion	ality	and	wor	king						2	Unde	rstand	ing
														-	•		
CO3	Analyze higher	r layer	prot	toco	ls ar	nd d	esig	n se	ecuri	ity	for	specif	ic	4	Analy	zing	
	applications																
CO4	Analyze applica	ation lav	/er pi	roto	cols	and	oerir	nete	er se	curi	tv			4	Analy	zing	
	· · · · · · · · · · · · · · · · · · ·	,									-,					0	
CO PO I	Vapping																
			1	2	3	4	5	6	7	8	9	10	11	12			
		<u> </u>	N.A														
		CO2			М												
		CO3		Н													
				1		1						1	1				

	CO4 M										
Assessments											
Two components of In S Semester Examination (ES	Semester E E) having 2	valuation 0%, 30% a	(ISE), O nd 50% v	ne Mic veights	l Sem respec	ester ctively.	Exami	natio	on (MSE) and c	one End
ISE 1: 10 Marks to be subn	nitted befo	re MSE ma	arks. It is	open to	stude	ents.					
ISE 2: 10 Marks to be subn	nitted befo	re ESE. It i	s hidden	compoi	nent fo	or stud	ents.				
MSE: 30 Marks to be subm	nitted withi	n 10 days	after MS	E exami	nation	is ove	er (Ger	neral	ly on mo	odule 1-	3)
ESE: 50 Marks to be subm 40% on module 1-3)	itted within	n 10 days	after ESE	examii	nation	(60-70	0% we	ight	for mo	dule 4-6	and 30-

Course Contents:

Module 1:Introduction

Introduction to Network, Communication tasks, Transmission media, Topology, Switching. Circuit switching, message switching, packet switching, TDM, FDM, OSI Model, TCP/IP Model Comparison, Networking components.

Module 2: Data Link Layer

Data Link layer design issues, Logical Link Control, Medium Access Control, Elementary Data link layer protocols, Sliding window protocol, Medium access sub layer- Multiple access protocols.

Module 3:Network Layer (IP)

Logical Addressing, IPV4, Address space, Class-full Classless addressing, Network Address Translation (NAT), Internet protocol, fragmentation, Address Mapping (ARP, RARP), ICMP-Types of messages ,Message formats, Error Reporting, Query Routing, introduction to IPV6

Module 4: Transport Layer (TCP/ UDP)

Duties of Transport layer, Process to Process delivery, User Datagram Protocol, Transmission Control Protocol TCP, Flow Control, Error Control, Congestion control in TCP, TCP Timers

Module 5: Application Layer

Domain Name System (DNS) - Name space, Distribution of Name space Resolution, Remote Login-TELNET, concept of Network Virtual Terminal (NVT), File Transfer Protocol (FTP), SNMP, Email SMTP, POP, IMAP, Introduction to Multimedia RTP, RTCP.

Module 6:

Security(Firewall, Firewall types configurations, IPSec, VPN), Bluetooth, BLE, CAN, ZigBee, MODBUS like industrial protocols.

6

7

7

6

7

6

Module wise Measurable Students Learning Outcomes

Module 1 Describe fundamentals of data communication and networking

Module 2 Explain Data link layer in detail

Module 3Explain addressing and routing in networking.

Module 4 Explain TCP and UDP

Module 5Analyse Application layer Protocol

Module 6 Analysis of security and other industrial Protocol

Professional Core (Lab)

Title of	the Course: 3EN451 Real Time Operating System Lab	- 0	T- 0	P- 2	Cr- 1
Pre-Rec	uisite Courses:				I
Theory/	Lab Courses with C programming, Microcontroller Peripherals and	d Interfa	icing, En	nbedded	System
Design			0		
Textboo	bks:				
1.	<i>"MicroC OS II: The Real Time Kernel"</i> Jean J. Labrosse, CN ISBN: 978-1578201037	MP boo	ks publ	ication	
2.	Lab Manual				
Referen	ices:				
5. 6.	<u>www.micrium.com</u> for uCOS-II related documents, tutorials, <u>www.nxp.com</u> for processor specific documents	, downl	oads.		
Course	Objectives :				
1. To giv	ve the students practical experience of RTOS and services provided	d by it.			
2. To ex	pose the students to RTOS implementation and internal operation	n of RTO	S.		
3. Give	exposure to and facilitate the students for write applications using	g RTOS.			
(The RT	OS used is uCOS-II as a case study).				
Course	Learning Outcomes:				
60	After the completion of the course the student should be able t	to	Bloom	's Cogniti	ve
0	After the completion of the course the student should be able t	10	leve	el De	scriptor
CO1	Apply the theoretical knowledge and demonstrate the basics of and the acquired skills of managing uCOS-II based project. (Practical Experience, Modern Tools)	RTOS	2		Apply
CO2	Write programs to prove/verify the theory and demonstrate usa task, time and event management, Intertask communication.(Programming skill, Modern Tools)	age of	6	(Create
CO3	Analyze given RTOS based problem by applying the theoretical knowledge acquired.(Problem Solving, Modern Tools)		4	Δ	nalyze
CO4	Implement a given logic as an RTOS based application. Create document of the same and demonstrate using simulation tools. (Programming skill, Independent and team work, Modern Tools))	6	(Create
CO-PO I	Mapping : Use H: High M: Moderate L:Low for mapping;				

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	н				н								М	
CO2		н			Н									Н
CO3		н			н								Н	
CO4			Н		Н									Н

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Mar
				ks
1 \ 1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25
1 4 2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25
142	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25
	Lab Performance and		During Week 15 to Week 18	
Lab ESE	related	Lab Course faculty	Submission at the end of Week 18	25
	documentation		Submission at the end of week 10	

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course.

The experimental lab shall have typically 8-10 experiments.

List of Experiments:

- 1. Study of an RTOS based application
- 2. Proving that uCOS-II is a preemptive RTOS
- 3. Semaphore for managing shared resource and task synchronization
- 4. Clock tick and its accuracy in RTOS
- 5. Semaphore for event synchronization
- 6. Using mail box facility in RTOS
- 7. Use of queue facility in RTOS (Self-study)
- 8. Use of dead-lock in RTOS
- 9. Verifying priority inversion in RTOS (Self-study)
- 10. Mini-Project (Solving given problem by writing relevant program, Simulation, documentation, Demonstration)

The mini-project should be based on some product requirement that involves need of virtual parallelism, scalability, shared resource, inter-task communication etc. The project should use maximum facilities in the RTOS such as semaphore, mailbox, queues etc. The mini-project is to be completed using uVision4 (demo) for developing the code and Proteus simulator for hardware simulation.

Title of	the Course:				Τ
2EN/01			Т	D	Cr
3EIN491			1	'	Ci
		0	0	8	4
Pre-Ree	quisite Courses:				<u> </u>
Textbo	oks:				
1. 2.	Electronics Projects For Dummies, by by Earl Boysen and Nancy Muin Publishing, Inc., 2006 Make: Electronics, by Charles Platt, Published by Maker Media, 2015	, Publi	shed b	y Wiley	
Refere	nces:				
	1. A. E. Ward, J.A.S. Angus, "Electronic Product Design", Stanley Thrones (P	ublisher	s) Limit	ed, 1996	
	2. Paul Horowitz, Winfield Hill, "The Art of Electronics", Cambridge University	ity Press	, 1989		
Course 1. 2. 3. 4.	Objectives : To provide students hands on experience on, troubleshooting, maintena record keeping, documentation etc thereby enhancing the skill and com education To create an Industrial environment and culture within the institution. To inculcate innovative thinking and thereby preparing students for ma To set up self-maintenance cell within departments to ensure optimal u facilities.	ince, fal petency in proje sage of	bricatio y part o ect. infrast	on, innov of techni ructure	vation, cal
Course	Learning Outcomes:				
СО	After the completion of the course the student should be able to	Blo	om's Co	ognitive	
		leve	el l	Descripto	or
CO1	Choose, Initiate and manage a minor project.	1		Rememb	ering
CO2	Propose research problem and present them in a clear and distinct manner through different oral, written and design techniques.	VI	(Creating	
CO3	Construct, Comment and Evaluate Mini Projects' undertaken/ implemented by other students.x	VI		Creating	

CO-PO Mapping : PO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 3 2 2 **CO2** 3 2 CO3 3 2

1- Low, 2 - Medium, 3 - High

Assessments :

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Project Description

A project group shall consist of *not more than 3 students* per group. The mini project will involve the design, construction, and debugging of an electronic system approved by the department. Each student should conceive, design develop and realize an electronic product. The electronic part of the product should be an application of the analog & digital systems covered up to the 7th semester. The schematic and PCB design should be done using any of the standard schematic capture & PCB design software. . The realization of the product should include design and fabrication of PCB.

Each student must keep a project notebook/logbook. The project notebooks will be checked periodically throughout the semester, as part of in-semester-evaluation. The student should submit a soft bound report at the end of the semester. The final product as a result of project should be demonstrated at the time of examination.

Broad Areas of Project

The Projects may be from the following areas/domains, but not limited to:

- Embedded Systems
- · Electronic Control Systems
- Electronic Communication Systems
- · Biomedical Electronics
- Power Electronics
- Robotics and Mechatronic Systems
- Electric Vehicles
- Artificial Intelligence and Machine Learning
- · Applications of Electronics to Agriculture

ASSESSMENT

A demonstration and oral examination on the mini project **shall be conducted at the** end of the semester. The examination will consist of demonstration and viva voce on the project.

Professional Elective IV

Title of the Course: 3EN411 Analog VLSI Design	L- 3	T- 0	P- 0	Cr- 3
Pre-Requisite Courses: CMOS VLSI Design				
Textbooks:				
1. " Behzard Razavi, Design of Analog CMOS Integrated Circuits, , T	ATA McG	Graw-Hill F	Publicatio	on, Eight
Edition onwards (2005)				

References:

- 1. R. Jacob Baker, CMOS, Circuit Design, Layout and Simulation, Wiley-Inter- science, (2008)
- 2. Allen, P.E. and Holberg, D.R., *CMOS Analog Circuit Design*, Oxford University Press (2002)
- 3. Web-sites: vlsi.expert.com, testbench.in, asic-world.com

Course Objectives :

- 1. To explain the analog circuit concepts based on MOS devices in such a way to develop in students the insight and intuition towards MOS circuits
- 2. To organize guest lectures and practical sessions with the help of industry persons.
- 3. To deliver the tips (or thumb rules) related with design of analog circuits throughout the course
- 4. To motivate the students to develop lifelong/self learning attitude.

Course Learning Outcomes:

60	After the completion of the course the student should be	Bloom's Cognitive	
20	able to	level	Descriptor
	Analyze MOS device circuits to derive the dependence of	4 th (Analyzing)	Analyze
CO1	various electrical parameters analytically and graphically.		
	(M1)		
	Develop large signal and small signal models for single	3 rd (Applying)	Develop
CO2	stage amplifiers and differential amplifiers using MOS		
	transistors and derive the gain relationships (M2. M3)		
	Design common source, common gate, common drain	3 rd (Applying)	Design
CO3	amplifier for given specifications. Further recognize their		
	application under various typical situations. (M2, M3)		
	Analyze large signal and small signal behavior of	4 th (Analyzing)	Analyze
CO4	differential amplifiers and compute the differential gain,		
	common mode gain and CMRR. (M3)		
CO5	Analyze active current mirrors and explain the properties	4 th (Analyzing)	Analyze
	of differential pairs using such circuits as loads. (M4)		
CO6	Compute the poles and zeros in the frequency response of	3 ^{ra} (Applying)	Compute
	the single stage amplifiers using time-constant method		
	(M5)		
CO7	Design 2-stage Op-Amp for given specifications(M6)	3 rd (Applying))	Design

CO-PO Mapping : Use H: High M: Moderate L:Low for mapping;

	1	2	3	4	5	6	7	8	9	10	11	12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
CO7												

Assessments

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 1: 10 Marks to be submitted before MSE marks. It is open to students.

ISE 2: 10 Marks to be submitted before ESE. It is hidden component for students.

MSE: 30 Marks to be submitted within 10 days after MSE examination is over (Generally on module 1-3)

ESE: 50 Marks to be submitted within 10 days after ESE examination (60-70% weight for module 4-6 and 30-40% on module 1-3)

Course contents:

Module 1:

MOS Device Physics:

MOS IV Characteristics, Second Order Effects, MOS device models (MOS device capacitance, MOS small signal model) MOS model parameters

Module 2:

Single Stage Amplifier: Part I

CS stage with resistance load, diode connected load, current source load, , CS stage with source

degeneration,	
Module 3:	
Single Stage Amplifier: Part II	
source follower, common-gate stage, cascode stage, folded cascade, choice of device models.	
Module 4:	
Differential Amplifiers:	
Basic difference pair, differential mode response, common mode response, Differential pair with MOS loads	
Module 5:	
Passive and Active Current mirrors:	
Basic current mirrors, Cascode mirrors, active current mirrors.	
Module 6:	
Frequency Response::	
CS stage, Source follower, Common gate stage, Cascode stage and Difference pair.	
Operational Amplifiers:	
Design of 2-stage operational amplifier	

Title of	the Course: 3EN412	f the Course: 3EN412 System on Chip L-3 T-0 P-0 Cr-3											T-0	P- 0	Cr-3	
Pre-Re	quisite Courses:															<u> </u>
Textbo	ok:															
1.	FPGA based system	design l	bv W	/vne	e wo	lf – p	oubli	shed	bv	pre	ntice	e ha	II.			
2.	Readings in hardwa	are/soft	twar	e c	o-de	sign	Gio	vanr	ni D	e N	Лich	eli,F	Rolf	Ernst, a	nd Wayne	Wolf –
	published by Morga	n Kaufn	nan.			_										
3.	Computers as comp	onents:	Prir	ncipl	es o	fem	bed	ded	com	put	ing	syst	em	design pu	iblished by	Morgan
Refere	References:															
															с I.I.	
1.	Multiprocessors syst	tems-or	1-chi	ps b	y Ar	imec	i jeri	rya v RM	/ayr	le w	olt,e	eds-		organ Kau	rman publis	hers
2.	FDK nower PC tutori	ial at ht	tn·//	(1)//	w xi	linx (rom	/FDK		/pro	Juut	.15/1	2016	<u>connect</u>		
4.	Power PC info http:/	//www.	chip	s .IB	M.c	om/r	orod	ucts	pov	ver	PC/c	ore	s/4	05sde pb	.html.	
5.	Arm processor detai	ls at <u>W</u>	ww	.arm	n.cor	<u>n</u> '			•							
6.	AMBA bus arch	itecture	2 6	ət	http	o://w	/ww	.arm	.con	n/p	rodu	icts/	/sol	utions/An	nbahomepa	ge.html
	http://www.princeto	on.edu/	′~wc	<u>olf</u>												
Course	Objectives :															
1.	To make students av	ware of	the	svst	em o	on ch	a air	once	pts	and	l bus	svs	ten	า		
2.	To make students le	arn the	har	dwa	re-so	oftw	are	co-de	esigr	n ap	proa	ach				
3.	To make student lea	ırn emb	edd	ed s	oft p	roce	essor	s	-							
4.	To make students le	arn Mo	del-	base	ed sy	sten	n des	sign	with	mc	oder	n to	ols			
Course	Learning Outcomes:															
со	After the completion	on of th	ne co	ours	e th	e stu	den	t sho	ould	be	able	to		Bloom's (Cognitive	
													-	level	Descriptor	
<u> </u>	understand concor	te of SC		nds			ubc	veto	~				_	<u>э</u>	Evolain	
	understand concep			nu s		Jus s	ub S	yste						2	Explain,	ata
															Demonstra	ale
602	apply knowledge of	fombo	ddaa	4 6 6 4	+			whil	<u></u>	ciar	ning	500	~	2	Davalan D	
	apply knowledge o	rembed	Juec	1 501	t pro	oces	sors	wnii	e de	sigr	nng	500	-	3	Develop, E	sulla
CO3	analyze and design	SOC by	y hig	gh er	nd so	oftwa	are t	ools						4	Examine,	
															Discover	
CO4	Design SOC based s	system	usin	g dif	fere	nt pi	rogra	amm	ing	lang	guag	es		5	Create, De	esign,
															Develop	
CO PO	Mapping															
				h		لم		4	_	L.	•	1.		7		
			а	a	С	a	е	T	g	n	1	J	к			
		CO1	x													
		CO2		-							F	-		-		

CO3						
CO4						

Assessments

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 1: 10 Marks to be submitted before MSE marks. It is open to students.

ISE 2: 10 Marks to be submitted before ESE. It is hidden component for students.

MSE: 30 Marks to be submitted within 10 days after MSE examination is over (Generally on module 1-3)

ESE: 50 Marks to be submitted within 10 days after ESE examination (60-70% weight for module 4-6 and 30-40% on module 1-3)

Course Contents:

Module 1:

Concept of system, importance of system architectures, introduction to SIMD, SSID, MIMD and MISD architectures, concept of pipelining and parallelism. Designing microprocessor /Microcontroller based system and embedded system..

Module 2:

Introduction to SOC, Differences between Embedded systems and SOCs. Introduction to busses used in SOCs, Introduction to AMBA bus, IBM's core connect bus, concept of PLB-processor local bus and OPB-on chip peripheral bus, System design issues in SOCs.

Module 3:

Concept of Soft embedded processors. Study of Microblaze RISC processor. Study of IBM's power PC

Module 4:

Programmable logic and FPGA Architecture. Study of Latest FPGA Architecture. Study of features like embedded Block RAMs, multipliers, Digital clock management, CPU cores etc. Introduction to tools used for SOC design, Xilinx/ Altera embedded development kit

Module 5:

Design Flow for SOC design. Using existing IP Blocks in SOC design, Designing new peripheral IP with AXI bus, Embedded programming with SOC.

Module 6:

SOC system design example with Peripherals like USB, UART, Ethernet Etc. using latest FPGA. (Xilinx/ Altera tools) Eclipse IDE development tool for a full SOC system design with embedded C/C++ applications (Xilinx/ Altera tools)

Module wise Measurable Students Learning Outcomes

Module 1, 2:

Module 3 :

Module 4 :

Module 5, 6:

Title of	the Course:													L	Т	Р	Cr
Elective	: 3EN413Microw	vave Co	mm	unic	atio	n								3		0	3
Pre-Req	Pre-Requisite Courses:																
Textboo	Textbooks:																
1. "Micr	1. "Microwave Devices and Circuits", Samuel Y. Liao, PHI.																
2. "Microwave Engineering", 3rd Edition, Manojit Mitra, Dhanpat Rai & Co.																	
Referen	References:																
1. "Micr	1. "Microwave Engineering", D. M. Pozar, John Wiley.																
2. "Elect	2. "Electronics Communication Systems", George Kennedy, Tata McGraw Hill.																
Course	Objectives :																
1.	To understand th	ne theor	retic	al p	rinci	ples	und	erlyi	ing n	nicro	owa	ve c	levio	ces and net	works		
2.	To introduce the	various	s typ	es o	of tra	insm	issio	n lir	nes a	nd	to di	scu	ss tł	ne losses as	sociat	ed	
3.	3. To instill knowledge on the properties of various microwave components																
4. To deal with the microwave generation and microwave measurement techniques																	
Course Learning Outcomes:																	
СО	After the comp	letion o	of th	e co	urse	e the	stud	dent	: sho	uld	be a	ble	to	Bloom'	s Cogn	itive	
														level	Des	scriptor	
CO1	Classify the mi	crowave	e fre	eque	encie	es ar	nd t	he v	wave	gui	des	tha	t ar	e 2	Cla	ssify	
	used application	n															
603	Catagorias the		+:	-f		- la + h		~ h ~						4	Cat		
CO2	Categories the	propaga	ntion		signa	ais tr	nrou	gn a vico	nten	na	non	ont	-	4	Eva	egories	
03	used in Microw	ave con	ลรรม าทน	nica	tion	svst	e ue ems	vice	5 00 0	.0111	μοπ	ent	5	4	LAG	iiiiie	
CO4	Analyze the ope	eration	and	wor	king	of tl	ne va	ario	us tu	bes	or s	our	ces	4	Ana	alyze	
	for the transmis	ssion of	the	mic	rowa	ave f	requ	ienc	ies								
CO-PO	Mapping : Use H:	High I:	Inte	rme	diat	e/M	oder	ate	B: B	asic	/Lov	v fo	r ma	apping;			
	Pleas	e do no	t tic	k													
				h	•	4		£	6	h	:	:	k		٦		
			d	b	C	u	e	1	g	п	•	J	к	P3P0			
		CO1	I]		
		CO2		Η											1		
		CO3			Н]		
		CO4						İ	н						1		

Assessments: Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1	6Hrs.
Module 1: Microwave Fundamentals and Electromagnetic field Theory	
Microwave regions and band designations, microwave devices, applications of microwaves,	
Interaction between electrons and fields, electron motion in electric, magnetic and	
electromagnetic field, electromagnetic plane waves	
Module 2	6Hrs.
Module 2: Microwave Waveguide and Components	
Rectangular and circular waveguide, TE and TM modes, power transmission and power losses	
in waveguide, excitation modes in waveguide, microwave cavities, Microwave passive	
components—Tee junctions, magic tee, couplers, circulators, attenuators, phase shifters,	
bends, twists, corners, irises, windows. Scattering Matrix Parameters of microwave networks,	
S-matrix for E-plane Tee junction, S-matrix for H-plane Tee junctions, S-matrix for directional	
coupler.	
Module 3	8Hrs.
Module 3: Microwave Tubes	
Limitations of conventional tubes, O and M type classification of microwave tubes, reentrant cavity, velocity modulation.	
O type tubes	

Two carry repertion. construction and principle of operation, velocity modulation and	
bunching process Applegate diagram.	
Reflex Klystron: Construction and principle of operation, velocity modulation and bunching	
process. Applegate diagram. Oscillating modes, o/p characteristics, efficiency, electronic &	
mechanical tuning.	
M-type tubes	
Magnetron: Construction and Principle of operation of 8 cavity cylindrical travelling wave	
magnetron, hull cutoff condition, modes of resonance, PI mode operation, o/p	
characteristics, Applications.	
Slow wave devices	
Advantages of slow wave devices, Helix TWT: Construction and principle of operation,	
Applications.	
· · · · · · · · · · · · · · · · · · ·	
Module 4	8Hrs.
Module 4: Microwave Solid State Devices	
Tunnal diada DIN diada Cunn diada LSA diada Daad diada INADATT diada TRADATT diada	
PAPITE DIODE Varacter Diede, colid state ruby laser, comisenductor laser	
Module 5	6Hrs.
Module 5: Microwave Measurements	
Measurement devices: Slotted line, Tunable detector, VSWR meter, Power Meter, S-	
parameter measurement, frequency measurements, Power measurement, Attenuation	
measurement. Phase shift measurement. VSWR measurement. Impedance measurement. Q	
of cavity resonator measurement	
Modulo 6	6Hrc
	0113.
Module 6: Microwave Strip Lines and Antenna	
Micro-strip line, Slot line, Parallel strip line, advantages, Horn antenna, Dish Antenna, Micro-	

Professional Elective V

Title of	the Course: 3EN414 Digital System Engineering	L- 3	T- 1	P- 0	Cr-4			
Pre-Re	quisite Courses:							
Textbo	oks:							
1.	1. Digital System Engineering", William Dally and Joh	ın Poulto	on, Camb	ridge Uı	niversity			
	Press, Reprint 2007							
Refere	nces:							
1.	"High Speed Digital Design"- A Handbook of Black M	Aagic, H	oward W	. Johnso	on, Martin			
	Graham, Prentice Hall PTR, Englewood Cliffs, NJ 076	3			,			
2.	"High Speed Digital System Design: Interconnect Theo	ory and I	Design Pı	actices"	Stephen H.			
	Hall, Garrett W. Hall, James A. McCall, Wiley-IEEE P	ress (ISI	BN: 978-	0-471-3	6090-2			
3.	Net material on Clock distribution and power distributi	on						
Course	Objectives :							
course	Objectives .							
1.	To explain the effect of parasitic of wires/intercon	nnects in	n restric	ting the	high speed			
	performance of digital circuits and design the approa	ches to	tackle th	is probl	em by using			
	their engineering models.							
2.	To discuss and explain the different sources of interf	erence (noise) in	digital	systems and			
	apply engineering/statistical models of these to comput	e and co	mpare bi	t error ra	ates.			
3.	To illustrate the significance of signaling & timing is select a proper one for error-free transfer of information	sues in l n (bits) fr	high spea rom one	ed digita location	l design and to another.			
4.	To compare Meso-chronous, Plesio-chronous and full synchronizers to avoid Meta-stability problems of fu	y synchr lly sync	ronous sy hronous	ystems a systems	nd to design . To explain			

further self timed circuits as a good alternative to synchronous circuits.

Course Learning Outcomes:																
CO	After the complete	tion of t	he co	urse t	he st	uden	t sh	ould	l be	Bl	Bloom's Cognitive					
CO	able to								le	vel			Descriptor			
con Analyze the effect of parasitic of wires/interconnects in restricting the high speed performance of digital circuits and design the approaches to tackle this problem by using their engineering models. (M1)									5 	Analy	IV zing/		Analyze			
 Explain different sources of interference (noise) in digital systems and apply engineering/statistical models of these to compute and compareBER(M2) 									1	Ар	lll plyin	5	Explain			
CO3 Compare and contrast different signaling & timing approaches and choose the one for designing error-free transfer of information (bits) from one location to another. (M3, M4, M5)										l Analy Eva	V, V vzing luatir	and Ig	Compare and Design			
 Explain various types of digital systems and design synchronizers to avoid meta stability problems of fully synchronous systems. (M6) 							i f	III Applying			Design					
CO-PO	Mapping : Use H: H	ligh M: N	1ode	rate L:	Low 1	or m	1app	ing;	9	10	11	12	_			
		01	_	-			-	-	-				_			
		02											_			
	CC	03											_			
CO4																
Assessn Two co	Assessments Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End															

ISE 1: 10 Marks to be submitted before MSE marks. It is open to students.

Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

ISE 2: 10 Marks to be submitted before ESE. It is hidden component for students.

MSE: 30 Marks to be submitted within 10 days after MSE examination is over (Generally on module 1-3)

ESE: 50 Marks to be submitted within 10 days after ESE examination (60-70% weight for module 4-6 and 30-40% on module 1-3)

Course contents:

Module1:

Wires: Geometrical and Electrical properties, Electrical models of wires (Ideal wire, Transmission

line), Simple transmission lines (RC, lossless LC, lossy LRC transmission lines, Dielectric absorption),	
Module 2: Noise in Digital Systems: Noise sources in a digital system, Power Supply Noise, Cross-talk, Inter- symbol Interference, Managing noise.	7
Module 3: Signaling Conventions Part I: CMOS and Low swing current mode signaling system, Considerations in transmission system design, Signaling modes for transmission lines, Transmitter signaling methods,	6
Module 4: Signaling Conventions part II :, Receiver signal detection, Source termination, Under-terminated Drivers, Differential Signaling, Signaling over capacitive transmission medium, Signal encoding	4
Module 5: Timing Conventions: Conventional Synchronous system and closed loop pipelined system, Considerations in timing design, Timing fundamentals, Timing properties of combinational logic and clock storage elements, Eye diagram, Encoding Timing (Signals and Events), Open loop synchronous timing, Closed loop timing,	8
Module 6: Synchronization : Synchronization Fundamentals, Applications of synchronization (Arbitration of asynchronous signals, Sampling asynchronous signals, Crossing clock domains), Synchronization failure and meta-stability, Synchronizer Design	8

Title of the	Course: 3EN415 Mobile Communication Engineering	L	Т	Р	Cr					
		3	1	0	4					
Pre-Requisi	te Courses: Probability Theory and statistics. Digital Communication Eng	vineering								
······································										
Textbooks:										
 <i>"Wireless Communications Principles and Practice"</i>, II Ed. PHI, T.S.Rappaport <i>"Principle and Application of GSM"</i>, V.K.Garg, J.E.Wilkes, Pearson Education 										
References										
1. "M	<i>Sobile Cellular Telecommunications Systems</i> ", WCY Lee McGraw	Hill Pub	olication	1.						
2. "A	GSM system Engineering", Asha Mrhrotra, Artech House Publisher	rs Boste	en, Lono	lon.						
Course Obj	ectives :									
1. To 2. To 3. To	describe mobile cellular communication systems over mobile radio illustrate evolution of different generations of mobile networks. explain different multiple access technologies.	enviroi	nment							
Course Lear	ning Outcomes:									
60	After the completion of the course the student should be able to	Bloo	om's Co	gnitive						
0		Level	De	scriptor						
CO1	CO1Apply concepts in mobile communications to analyze its effects on interference, system capacity, handoff techniques3Applying									
CO2	Distinguish various multiple-access techniques for mobile communications	4	Ar	alyzing						
CO3	Analyze and design GSM system knowing system architecture, mapping of functional layers, different Call flows.	4	Ar	alyzing						
CO4	Use advanced principles and technique to design appropriate mobile communication systems.	3	A	oplying						
Assessment	ts :									

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1 : Cellular Communication Fundamentals	Hrs.
Introduction of Cells, Channel Reuse, SIR Calculations, Traffic Handling Capacity: Erlang Performance, Cellular system design, Co channel interference ratio, Co channel interference reduction techniques and methods to improve cell coverage, Frequency management and channel assignment, concepts of cell splitting, handover in cellular system	7
Module 2 : Multiple access technologies	Hrs.
Frequency Division Multiple access (FDMA), Time Division Multiple access (TDMA), Code Division Multiple access (CDMA), spectral efficiency calculations, comparison of T/F/CDMA technologies based on their signal separation techniques, advantages, disadvantages and application areas.	6
Module 3 : GSM Architecture and Interfaces	Hrs.
Introduction to GSM subsystems, GSM Interfaces, GSM architecture, details of following blocks in GSM (Mobile station, Base station systems, Switching subsystems, Home location registers, Visiting location registers, Equipment identity register, Echo canceller), Mapping of GSM layers onto OSI layers, GSM Logical Channels, Data Encryption in GSM, Mobility Management, Call Flows in GSM. Mobile Management: Handoff, Location and Paging	8
Module 4 : Mobile Radio Propagation	Hrs.
Large Scale Path Loss, Free Space Propagation Model, Reflection, Ground Reflection (Two-Ray) Model, Diffraction, Scattering, Signal Penetration into Buildings. Small Scale Fading and Multipath Propagation, Impulse Response Model, Types of Small Scale Fading: Time Delay Spread, Doppler Spread.	6

Module 5 : Higher Generation Cellular Standards	Hrs.
2.5 G Standards: High speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), 2.75 G Standards: EDGE.	7
Module 6 : 3G and 4G Wireless Standards	Hrs.
Evolution of IS 95 (cdmaOne)to cdma 2000, WCDMA, LTE, WiMAX	6

Module wise Measurable Students Learning Outcomes :

Module 1: Student will gain insight into the theoretical framework and the core concepts of the wireless mobile networks

Module 2: Student will get introduced to multiple access technologies for wireless network

Module 3: Student will equip with understanding of the various concepts various concepts of GSM

Module 4: Students will get knowledge characteristics of the mobile radio environmental propagation phenomena.

Module 5: Students will get understanding of evolution of mobile networks.

Module 6: Students will get introduced to different 3G and 4G wireless standards.

Title o	f the Course and Course Code: 2EN 417 W	ireless Sensor	L	Т	Р	Cr			
Netwo	rk (Professional Elective V)		-	-					
		3	1	-	4				
Pre-Requisite Courses: Fundamentals of networking.									
Textbo	oks:								
1. Kaz	em Sohraby, Daniel Minoli, Taieb Znati, "Wir	eless Sensor Netw	orks Technol	ogy Prot	ocols ar	nd			
Applica	ations", John Wiley & Sons Inc. Publication ,2	007							
Refere	nces:								
1.Edga ,CRC F 2. Ian F	r H. Callaway, Jr. and Edgar H. Callaway, "Wi Press, August 2003 F. Akyildiz, Mehmet Can Vuran,"Wireless Sen	ireless Sensor Networks" "Jo	vorks: Archit hn Wiley & S	ectures a ons Ltd.	nd Prot 2010	ocols"			
Course	Objectives :								
1.To ez 2.To di 3.To di	plain the Wireless Sensor Network and its app stinguish working principles of various WSN j scuss security issues of WSN and its performa	plications protocols nce							
<i>c</i>	L i o i								
Course	e Learning Outcomes:								
CO	After the completion of the course the studen	t should be able	Bloom's Co	gnitive					
	to		Level	Descr	iptor				
CO1	Analyse Prototypes for Wireless Sensor Netw	vork	Analyzing	Distin	guish				
CO2	Calculate performance issues in Wireless Se	nsor Network	Evaluating	Just	ify				
CO3	Analyse different layer protocols and securit Wireless Sensor Network	y issues of	Analyzing	Iden	tify				
Assessi	ment:								
Two co	imponents of In Semester Evaluation (ISE), Or	ne Mid Semester E	xamination (I	MSE) an	d one E	nd			
Semest	er Examination (ESE) having 20%, 30% and 5	0% weightage res	pectively.						
	Assessment		Marks						
	ISE 1		10						
MSE 30									
ISE 2 10									
ESE 50									
ISE 1	and ISE 2 are based on assignment, oral, semi	nar, test (surprise/d	leclared/quiz)	, and gr	oup				
discus	sion.[One assessment tool per ISE. The assess	ment tool used for	ISE 1 shall n	ot be use	ed for IS	E 2]			
MSE:	Assessment is based on 50% of course conten	t (Normally first th	ree modules)						
ESE:	Assessment is based on 100% course content	with70-80% weigh	itage for cour	se conte	nt (norm	nally			
last th	ree modules) covered after MSE.								

Course Contents:	
Module 1 Introduction and Overview of Wireless Sensor Networks	Hre
Introduction to wireless Ad-hoc network, Mobile Ad-hoc Network and Overview of Wireless Sensor Networks, Applications of Wireless Sensor Networks	5
Module 2: Wireless Transmission Technology and Medium Access Control Protocols	Hrs.
Basic Wireless Sensor Technology, Sensor Node Technology, Hardware and Software, Sensor Taxonomy, Wireless Transmission Technology and Systems, Medium Access Control Protocols for Wireless Sensor Networks, Fundamentals of MAC Protocols, MAC Protocols for WSNs.	7
Module 3: Routing Protocols and Transport Control Protocols for Wireless Sensor Networks	Hrs.
Routing Challenges and Design Issues in Wireless Sensor Networks, Routing Protocols for Wireless Sensor Networks, -Data Dissemination and Gathering, , Routing Strategies in Wireless Sensor Networks, Transport Control Protocols for Wireless Sensor Networks, Traditional Transport Control Protocols, Transport Protocol Design Issues, Examples Transport Control Protocols	9
Module 4: Middleware and Network Management for WSN	Hrs.
WSN Middleware Principles- Middleware Architecture, Existing Middleware, Network Management for Wireless Sensor Networks Operating Systems for Wireless Sensor Networks- Operating System Design Issues and Examples	7
Module 5: Security Issues	Hrs.
WSN security issues, Possible attacks on WSN, worm hole, black hole, sync attack and effect on performance, mitigation techniques	6
Module 6: Performance and Traffic Management	Hrs.
Performance and Traffic Management- Introduction, Background, WSN Design Issues, Performance Modelling of WSNs, Performance Metrics, Basic Models, Network Models	5
 Module wise Measurable Students Learning Outcomes : Module 1: Distinguish different types of ad hoc networks and its applications Module 2: i)Analyze wireless sensor node components , transmission impairments and performance iii)Analysis of MAC protocols Module 3: i)Distinguish Routing protocols and Transport control protocol for WSN Module 4: i)Describe of middleware and network management protocols Module 5: Identify different security issues of WSN 	issues

Professional Elective (Lab)

Title of the Course	e: 2EN452 /	Analog VLSI Design Lab				
			L-0	Т-0	P-2	Cr-1
References:	Text Boo	ks:				
	1. B P 2. C 3. V Reference	Tehzard Razavi, <i>Design of Analog CMOS Integrated Circ</i> ublication. Cadence Lab Manual: White papers from Cadence WCE Laboratory Manual : (in-house prepared) e Books:	cuits, , T	ATA M	cGraw-H	611
	2. R (2 3. A	a. Jacob Baker, CMOS, Circuit Design, Layout and Simula 2008) Illen, P.E. and Holberg, D.R., CMOS Analog Circuit Desig	ution, W	iley-Inte ord Univ	r- scienc ersity Pr	e, ess
	4. V	2002) Veb-sites: vlsi.expert.com. testbench.in. asic-world.com				
Course Objectives :	1. D ci 2. D d 3. E w 4. P	Demonstrate the flow of Cadence EDA tools for designing ircuits. Develop an insight into CMOS analog circuits and design s ifferential amplifiers and 2-stsge Operational amplifier for explain how to characterize the transistors for the voltage of with goal of optimizing dimensions for given ID or trans-correpare the students for good documentation discipline.	and sim single sta r given s condition onductar	ulating a age CS, (specifica ns seen b nce.	CG, CD, tions.	MOS
Course Learning		At the end of the course, student will be able to	B	Bloom's (Cognitive	5
Outcomes	СО		L	evel	Descri	iptor
	CO1	Characterize MOS transistors for targeted value of gm or drain current for designing the physical dimensions and the required gate bias using Cadence EDA tools.	i Ap	III oplying	Chara	cterize
	CO2	Demonstrate the complete flow of Cadence tools from schematic to symbol generation to simulation for CS, CG, CD and differential amplifiers	L S U Ma	kills se of odern ools	Demo	nstrate
	CO3	Build and simulate the single stage amplifier circuits (CS, Source Follower, Cascode stage, differential pain etc.) using MOSFETs schematic design entry for various loads and relate the gain values with theoretical expressions.	Ana Ana Eva	V, V alyzing and luating	Buile Sim	d and ulate
	CO4	Design differential pair circuits with active current mirror load for given gain and UGB.		pplying	De	sign
	CO5	Design, build and simulate 2-stage operational amplifier for given pole frequencies and UGB with and without pole splitting and pole-zero compensation.	l Ap	II , V plying,	De Bi	sign, uild,

			Evaluating	Simulate
	CO6	Exhibit following technical and professional skills. Hands on skills of using modern EDA tools, Communication Skills, Collaborative work spirit Research Skills, Lifelong learning attitude Ethical behavior	Related with and affective assessed thr scale o	VI psychomotor domain and ' rubric on a f 1 to 5
		Laboratory Outcomes	Maps to CO	Maps to PO
Specific laboratory outcomes	LO1	Design and Simulate schematics of CMOS circuits using Cadence tools and 180 nm technology (CO1)	CO1	PO1 (3)
	LO2	Implement the Cadence flow from schematic entry to simulation for single stage amplifiers of various topologies, differential amplifier and 2-stage op-amp. (CO2 to CO5)	CO2 to CO5	PO1(3)
	LO3	 Exhibit following skills (CO6) A) Hands on skills on EDA tools B) Written communication skills C) Oral Communication skills D) Group/team (collaborative) work spirit E) Research Skills F) Life long Learning Attitude G) Ethical Behaviour 	CO6	Psychomot or and affective domain as above

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25

LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

List of Experiments:

Lab	Details	Skill Developed
No		
1	Characterize nMOS transistors from schematic using Cadence tools	Use of Modern Tools
2, 3	Design, build and simulate Single stage amplifier Common source amplifier using resistive load and nMOS diode connected load. (Gain and Frequency response) Compare the performance with pMOS diode connected load Design, build and simulate Common Source amplifiers with current source load	Application of knowledge to design and evaluate (Third Bloom's level)
	Compare the performance with already studied loads .	
5	Design, build and simulate Common source stage with source degeneration. (gain and frequency response) Compare the performance with and without source degeneration	Application of knowledge to design and evaluate
6	Design, build and simulate Source follower / Common Gate stage Crosscheck the results of output impedance, gain, power dissipation against theoretical expectations	(Third Bloom's level)
7	Design, build and simulate cascode stage with different loads for specified voltage gain and maximum power dissipation.	Application of knowledge to design and evaluate (Sixth Bloom's level)
8,9	Design, build and simulate differential pair with specified tail current source and maximum full swing differential gain using a)resistive load and b) pMOS current source load and compare the gain values.	Application (3^{rd})
	Cross-confirm the results against theoretical expectations.	
	Demonstrate design of differential pair with active tail current source (replace the tail current source in Expt. 8 by a nMOS current source biased in saturation.	Use of Modern tools
10	Design, build and simulate differential amplifier (single ended output) with active current mirror load for the given specifications. Evaluate for CMRR, DC gain etc.	Application Evaluation
	Demonstrate design of 2-stage operational amplifier for given UGB	

Title of	the Course: 2EN	1454 Mi	icro	wav	ve Co	omm	unio	atio	n La	ıb			L- 0	T-	• 0	P- 2	Cr- 1
Pre-Requisite Courses:																	
Textboo	oks:																
1. <i>"Mic</i> i	rowave Devices	and Circ	uits	:", Su	ати	el Y.	Liao	, PH	I.								
2. "Mici	rowave Enginee	ring", 3r	d E	ditio	n, N	lano	jit M	litra,	Dha	anpa	at Ra	ii & C	0.				
Referer	nces:																
1. <i>"Mic</i> ı	rowave Enginee	ring", D.	M.	Poz	ar, J	ohn	Wile	ey.									
2. "Elec	tronics Commun	ication S	Syst	tems	s″, G	eorg	e Ke	enne	dy, ⁻	Гаtа	Mc	Graw	Hill.				
Course	Objectives :																
1.	To understand	the theo	oret	ical	prin	ciple	s un	derl	ying	mic	row	ave d	evice	s and	netw	orks	
2.	To introduce th	e variou	is ty	pes	of t	ransi	miss	ion l	ines	and	l to d	discus	s the	losse	s asso	ociated	
5. To deal	with the microv	vave ger	nera	atior	n and	d mi	crow	ario vave	mea	asur	eme	nt teo	chniq	ues			
Course	Learning Outco	mes:															
0	After the com	nletion	of t	he c		so th	o sti	udor	nt ch		d ha	ahla	to	Bl	loom	's Cognit	ive
		Pietion						uuei	11 31						leve	el D	escriptor
CO1	application	Icrowave	e fr	equ	enci	es ar	nd tr	ie w	ave	guid	es tr	hat ar	e use	a 2		Cla	issity
CO2	Categories the	propag	atio	on o	f sigi	nals	thro	ugh	ante	enna)			4		Ca	tegories
CO3	Examine the a	ctive & p	pas	sive	mici	rowa	ive d	levic	es 8	ι COr	npo	nents	usec	4		Ex	amine
	in Microwave	commur peration	nica ani	ntion d wo	n sys [.] orkin	tems	; the	vario	nus t	ube	s or	sour	ces fo	r 4		An	alvze
CO4	the transmissi	on of the	e m	icro	wav	e fre	que	ncies	5		5 01	sean				,	aryze
CO-PO	Mapping : Use H	H: High N	vi: N	vlod	erat	e L: L	ow f	or n	napp	oing	;						
			1	2	3	4	5	6	7	8	9	10	11	12			
		CO1				н	-	-							-		
		001															

CO2		н					
CO3		Н					
CO4		Н					

Assessments

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
1 \ 1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course racuity	Submission at the end of Week 5	25
	Lab activities,	Lob Course Fraultu	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25
1.4.2	Lab activities,	Lab Caura Facultu	During Week 10 to Week 14	25
LA3	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25
	Lab Performance and	Lab Caura facultu	During Week 15 to Week 18	25
Lap ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	25
LA3 Lab ESE	Lab activities, attendance, journal Lab Performance and related documentation	Lab Course Faculty Lab Course faculty	During Week 10 to Week 14 Submission at the end of Week 14 During Week 15 to Week 18 Submission at the end of Week 18	25 25

List of Experiments:

Microwave Engineering Lab

List of Experiments:

1. Study of Microwave components and equipment

2. Study of V-I Characteristics of Gunn Diode

3. Reflex Klystron as source and plot its various modes

4. Verification of port characteristics of E-plane tee, H-plane tee & amp; Magictree

5. Verification of port characteristics of Microwave Circulator and isolator, calculation of insertion loss and isolation loss

6. Verification of port characteristics of Directional coupler, calculation of coupling factor, insertion loss and directivity.

7. Power pattern of Horn Antenna

8. Power Patterns of different Antenna like Dipole, Yagi etc.

9. Study of slotted section with probe carriage. Measure the VSWR for various values of terminating impedances (open/short/matched termination).

10. To test and verify Microwave Integrated Circuits using Microstrip trainer kit and finds parameters, and plot the frequency response.

Title of the Course and Course Code: 2EN453 System On Chip Lab	L	Т	Р	Cr
	0	0	2	1
Pre-Requisite Courses: Microprocessor / Microcontrollers				
Textbooks: 1. Michael J Flynn and Wayne Luk, —Computer system Design: System-on	-Chip ,	Wiley-Ir	ndia, 201	2.
2. Sudeep Pasricha and Niki Dutt, —On Chip Communication Architectures: System o Morghan Kaufmann Publishers, 2008.	n Chip Ir	ntercon	nect ,	
3. Lin, Y-L S (ed.), —Essential Issues in SOC Design: Designing Complex Systems-on-chi	ip. Sprin	ger, 200)6.	
References: 1. Wolf W H, —Computers as Components: Principles of Embedded Com Elsevier, 2008.	puting S	ystem D	Design ,	
2. Patrick Schaumont — A Practical Introduction to Hardware/Software Co-design , P. 2012.	atrick Sc	haumoi	nt, Spring	zer,
3. Lin, Y-L S (ed.), —Essential Issues in SOC Design: Designing Complex Systems-on-ch Wolf, —Modern VLSI Design: IP Based Design, Prentice-Hall India, 2009.	ip. Sprir	iger, 200	06. 6. Wa	ayne
4. Amba bus architecture at http://www.arm.com/products/solutions/Ambahomepa	ge.html			
Course Objectives :				
1. To make students aware of the system on chip concepts				
2. To make students learn the Bus interconnect hardware Design approach				
3. To make students learn the IP design				
4. To make students learn Model-based system design				
5. To make students learn hardware software co-design approach				

со	After the completion of the course the student should be able to	Bloom's Cognitive			
		Level	Descriptor		
CO1	Design using interconnect bus like AMBA for SoC technology	Creating	Design		
CO2	Design IPs using EDA Tools	Creating	Design		
CO3	Design SoC for given specifications and implement using EDA Tools.	Creating	Design		
CO4	Discuss the test strategy, write the test benches and test the	Creating	Discuss,		
	designed SoC for functionality and performance using EDA Tools		Test		

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PS	PS
													01	02
CO1	3													
CO2		3												
CO3				2										
CO4														2

Assessment:

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessmen	Based on	Conducted by	Conduction and Marks Submission	Marks
t				
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25

		related documentation		Submission at the end of Week 18	
V	Veek 1 indicate ab activities/La	s starting week of Semeste	er. le performing experime	ents, mini-project, presentations, drawi	ngs,
р	programming a	nd other suitable activities,	as per the nature and	requirement of the lab course.	
Т	he experiment	al lab shall have typically 8-	-10 experiments.		
	ourse Content	5:			

- 1. Demonstrate AMBA Bus
- 2. Design and execute GPIO IP program with 8 bit port
- 3. Design and execute PWM IP program with 4 channels
- 4. Design and execute UART IP program
- 5. Design and execute SPI bus IP
- 6. Design and execute SOC with various IP
- 7. Design and execute SOC for DSP applications
- 8. Design and execute SOC for Image processing applications

Experiment wise Measurable Students Learning Outcomes: students will

Experiment 1: Demonstrate the SOC hardware Design approach

Experiment 2: Design GPIO IP using EDA tool

Experiment 3: Design PWM IP using EDA tool

Experiment 4: Design UART IP using EDA tool

Experiment 5: Design SPI bus IP using EDA tool

Experiment 6: Design SOC using EDA tool

Experiment 7: Design SOC for DSP using EDA tool

Experiment 8: Design SOC for Image processing using EDA tool

Open Elective III

Title of	the Course: 4OE 457	Cyber P	hysio	cal S	Syste	em									L	Т	Р	Cr
															3	0	0	3
Pre-Rec	quisite Courses: Signal	s and Sy	sten	ns													1	
Textboo	oks: (NOT MORE THAN	N 3)																
	 Introduction to C The Internet of T publications 	yber ph hings ke	ysica ey ap	al sy oplic	sten catio	ns ons a	nd p	proto	ocols	s, C	livie	er H	lers	ent,	David	B. Ome	r Elloum	i, Wiley
Referen	nces: (NOT MORE THA	N 3)																
1. 2.	http://www.cyphylab Smart Grid Applicati Publications	. <u>ee.ucla</u> ons, Co	<u>.edu</u> mm	unic	atio	ons,	and	sec	urity	/ ec	litec	d by	y L	ars ⁻	Г Berg	er K Ini	ewski,	Wieley
Course	Objectives :																	
1. T	o illustrate the fundan	nental c	once	epts	of	Cybe	r Ph	ysica	al Sy	ster	ns							
2. T	o explain design of Cy	vber Phy	sical	Sys	tem	IS.												
3. T	o enable the students	for the	desi	gn a	nd o	deve	lopn	nent	of C	CPS								
Course	Learning Outcomes:																	
СО	After the completior	n of the	cour	se t	he s	tude	nt s	houl	d be	abl	e to)		Bloc	m's Co	gnitive		
														leve		Descr	iptor	
CO1	Explain fundamental	ls and co	ompo	one	nts c	of CF	s							II		Under	standin	g
CO2	Analyze the compon	ents of	CPS											IV		Analy	zing	
CO3	Design the CPS Syste	ems for	give	n Ap	oplic	atio	ns							VI		Creati	ng	
CO4																		
CO-PO	Mapping :																	
			а	b	С	d	е	f	g	h	i	j	k	Ι]			
		CO1	М												_			
		CO2		Н											_			
		CO3				M												
		CO4													-			
			1			I	1	1	1		I	1	1					

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment/declared test/o	uiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1 : Introduction	Hrs.
Introduction of Cyber Physical Systems, various components of CPS, Applications of Cyber Physical System, Design aspects of Cyber Physical system, Introduction to Real Time System	4 Hrs
Module 2 : Sensing	
Types of sensors, Classifications of sensors, Different selection criteria of sensors, Sensor Instrumentation, Concept of Smart sensors, Wireless sensors	6 Hrs
Module 3 : Sensor Network and Protocols	
Sensor Network, Wireless Sensor Network, working of WSN, routing in wireless sensor network, Gateway functions, Data Aggregations, design issues of WSN Short distance protocols : Bluetooth, BLE (Bluetooth Smart), Zigbee, and Industrial protocol Modbus, Mbus, 6LoWPAN, IEC68XX	9 Hrs
Module 4: Embedded system computing	
Introduction to Embedded system, Architecture, Programming aspects, peripherals and system design,	6Hrs
Module 5: CPS Security	
CPS security, Holistic Approach to Security, Overview of Security Technologies Principal security requirements, Security Issues, Types of attacks to CPS.	6 Hrs
Module 6: CASE Study	
Industry Automation, Smart Grid, SCADA, general case study of any CPS.	9 Hrs
Module wise Measurable Students Learning Outcomes :	
Module 1: Students will become familiar with components of Cyber Physical System	
Module 2: Students will get introduced to basic structures for sensing system	
Module 3: Students will be able to understand WSN and protocols	

Module 4: Students will be able to understand embedded system concepts.

Module 5: Students will understand security issues and mitigation system of CPS

Module 6: Students will analyze detail CPS structure.

Final Year Electronics SEM VIII

Engineering Management, and Ethics

Professional Elective VI

Title of	the Course: 3EN431 VLSI in Digital Signal Processing	L		Т	Р	Cr
		3		0	0	3
Pre-Re	quisite Courses:					
Textbo	oks:					
1.	"VLSI Digital Signal Processing- Design and Implementation", Keshav	K. Parhi, V	Wiely	y (India)	2007	
Refere	nces:					
	1. <i>"VLSI Synthesis of DSP kernels- Algorithms and Architectural Tran</i> Sunil Sherlekar, Kluwer Publications, 2002	nsformati	ions"	, Mahe	esh Meh	endale,
Course	Objectives :					
1.	Understand the basic parameters like critical period, loop bound, itera	tion bour	nd et	c. from	architect	ture
2.	Understand various approaches like pipelining, parallel processing, ret optimize above performance parameters for high speed digital system minimization objective. (L2, L3)	. (L2) iming, un s without	ıfoldi t igno	ng, fold oring are	ing etc to ea and po	o ower
3.	To apply and synthesize above algorithms for few cases and to compare demerits of each algorithm. (L3, L4, L5)	re and co	ntras	st the m	erits and	l
4.	To develop and enrich the computer libraries with functions implement in designing and developing high speed digital systems. (L4)	nting abov	ve alg	gorithm	s for futı	ure use
5.	To design a digital system (as a mini-project) for any high frequency ap any of the above algorithms. (L6)	plication	s tak	ing into	conside	ration
6.	Nurture an attitude to work in teams and develop written as well as on	ral preser	ntatio	on skills.		
Course	Learning Outcomes:					
СО	After the completion of the course the student should be able to	Bloom's	s Cog	nitive		
		Level	De	escripto	r	
CO1	Define and describe critical period, loop bound, iteration bound etc.	II		Underst	tand	
CO2	Apply various approaches like pipelining, parallel processing, Retiming, Unfolding, Folding, Systolic Array etc. for designing high speed and high throughput, energy efficient digital systems	111		Appl	У	
CO3	Implement above algorithms for few cases and compare merits and demerits of each algorithm	111		Appl	У	
CO4	Work in Team for solving and writing assignments			Appl	у	

Mapping :												
	1	2	3	4	5	6	7	8	9	10	11	12
CO1	L											
CO2	М		н									
CO3	L	М	н									
CO4						М		М				

Assessments : Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1 DFG Representation and Iteration Bound					
Representations of DSP algorithms Critical Period, Loop bound, Iteration bound, LPM and MCM algorithms	7				
Module 2 Pipelining and Parallel Processing	Hrs.				
Pipelining approach to reduce critical path Parallel Processing to handle higher sample rates , Power Reduction computations, Combined pipelining and Parallel processing	7				
Module 3 Retiming	Hrs.				
Introduction to Retiming (Definitions and properties), Solving system of inequalities, Cutset Retiming and Pipelining, Retiming for clock period minimization ,Retiming for register minimization	7				

Module 4 Unfolding	Hrs.							
Introduction to Unfolding ,Algorithm for unfolding, Properties of unfolding, Sample Period Reduction, Word level and bit-level parallel Processing	7							
Module 5 Folding	Hrs.							
Introduction to folding, Folding Transformation, Lifetime Analysis for Register minimization in folded architecture, Folding of multi-rate DSP systems	7							
Module 6 Systolic Array Design	Hrs.							
Methodologies, Family of systolic arrays (FIR filter) using linear mapping techniques, Matrix – Matrix Multiplication	6							
Module wise Measurable Students Learning Outcomes : After the completion student should be a	ble to	1						
 develop graphical models understand basic performance parameters develop logical skills & enable to understanding and knowledge, Compare and contrast skills develop analytical and computational skills & enable to apply knowledge in practical develop analytical and optimization skills develop cognitive skills for design methodologies; enable to apply systolic array knowledge for general 								
application								

Title of the Course:							L	Т	Р	Cr							
3EN432 : Satellite Communication								3	0	0	3						
Pre-Requisite Courses:																	
Textbooks:																	
 Satellite Communications Dennjs Roddy, 2nd Edition, 1996, McGraw Hill. Satellite Communications —Timothy Pratt, Charles Bostian, Jeremy Allnutt, 2nd Edition, 2003, John Wiley & Sons. 																	
References:																	
 Satellite Communications: Design Principles — M. Richcharia, 2nd Ed., BSP, 2003. Fundamentals of Satellite Communications — K. N. Raja Rao, PHI, 2004.Course Outcome 																	
Course Objectives :																	
 To prepare students to excel in basic knowledge of satellite communication principles To provide students with solid foundation in orbital mechanics and launches for the satellite communication To train the students with a basic knowledge of link design of satellite with a design examples. To provide better understanding of multiple access systems and earth station technology To prepare students with knowledge in satellite navigation and GPS & and satellite nacket communications 																	
Course Learning Outcome	s:																
CO After the comple	tion of t	the	cou	rse t	he s	tude	ent s	shou	ld b	e ab	le t	0	Bloon	n's Cog	nitive		
													level	De	escriptor	~	
CO1 Analyze satellite	orbit												4	Ar	nalyze		
CO2 Analyze the earth	n segmei	nt a	nd s	pace	e seg	mer	nt						4	Ar	nalyze		
CO3 Design various sa	itellite a	ppli	catio	ons	/\/_	1000	+ 0 D	· Do			6		4	De	esign		
CO-PO Mapping : Use H: High I: Intermediate/Moderate B: Basic/Low for mapping; Please do not tick																	
		а	b	С	d	е	f	g	h	i	j	k	PSPO				
	CO1	Н			н												
	CO2	Η															
	CO3			Н													
Assessments: Teacher Assessment:																	

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1	6Hrs.
Module 1: Communication Satellite: Orbit and Description: A Brief history of satellite	
Communication, Satellite Frequency Bands, Satellite Systems, Applications, Orbital Period and	
Velocity, effects of Orbital Inclination, Azimuth and Elevation, Coverage angle and slant Range,	
Eclipse, Orbital Perturbations, Placement of a Satellite in a Geo-Stationary orbit.	
Module 2	6Hrs.
Module 2: Satellite Sub-Systems: Attitude and Orbit Control system, II & C subsystem, Attitude	
Control subsystem, Power systems, Communication subsystems, Satellite Antenna Equipment.	
Satellite Link: Basic Transmission Theory, System Noise Temperature and G/T ratio, Basic Link	
Analysis, Interference Analysis, Design of satellite Links for a specified C/N, (With and without	
frequency Re-use), Link Budget.	
Module 3	8Hrs.
Module 3: Propagation effects: Introduction, Atmospheric Absorption, Cloud Attenuation,	
Tropospheric and lonospeheric Scintillation and Low angle fading, Rain induced attenuation,	
rain induced cross polarization interference.	
Module 4	8Hrs.
Module 4: Multiple Access: Frequency Division Multiple Access (FDMA) – Intermodujation	
Calculation of C/N, Time Division Multiple Access (TDMA) – Frame Structure, Burst Structure,	
Satellite Switched TDMA, On-board Processing, Demand Assignment Multiple Access (DAMA) —	
Types of Demand Assignment, Characteristics, CDMA Spread Spectrum Transmission and	
Reception.	
Module 5	6Hrs.

Module 5: Earth Station Technology: Transmitters, Receivers, Antennas, Tracking Systems,		
Terrestrial Interface, Power Test Methods, Lower Orbit Considerations.		
Module 6	6Hrs.	-
Module 6: Satellite Navigation and GPS Systems: Radio and Satellite Navigation, GPS Position		-
Location Principles, GPS Receivers, GPS C/A Code Accuracy, Differential GPS.		