Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Third Year B. Tech. (Information Technology) Sem – V to VI

AY 2020-21

Syllabus for TY IT SEM V

Professional Core (Theory)

											ore (Inc	u y)				
Title of the	Course:	Da	taba	ase	En	gin	eeri	ing	4IT	301	1			L	Т	Р	Cr
														3	0	0	3
Pre-Requis																	
Object-Orie		gran	nmi	ng I	Data	a St	ruc	ture	es, C	Com	pute	r Alg	orith	ms			
Textbooks																	
				~		-			·		S. Su	darsh	ian, "	Database	System	Concep	ts",
	Graw-Hill										~						rd
•			hnar	1, "I	Dat	aba	se N	Man	age	me	nt Sy	stem	IS", N	IcGraw-H	fill Educ	ation, 3	Iu
	tion, 2003																
References					0	-			~						and ma	• • •	
														ublication		ition, 19	999
														ion, 1983			
							nath	nan,	"A	n Ir	ntrod	uctio	n to	Database	Systems	, Pears	on
	cation, 8t		ditic	on, 2	200	6.											
Course Ob	•					c	1.	1									
	ntroduce				-						agem	ient s	systei	ns			
	mpart con																
	lescribe is				ate	ea w	lith	trai	isac		n ma	nage	ment				
Course Le					C	41			41			<u> </u>	11		D1	, 0	
CO A	iter the c	omj	plet	ion	01	tne	cou	irse	the	e sti	uden	t sho	ould	be able to	Bloon	n's Cog	nitive
															level	Descr	iptor
																	-
	anipulate														3	Apply	
	spect data														4	Analy	
	valuate tra	ansa	ctio	n p	roc	essi	ng 1	tech	niq	ues	•				5	Evalu	ating
CO-PO M	-	1	r - 1		1	1	1	r	1	1	1	r	r		1		
	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	_	
	CO1	1	2							1		3	1				
	CO2		2			2						3	2	1			
	CO3					2						2	3		2		
Assessmen																	
Teacher A					-				TOP		`	c· 1 /	~				
Two compo																(MSE)	and one
End Semes				<u>`</u>		havi	ing	20%	6, 3	0%	and	50%	weig				
			essn		t									Ma			
			SE											1			
			MSI											3			
			SE 2											1			
-			ESE											5			
ISE 1 and						-								-	-		
discussion	.[One ass	essi	men	t to	ol j	per	ISE	E. T	he a	isse	essme	ent to	ool us	sed for IS	E 1 shal	l not be	e used
for ISE 2]		-			_												
MSE: Ass													-				
ESE: Ass	essment	is b	asec	l or	1 1 ()0%	b co	urse	e cc	onte	ent w	ith70)-80%	6 weighta	ge for c	ourse co	ontent

(normally last three modules) covered after MSE.	
Course Contents:	
Module 1	Hrs.
Introduction:	
Database Systems, Types of Database Systems, Data abstraction, Data Models,	_
Architecture of Database Systems.	7
E-R Model: Entities and Entity sets, Mapping Constraints, E-R Diagram, Reducing E-R Diagrams to Tables, Specialization, Generalization, Aggregation.	
Module 2	Hrs.
Relational Model: Structure of Relational Databases, database schema, keys,	
Relational Algebra, Tuple Relational Calculus, Domain Relational Calculus	-
Integrity Constraints and Design: Domain Constraints, Referential Integrity,	7
Triggers, Normal forms, Functional Dependencies, Decomposition.	
Module 3	Hrs.
Query Processing: Query processing, Query Cost, measures of query cost, Evaluation	
of expression, Equivalence of Expressions.	6
Structured Query Language (SQL).	
Module 4	Hrs.
File and System Structure: Storage media, RAID, Storage access, File organization,	
Organization of Records into files.	7
Indexing and Hashing: Ordered and secondary Indices, B+ Tree Index Files, Static	,
Hashing, Dynamic hashing, Comparison of Indexing, Grid files, Bitmap indices.	
Module 5	Hrs.
Transactions: Properties and states, Concurrent execution, Serializability.	
Concurrency Control: Lock-Based Protocols, 2 phase locking protocol, Graph based	6
protocols, Time stamp based protocols, Dead lock handling	
Module 6	Hrs.
Crash Recovery: Failure Classification, storage Structure, Log-Based Recovery,	
Shadow Paging, recovery with concurrent transactions, buffer management, backups.	6
Introduction to Database performance tuning.	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Explain ER model of database systems	
Module 2: Design Relational model of database systems	
Module 3:Implement SQL and query processing techniquesModule 4:Describe concepts of File storage and implementation.	
Module 6: Discuss recovery management of database systems.	

	f the Co	Juisc. (- P		0	·										-	L 3	T	P	C 3
Dro Da	anisita	Сонта															3	0	0	13
11e-Ke	equisite	Basics		Theo	nrv (of c	٥mr	nute	atio	n ar	nd e	vsten	1 nro	oram	ç					
Textbo		Dasies	01 1	nec	лус	510	un	Jui	1110	n ai	iu s	ysten	i più	gram	5.					
	James.	L Peter	rson	ı an	d A	Sil	ber	cha	tz'	"On	oera	ting 9	Syste	m Co	ncer	ots" A	ddis	on W	estlex	J
	Publica							ena	·•• ,	Οp	, ei a		5,500	in et	neer	, 11	aano		estre y	,
	Milan N							vste	em -	- Co	onc	ept a	nd D	esign	". TN	AGH,1 ⁸	st Ed	ition.2	2001.	
Refere				,	1		υ.	2				1		0	,	,		,		
1.	Williar	n Stalli	ngs,	," C	pera	atin	g S	yste	ems	: Ir	nter	nals a	and E	Desig	n Pri	nciples	",Pet	terson	l	
	Publica																			
	Crowle						Sys	ster	ns:	ΑI	Desi	ign-C	rient	ed A	pproa	ach",M	c Gr	aw H	ill	
	Publica		Edi	tior	1,20	17.														
	e Object								1											
	To intro							s ar	nd s	yste	em j	progr	ams							
	To desc					iitie	es.													
1	e Learn	0										4		1 .1	<u> </u>	DI		<u></u>	<u>.</u>	
CO	able t	the co	mp	ieu	on (01 (ine	cou	urse	e in	ie s	stude	nt sr	iouia	be	Bloon	n's v	Cogni	uve	
	ablet	U														level	D	escrip	tor	
<u>CO1</u>	Distin				1:0	<u> </u>				600	7					2	TL	- 1 4		
CO1		iguish b						<u> </u>								2 3		nderst		ng
CO2		ate the												1	- i	<u> </u>		pplyir		
CO3	-	ze the o	leac	1100	KS a	ma	mei		ГУП	nana	age	ment	chai	lenge	s m	4	A	nalyzi	ng	
	systen) Mapp																			
	/ wrapp	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSC)1 PS	02]		
		C01	1		1	-	5	U	/	0		10	11	1	150	/1 15	02	-		
		CO2			1	2	2							-	1			-		
		CO3				2	2								-	2		-		
		000		L		- 1	-		1									1		
Assessi	ments :																			
	er Asses																			
	omponer								· ·		·							(MSE	E) and	d or
End Se	mester I			· ·) ha	vin	g 20	0%	, 30	<u>%</u> a	and 5	0% v	veigh		1	ely.			
<u> </u>		A	sses		ent											Marks				
<u> </u>				<u>E 1</u>							_					10				
				ISE							_					30				
				E 2												10				
		7 2 1		SE				4		-1 -		•	4 4 (·		50	1/	_)	1	
ICE 1	and ISE					-				· ·				· •			-	· · ·	•	-
ISE 1	aion IO			ent	100	т ре		DE.	In	e as	ses	smen	1 100	i use	u for	19E I	snal	n not	be us	sea
discus	sion.[O	ne asse	ssm																	
discus for IS	E 2]					በ%	of	יוחי	rça	con	tent	t (No	rmali	lv fir	t thr	ee mod	11/20)		
discus for IS MSE:	E 2] Assessr	ment is	base	ed c	on 50														cont	ent
discus for IS MSE: ESE:	E 2]	nent is ment is	base bas	ed o sed	on 50 on	100	%	cou	rse	con	nten								conte	ent

Module 1	Hrs.
Introduction : Notion of operating systems, Computer system organization, Computer	
System architecture, Computer System Structure, Operating System Operations,	
Process Management, Memory Management, Storage Management, protection and	5
security. System Structure: Operating system services, user operating system	5
interface, system calls, types of system calls, system programs, operating system	
design and implementation, operating system structure.	
Module 2	Hrs.
Process	
Process Concept, Process Scheduling, Operation on process, Cooperating process,	
Threads, Inter-process Communication (Algorithms evaluation). Process Scheduling:	8
Basic concept, Scheduling Criteria, Scheduling Algorithms, Multiple processor	
scheduling, Real time scheduling.	
Module 3	Hrs.
Inter-process Synchronization	
Background, Classical problems of synchronization, Critical Region, The critical	6
section problem, Synchronization Hardware, Monitors, Semaphores.	
Module 4	Hrs.
Deadlocks	
System modes, Deadlock characterization, Methods for handling deadlocks Deadlock	6
prevention, Deadlock avoidance, Deadlock detection, Recovery from deadlock.	TT
Module 5	Hrs.
Memory Management	
Background, Logical Versus Physical Address space, Swapping Contiguous Allocation,	
Paging, Segmentation, Segmentation with paging.	8
Virtual Memory: Background, Demand paging, Page replacement, Page replacement algorithms, Allocation of frames, thrashing (Only concept), Demand segmentation.	
Virtualization concept and case studies	
Module 6	Hrs.
File System Management	1115.
File concept, access methods, directory and disk structure, file-system mounting, file	
sharing, protection.	6
Implementing File System : File system structure, file-system implementation,	Ū
directory implementation, allocation methods, free-space management	
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Explain the functions of operating systems with system calls.	
Module 2: Identify the difference between process and thread.	
Module 3: Analyze the CPU scheduling concept and Inter-process Communication.	
Module 4: Identify the difference between various deadlock handling mechanisms.	
Module 5: Analyze working of paging, demand paging etc. and to explain the concept	of
virtualization of OS's.	
Module 6: Implement the file system of operating systems with access method.	

Title	of the	Cours	se: Co	mp	oute	er A	lgo	ritł	nm	3IT	303	3					L	Τ	Р	(Cr
																	3	0	0		3
Pre-F	Requisit	e Cou	rses: 1	Dat	a St	ruc	ture)													
Text	books:																				
1																st, "Intro	oducti	ion t	o Algoi	rithm	s",
		d Editi	on the	M	IT F	res	s Ca	amb	orid	ge,	Lon	dor	n, En	glan	d						
	rences:																				
1					-			, "C	om	put	er A	lgo	rithn	ns", (Com	puter So	cience	e, W.	H. Fre	emar	1
<u>C</u>		compa		ss,	Nev	w yo	ork														
	se Obj			1 1	:	(1 .		.1		1:4-										
1	. To co	ompre ealize s			-		-	·					-	-							
3															he im	portanc	e of i	ise c	of appro	vima	ntior
		rithm.	the nu	1 411	055	10 11	010	I ul	501		I uliv	4 00	01111			iportaik	010	45 0 C	/1 u pp10	Anne	
Cour	se Lea		Outco	m	es:																
Γ	CO	_				etio	n of	f th	ie o	coui	rse 1	the	stu	lent	sho	uld be	Bloc	om's	Cogni	tive	
		able	to														leve	1 1	Descrip	tor	
																	ieve		Descrip	tor	
	CO1	Selec	t and	a	pply	/ a	ppro	opri	iate	al	gori	thn	ns f	or s	olvir	ig the	3	1	Applyin	g	
		probl	em.																		
	CO2	Study	the p	rob	lem	sta	tem	ent	for	alg	oritl	nmi	ic ap	proa	ch.		4	1	Analyzi	ng	
	CO3	Desig	gn the	app	rop	riate	e al	gori	ithn	n fo	r pro	oble	em si	taten	nent		6	(Creating	5	
CO-I	PO Ma	pping	:																		
		Ī	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	02			
			CO1					3							1						
			CO2		1			2								1					
			CO3	1	2												2				
Asse	ssment																				
	her As		ent:																		
				em	este	r E	valu	iatio	n (ISF	0 0	ne	Mid	Sem	ester	Exami	natior	1 (M	SE) and	lone	End
	-										· ·					ectively		1 (111	ol) un	. 0110	
			Ass		-		- 8 -	0 / 0	, 20				00	181102			arks				
				SE													10				
				MS													30				
				SE													10				
																	50				
ICT	11							~~~~		4 -				4 -	4 (ad/-		4	<u></u>
disc ISE	ussion. 2]	[One a	assessi	ner	nt to	ool j	per	ISF	Е. Т	The	asse	ssn	nent	tool	used	rprise/d l for IS three m	E 1 sl	hall		•	-

	essment is based on 100% course content with70-80% weightage for cours ast three modules) covered after MSE.	se conten
Course Con		
Module 1		Hrs.
	n, Design and Analysis of Algorithm	1110.
Greedy Alg Task schedu Dynamic	gorithms: An activity-selection problem, Knapsack problem, Huffman codes, uling problem. Programming: Matrix-chain multiplication, Elements of dynamics ng, Longest common subsequence.	8
Module 2		Hrs.
Single-Sour	rce Shortest Path (SSSP):	
1	ths and relaxation, Bellman-Ford algorithm, Single-source shortest paths in yclic graphs, Dijkstra's algorithm, Problems, Topological sort	6
Module 3		Hrs.
Shortest pa algorithm fo	nortest Paths (APSP) and Maxflow: aths and matrix multiplication, The Floyd-Warshall algorithm, Johnson's or sparse graphs. orks, Ford Fulkerson method, Maximum Bipartite matching	6
Module 4		Hrs.
Elementary	eoretic Algorithm: number-theoretic notions, Greatest common divisor Modular arithmetic, dular linear equations, The Chinese remainder theorem, DFT/FFT.	6
Module 5		Hrs.
matching w Computatio	ching: The naïve string-matching algorithm, The Rabin-Karp algorithm, String with finite automata, The Knuth-Morris-Pratt algorithm. In Geometry: Line-segment properties, Determining whether any pair of intersects, Finding the convex hull, Finding the closest pair of points.	6
Module 6		Hrs.
NP-Completer reducibility	v class and Approximation Algorithm: eteness: Polynomial time, Polynomial-time verification, NP completeness and , NP-complete problem. tion Algorithms: The vertex-cover problem, The travelling-salesman problem, rering problem, The subset-sum problem	7
Module wise	e Measurable Students Learning Outcomes :	
After the co	mpletion of the course the student should be able to:	
Module 1: Module 2: Module 3: Module 4: Module 5: Module 6:	 Explain and Apply appropriate strategy for solving a given problem. Explain the basic algorithms of finding shortest path. Explain the basic algorithms of maximum flow and APSP. Demonstrate the importance of the DFT/FFT and Number theory. Apply the algorithms in string matching and computational geometry. Identify and relate computationally complex problems and explain practical ap for NP problems. 	pproaches

Title of the Co	urse: Web	Tec	chno	olog	y 4]	IT3	304						L		Т	Р	Cr
													1		0	0	1
Pre-Requisite	Courses: B	asic	Pro	grar	nmi	ing	Co	nce	pts								
Textbooks:																	
1. P.J. Deit							nter	net	and	l Wo	rld W	Vide V	Veb Hov	v to	progr	am", P	earson
	on India, 4t			-											_		at
2. Jon Duc	,	L an	d C	SS:	Des	sig	n ar	nd E	Build	d We	bsite	s", Jo	ohn Wile	ey &	Sons	, Inc, 1	SL
edition,	2011																
References:					•••			-	1.0		*****			_	th — 1		
	en M. Scha											•					2010
	Bayross,"														ıng H	TML,	
Course Object	Script, DH				ır	, р	PD	Pu	onea	ation	8, 4	Eann	51,2000)			
	duce the pr	incir	oles	weł	n ha	sec	l an	nlic	eatic	ons d	evelo	nmen	t proces	S			
	rt current c	-					-	-				1	n proces	5			
3. To prov												•	ement sy	/ster	n		
Course Learni	ng Outcom	es:															
CO After t	he complet	ion	of t	he c	our	rse	the	e stu	ıdeı	nt sh	ould	be ab	ole to		Bloc	om's	
															Cog	nitive	
															leve	l Des	criptor
CO1 Develo	p web-base	d an	plic	catio	n u	sin	g si	iita	ble	clien	t side	e and	server s	ide	3	Apr	olying
	chnologies	p	P		••	~	0~								-		
	e a web pag	ge an	nd io	dent	ify i	its (eler	nen	ts a	nd at	tribu	tes			4	Ana	lyzing
	solution to	·													6		ating
CO-PO Mappi			0		1											l	0
	PO 1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	SO2		
	CO1	2		1													
	CO2								2								
	CO3				2									1			
Assessments :								1	l								
Teacher Assess	sment:																
Two componen		neste	er E	valu	atic	on (ISE	E). (Dne	Mid	Sem	ester	Examina	atior	n (MS	E) and	one Er
Semester Exam								//								,	
	Assess			0		,					0	1	Mai	rks			
	ISE		-										1(
	MS												30				
	ISE								+				10				
		E							+				50				
	1 213								1								
ISE 1 and ISI			0n -	assio	onm	len	t o	ral	Set	nina	r tes	t (sur			-d/aui	z) and	gram
ISE 1 and ISI discussion.[Or	E 2 are bas	sed o											prise/de	clare			

ESE: Assessment is based on 100% course content with70-80% weightage for course	e conte
(normally last three modules) covered after MSE.	
Course Contents:	
Module 1 – Basics of HTML	Hrs.
HTML introduction, HTML editors, elements, attributes, headings, paragraphs, styles, formatting, lists, tables, layout, forms, graphics, media, HTML v/s XHTML	2
Module 2 – Fundamentals of CSS	Hrs.
CSS Introduction, syntax, selectors, colors, backgrounds, borders, margins, padding, outline, text family, font family, navigation bar, dropdowns, forms, website layout and components	2
Module 3 – Javascript	Hrs.
Introduction to Javascript, syntax, variables, operators, data types, functions, objects, events, date formats, math, control flow statements, forms, objects and its properties, object classes, components, Introduction to server-side and client-side scripting language	3
Module 4 – Introduction to PHP	Hrs.
Basics of PHP, installation of PHP, comments, variables, echo/print, data types, strings, numbers, math, constants, operators, control flow statements, arrays	2
Module 5 – PHP Forms, Data Base Cooncetivity	Hrs.
Form handling, form validation, form required, from URL, form complete, date and time, file handling, open, read, write, upload, cookies, session, MySQL database connectivity, MySQL connect, creating database, inserting data, prepared statements, various queries used in PHP	2
Module 6 – Introduction to Ruby on Rails	Hrs.
Rails Features, Installation, IDE, Directory Structure, Active Record, MVC, Bundler, Session, File Upload, Testing, Layout, validation	2
Module wise Measurable Students Learning Outcomes:	
 After the completion of the course the student should be able to: Module 1: Explain basic fundamentals of HTML and advanced versions Module 2: Explain the basic fundamentals of CSS Module 3: Develop the scripting language Module 4: Deploy, install and create the web pages in PHP Module 5: Create web design forms, storing cookies and maintaining session in PHP and application. Module 6: Create dynamic web applications with Rail. 	web

Professional Core (Lab)

Title of the C	1. J.D. Ullman, "Principles of Database Systems", Galgotia Publications, 2 nd Edition, 1999 2. Wiederhold, "Database Design", McGraw Hill Inc, 2 nd Edition, 1983 3. C.J.Date, A.Kannan, S.Swamynathan, "An Introduction to Database Systems", Pearson Education, 8th Edition, 2006. Tree Objectives : 1. To demonstrate basic concepts of conceptual database design. 2. To introduce database schemas in DBMS 3. To illustrate between various transaction management protocols. Urgeneration of the course the student should be able to After the completion of the course the student should be able to OI Summarize real world problems into relational databases. 2 OI Study transaction processing techniques. 3 Applying O3 Study transaction processing techniques. 4 Analyzing PO 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 1 2 2 2 1 CO2 2 2 2 3 2 CO3 1 2 2 3 2 1																			
	<u> </u>															0		0	2	l
-				Л		G 4	,		C			A 1	1							
	ted Progr	am	min	g D	ata	Str	ucti	ires	, C	omp	uter	Algo	rithn	ns						
	1 0	• 11					T	17	.1		1.0	C 1	1		. 1	G			a	
							-					Suda	rshar	n, "Da	atab	ase S	ys	tem	Conce	pts'',
												a .			~			- 1	,	r d
	-		rish	nan	, "L	Data	abas	e M	lana	agen	nent	Syste	ems''	, Mc	Grav	w-H1		duc	ation, .	314
References:																				
																	2 ⁿ	^{id} Ed	ition, 1	999
								atha	an,	"An	Intr	roduc	tion	to Da	taba	ase S	yst	ems'	', Pear	son
		8th	Ed	itio	n, 2	006	5.													
											ıal d	ataba	se de	esign.						
3. To	o illustrat	e be	etwe	een	var	iou	s tra	insa	ctic	on m	nana	geme	nt pr	otoco	ols.					
Course Lear	ning Out	tcoı	mes	•																
		mp	leti	on	of	the	e co	urs	e tl	he s	tude	ent sl	houle	d be	Bl	oom	's	Cogi	nitive	
abit															le	vel	Ľ)escr	riptor	
CO1 Sum	marize	real	wo	orld	pro	ble	ms	into	rel	latio	nal c	datab	ases.		2		U	Inder	rstandi	ng
CO2 Exec	cute Que	ry la	angi	uage	es o	n d	latał	oase	es.						3		A	pply	ving	
CO3 Stud	ly transac	tion	1 pr	oce	ssin	ıg t	echı	niqu	ies.						4		A	naly	zing	
CO-PO Map	ping :																			
-	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSC)1	PSC)2			
	CO1	1	2			2						2	1							
	CO2		2			2						3	2	1						
	CO3					2						2	3			1				
										1			1							
Lab Assessme	ent																			
There are four IMP: Lab ESE								A1,	LA	.2, L	A3 a	and La	ıb ES	Е						
Assessment	Based o		iica	<u>u 01</u>	pus		-	ndu	ctec	l by			ducti missi		anc	1 N	A a	rks	Mark	S
LA1	Lab		2	activ	vities	s.	By			Cou	rse			veek	1 t	0 W	eek	4	25	-
	attendan	ce.				2	Fac	ultv		•			0	n at t					-	
		- , ,	,					J				5								
LA2	Lab		8	activ	vities	s,	By			Cou	irse	Duri	ng v	veek	5 t	o we	eek	8	25	
	attendan	ce, j	jour	nal			Fac	ulty					•	n at t						
								-				8								
LA3	Lab			activ	vities	s,	By			Cou	irse		•	veek 1					25	7
	attendan	ce, j	jour	nal			Fac	ulty					nissio	n at t	he e	nd of	W	eek		
												14								

Lab ESE	Lab performance and	By C	Course	During week 15 to week 18	25	[
	related documentation	Faculty		submission at the end of week		
		-		18		
	tes starting week of the sem					-
			ni-proje	ect, presentations, drawing, progra	amming a	and
	activities as per the nature o					
-	ntal lab shall have typically	8-10 experim	lents			
Course Cont	tents:				-	
					Hrs	•
4. Basic o	perations of relational mo					
-	. Study and design of E				4	
t	U 1	SELECT and	d PRO	JECT operation on student		
	database					
c	Program to implement	INSERT, DE	ELETE	and UPDATE operation		
	on student database					
5. Advanc	ed operations of relationa					
a	. Program for aggregate				6	
t						
С		onstraints & F	Referei	ntial Integrity		
6. Indexin	g and hashing		_			
a					8	
t b	Program for sparse ind		index			
-	. Program for static hash	-				
-	I. Program for dynamic I	nashing				
7. Transac	ction processing					
	. Program for log based			tion	8	
t	Program for 2 PL prot					
С	0		or tran	saction		
Ċ	I. Program for Deadlock	Detection				

Fitle of	fthe	Cour	se: (Com	put	er A	lgoi	rith	m I	Lab	4IT	353			L	Г		Р	Cr
															-	0)	2	1
Pre-Re	quisi	te Co	urse	es:D	ata	Stru	cture	e											1
Fextbo	oks:																		
1.	Thon	nas H	. Coi	rme	n, C	harl	es E	. Le	iser	son	and	Rona	ıld L. I	Rivest	, "Intro	oduct	tion to)	
	0							-	· ·	•			Editio	,					
		Clenbe	erg, I	Eva	Tar	dos,	"Alz	gori	thm	ı De	sign	<i>i</i> ", Pea	arson I	Educa	tion Inc	lia			
Refere		•,	a 1	· D		1		"				. 1					TT 7 T		
	Horro and c	,			-		· ·		omp	uter	Alg	gorithi	ns", C	отри	ter Scie	ence,	W. H	l. Free	eman
Course		-	, e	res	<i>S</i> , <i>I</i>	ew I	Ork,												
	•			ne lo	oric	ofa	loor	ithm	าวท	d it	s coi	mplex	itv						
		-			-		-					entati	•						
					-					-				opt to	the equ	ivale	ent ap	proxin	nate
	algor	-			0		_			_	1			1 ···	- 1-		·· r	L	
Course	e Lea	rning	Out	tcon	nes:	(W	rite	fro	m s	tud	ent j	persp	ective)					
CO	Afte	r the	comp	oleti	on o	of the	e cou	rse	the	stuc	lent	shoul	d be al	ble to	В	loom	's Cog	gnitive	
															le	vel	Des	scriptor	r
CO1	Sele	ct and	l anr	lv a	nnr	onri	ate a	امما	rith	ms f	for s	olvin	g the p	rohler		vei		plying	
$\frac{\text{CO1}}{\text{CO2}}$												appro			4		_	alyzin	
$\frac{CO2}{CO3}$			-									n state			6		_	sign	5
CO-PC													ment		0		DC	sign	
- U-I C	<i>i</i> viaj	PDing PO	1	2	3	3 a:	5	6	atio 7	8	9	gtiis) 10	11	12	PSO		SO2		
	F	C01	_	2	5	4	3	U	/	0	,	10	11	12	150		302		
	-	$\frac{\text{COI}}{\text{CO2}}$		1			2							1	1				
	-		_	1			2								1	1			
<u> </u>		CO3	1	2												1			
Assess Lab A																			
There a			ipon	ents	of la	ab as	sessi	nent	t LA	1, L	.A2,	LA3	and Lal	b ESE					
IMP: I		SE is a	i sepa	arate				ing											
Asses	ssmen	t Ba	sed	on				C	Conc	luct	ed b	y		uctior		I N	Iarks	Mar	rks
LA1	LA1 Lab activit										C	ourse		nission	ek 1 t	o we	ek 4	25	
			enda	nce,			11105		By acul	lty	C	ourse			at the e				
				,	0					-			5						
LA2		La				activ	ities,		By .	14	Co	ourse		0	ek 5 t				
		att	enda	nce,	Joui	mal		F	acu	ity			subm 8	ISSION	at the e	nd of	week		
LA3		La	b			activ	ities.	B	8y		С	ourse		g wee	ek 10 t	o wee	ek 14	25	
_			enda	nce,					acul	lty		-			at the e				
	10-		1	-							~		14		1		• • •		
	Lab ESE Lab performance ar								y .	1.	Co	ourse		•	ek 15 t				
Lab E			at a J	dear	related documentation								an1						
Lab F		rel	ated	doci	ume	ntatio	on	F	acul	lty			subm 18	ISSION	at the e	nd of	week		

Lab activities shall include performing experiments, mini-project, presentations, drawing, programming and other suitable activities as per the nature of lab course.

The experimental lab shall have typically 8-10 experiments.

Course Contents: Lab Tutorials/Experiments consists of 10-12 assignments

1. To implement sorting algorithm using array as a data structure and analyze its time complexity for

different values of n. The large number of elements may be generated using Random Number generator or may be stored in a file. (Quick Sort, Merge Sort)

2. To implement different search techniques using array and/or trees and analyze their time complexity. (Linear, Binary, Binary recursive)

3. To implement Fractional Knapsack problem and activity selection problem using Greedy method.

4. Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's& Prim's algorithm

and compare.

5. To apply Greedy method to solve problems of

a) Job sequencing with deadlines

b) Optimal storage on tapes

6. Implement the following using Dynamic Programming

a) Matrix-chain multiplication

b) Longest common subsequence

c) Optimal binary search trees

7. To implement Strassen's matrix multiplication algorithm

8. From a given vertex in a weighted connected graph, find shortest paths to other vertices using Dijkstra's algorithm.

9. Implement any scheme to find the optimal solution for the Traveling Salesperson problem and then solve the same problem.

List of Tutorials (Broad Statements)

Module 1: Solve a given greedy problem. Solve Matrix-chain multiplication problems.

Module 2: Solve a given problem based on Single-source shortest paths in directed Acyclic graphs.

Module 3: Solve a given problem based on of maximum flow and APSP.

Module 4: Solve a given problem based on the DFT/FFT and Number theory.

Module 5: Apply the algorithms in string matching and computational geometry.

Module 6: Identify and relate computationally complex problems and solve a given NP problems.

Title of	the C	Course:	We	b T	ech	nol	ogy	y La	ıb 4	IT3	354					L	Т	Р	Cr
																0	0	2	1
	-	e Cours	es:]	Bas	ic P	rog	ram	ımiı	1g (Con	cep	ts							
Fextboo																			
													d Wo	orld W	ide Web	Но	w to j	progra	m",
		arson Ec																	
4					AL :	and	CS	SS: 1	Des	ign	and	Bui	ld We	ebsite	s", John	Wil	ey &	Sons,	Inc,
		edition,	201	1															
Referen			a 1	0	(17						1	aac		·1 •	1		-th -		0.01
															ndia Editi				
4	2. IV	an Bayro)SS ,	W.	eb I	znal	blee		omn	ner		App	licatio	on De	velopme	nt U	sing	HIML	-,
a			, DF		/1L 8	and	PH	ΙΡ <i>΄</i> ,	BP	ВР	ubl	icatio	ons, 4	Ed1	tion , 200)6			
Course				1		• 1		1	1	1		1		1 1	,				
															pment pr	oces	SS		
		impart o													•	nt a	vator		
						n ae	eve	iopi	nen	ı in	we	u and	i con	ient n	nanageme	ent s	ysten	1	
COUrse		ning Ou				Բ + Ն	0.01		10.41	h.a. ~		ont	how	dha	abla ta	D	loom	·	
CO	Alter	the con	npro	ello	n o	i un	e co	Jurs	se u	ne s	stua	ent	snoui	u be a	able to		ognit		
																		Descr	intor
																le	ver	Desci	iptor
CO1	Appl	y differe	ent o	clie	nt s	ide	and	d se	erve	r si	de	scrip	ting	for w	eb based	3		Apply	/ing
		cations.										1	U					11 5	U
CO2	11	yse a we	b pa	age	and	ide	nti	fy it	s ele	eme	ents	and	attrib	outes		4		Analy	zing
CO3	Desig	gn solutio	on t	o us	sing	app	oro	pria	te w	/eb	frar	new	orks			6		Creati	ing
CO-PO		-						-											
	•	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	02		
		CO1		2		1													
		CO2									2				1				
		CO3					2									1			
												1			11				
Assessn	nents:																		
Lab Ass																			
		compone							A1,	LA	.2, L	.A3 a	nd La	ıb ESE	2				
		is a separ		hea	d of	pas	SINE			4 1			0	1 /			7 1	3.6	
Assessi	ment	Based o	n					Col	ndu	cted	l by			ductio		N	larks	Mar	·KS
LA1		Lab			activ	vitie	c	By			<u></u> Cou	irse		missio	n eek 1 to	11/2	ek 1	25	
1.11		attendan		1110		Fac	ultv		COL	130			at the en						
			,	,				- 40	<i></i>				5			- UI			
LA2		Lab		i	activ	vitie	s,	By			Coi	ırse		ng w	eek 5 to	we	ek 8	25	
		attendan	nce,				-	Fac	ulty					0	at the en				
									-				8						
							T	-											
LA3		Lab attendan			activ	vitie	s,	By Fac			Coi	irse		•	ek 10 to at the en				

				14	
Lab ESE	Lab performance and	Ву	Course	During week 15 to week 18	25
	related documentation	Faculty		submission at the end of week	
				18	
	ates starting week of the sem				
				ect, presentations, drawing, program	ramming and
	activities as per the nature o				
The experime	ental lab shall have typically	8-10 expe	riments		
					
	(Lab)				
Course Con					
Assignment			<i>.</i>		
-	ram on HTML basic tags f		-	4 1	
-	ram on HTML tag to hand			1 0	
0	ram on HTML tag to creat			nents.	
	ram on CSS properties for				
	ram on applying event han			eb page using JavaScript.	
	ram on applying layout to		ebpage.		
-	ram on PHP controls state				
•	ram on PHP string operation				
9. Prog	ram on PHP form creation	and data	handling.		
10. Prog	ram on session manageme	nt using P	HP.		
11. Prog	ram on Cookies managem	ent using l	PHP.		
12. Prog	ram on PHP to connect M	ySql datab	base for C	URD operations.	
13. Prog	ram on Rails Application u	using Layo	out, Com	ponents.	

itle of t	he C	ourse:	Mi	ni-F	Projec	t II 4	4IT	341								L	Т	P	C
																0	0	2]
Pre-Requ		e Cours	ses:	-															
fextbool																			
Referenc																			
Course C																			
		ovide gu																	
		p stude									nges.								
Course L		student				witi	1 lea	1111 5	spir	II.									
		er the c				f th		our	se i	the	stud	ent	shou	ld he	RI	oom's		nitiv	e
	able		UII	ipic		ı tu		our	sc	unc	stuu	icht	snou	iu be					
	aur														lev	vel	Desc	ripto	r
CO1	Dem	nonstrat	e tł	ne r	etwor	k ar	mlia	eatic	n a	& 11	ise tł	ne or	oen s	ource	3		Appl	ving	
		for the				-	-	Juli	, , , , , , , , , , , , , , , , , , , ,			10 01		04100	2		PP -	, <u>9</u>	
		tify the						s &	trv	to a	addre	ess it.			4		Anal	yzing	-
		te & ex					-		-					n and	4			yzing	
		uation.	P				r-•J		- • P						-			J8	,
CO-PO I																			
	I -1	PO	1	2	3 4	5	6	7	8	9	10	11	12	PSO1	1	PSO2	7		
		C01	-	1		2		,	U		10		3	1001			-		
		CO2									2			2					
		CO3						3				2			1	[
There are	four		ents	of 1	ab asse	essm	ent 1	LA1	. L/	42.	LA3 :	and L	ab ES	SE			1		
MP: Lab									,	,									
Assessm	ent	Based	on				Co	ondu	icte	d by	y		nduct		and	Ma	arks	Mar	ks
LA1		Lab			activit	iec	By	,		Co	urse		miss	ion week 1	1 t <i>i</i>		k 1	25	
LAI		attenda	nce,	Re		103,		cult	y/G					on at th				25	
					-							5							
LA2		Lab	n 00		activit	ies,	By				urse			week 5				25	
		attenda	nce,	, rej	μοπ		га	culty	y/U	uide		sub 8	missi	on at th	e er		VCCK		
LA3		Lab			activit	ies,	By				urse	-	ing v	week 1	0 to	week	x 14	25	
		attenda	nce,	Rej	port		Fa	cult	y/G	uide	;		missi	on at th	e er	nd of v	veek		
Lab ESE	'	Lab p	perf	rma	ince	and	By	r		Co	urse	14 Dur	ing v	week 1	5 to	weel	- 18	25	
Lau LoL	, ,	related			nentati		~	culty	y/G					on at th				23	
		Report									<u>.</u>	18	<u>.</u>						
Veek 1 in	diant	an atorti	na	1	- C 41		aata												

Course Content : Mini-project is to be carried out in a group of maximum 3 to 5 students.

Each group will carry out mini-project on developing any application software based on following areas.

- 1. Front end and Back end connectivity.
- 2. Front end can be JAVA.
- 3. Back end can be MySQL, PgSQL, NoSQL, MongoDB, etc.
- 4. Industry Problem Statement(Sponsored Project)
- 5. Problem statements based on current or previously learned Technology.

Project/Mini-Project group should submit workable project at the end of second semester. Project report (pre-defined template) should be prepared using Latex/Word and submitted along with soft copy on CD/DVD (with code, PPT, PDF, Text report document & reference material) or on online github.

Students should maintain a project log book containing weekly progress of the project.

Open Elective (OE) (List OE (MOOC/NPTEL) will be published per semester/year)

Professional Elective-1

Title o	of the Co	urse: I	Pro	fessi	ional I	Elec	tive	-1:0	Clou	ud	Com	puti	ng 4	IT31	1	L	Т	Р	Cr
																2	1	0	3
Pre-R	equisite	Course	es:	Cor	nputer	Ne	two	rks											
Textb																			
1.	Rajkum	ar Buy	ya,	Chr	istian	Vec	chi	ola,	S. T	ha	mara	i Selv	vi, "N	A aste	ring	g clou	d com	puting	,, ,
	Mc Gra																		
2.			-									,	loud	Com	put	ing: C	oncep	ts,	
	Techno	logy &	Ar	chite	ecture,	Pea	arso	n, 1	st E	diti	ion, 2	2010							
Refere																			
1.	Richard																: Con	cepts,	
	Techno																		
2.	Srinivas										actica	al app	proac	h for	lea	rning	and		
~	implem		n, P	ears	son, 2^n	^u Ec	11110	n, 2	012										
	e Object				. 1	<u> </u>		1.											
1.	To intro											1							
2.	To imp						-	-						mput	ıng				
3.	To acqu					01	virti	18112		n 1	n dai	a cer	nter						
	e Learni										<u> </u>				D		C	• . •	
CO		the co	omp	oleti	on of	the	co	urse	e th	es	stude	nt sl	hould	l be	В	loom	s Cog	nitive	
	able t	0													le	vel	Desci	riptor	
																ver	Deser	por	
CO1	-	rehend													2			rstand	ing
CO2		se virtu			on tec	hnic	ques	s to	de	plo	oy th	ie se	rvice	on	3		Appl	ying	
		infrastr																	
CO3	2	ze serv	ice	moo	dels fo	r da	ta c	ente	er ap	pli	catio	ns			4		Analy	yzing	
CO-P	О Марр	ing :		1			1	1											
		PO	1	2	3 4	5	6	7	8	9	10	11	12	PSC)1	PSO	2		
		CO1	3																
		CO2								1			2	1					
		CO3	2													2			
	ments :																		
	er Asses				_			-	~ `	_				_					
	omponer							· ·										SE) an	d one
End Se	emester I			<u>``</u>		avır	1g 2	0%,	, 309	% 8	and 5	0% v	veigh				/.		
		A		ssm	ent											ırks			
				SE 1												0			
				ISE												0			
				SE 2												0			
				SE												0			
	and ISI					-		·	~				· •				1 / /		-
	ssion.[O	ne asse	ssm	ent	tool p	er IS	SE.	The	ass	ess	ment	tool	used	for I	SE	1 sha	ll not l	be use	d for
ISE 2]																		

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content

(normally last three modules) covered after MSE. Course Contents:	
Module 1: Data Center Architecture	Hrs.
Data centre and services, Traditional data centre architecture, Challenges, Modern	4
data centre	4
Module 2: Virtualization	Hrs.
Hosted and Bare-Meta, Server Virtualization, Desktop Virtualization, Application	5
Virtualization, Storage Virtualization	5
Module 3: Cloud Computing Basics	Hrs.
Virtualization and Cloud Computing, Cloud Reference Model: <i>IAAS, PAAS, SAAS,</i> Cloud Deployment Model: <i>Public Cloud, Private Cloud and Hybrid Cloud</i>	5
Module 4: Public Cloud and Network Functions	Hrs.
Public Cloud Networking: Route53, Content Delivery Networks, Resilience	
Infrastructure, Virtual Network Functions: Cloud Firewall, DNS, Load Balancers,	4
Intrusion Detection Systems	
Module 5: Virtual Private Clouds (VPC)	Hrs.
VPC fundamentals, Public and Private Subnets, Security Groups, Network Access	4
Control List, Network Address Translation	
Module 6: Cloud Security	Hrs.
Host Security, Challenges with Cloud data, Challenges with data security, data confidentiality and encryption, Virtual Firewall	4
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Explain fundamentals of cloud computing	
Module 2: Explore various virtualization techniques in data centre applications	
Module 3: Choose the service models in cloud computation	
Module 4: Elaborate the cloud networking for real time applications	
Module 5: Discuss the virtual private cloud to scale the infrastructure	
Module 6: Analyse the security aspects of cloud computing in data centre	
Tutorial Content:	
Tutorial can be conducted as12 Assignments based on module 1 to 6.	

Title of the C	ourse:	F	Prof	essi	ional	Ele	ecti	ve-1	l:Wi	rele	ess I	Netw	orks		Т	Р	Cr
4IT312														2	1	0	3
Pre-Requisite C	ourses	s: C	omp	oute	er Net	wor	ks										
Textbooks:													1.5				
1. C. S. R. M Education							etw	orks	s: Ar	chit	ectui	es ar	nd Pr	otocols	", Pea	rson	
2. Ilya Grigo							ow	ser	Netw	vork	ing"	O'R	eillv	Media	Inc	2 nd Ed	ition
2013)					liiuiie	• 21	0 11		1.000	. 011		, • •	Ulliy	1.10 and	,,	2 24	
References:																	
1. Tti Saha I	Misra,	"Wi	irele	ss (Comn	nuni	cati	on a	and N	Netv	vork	s 3G	and ł	beyond	", Tata	McGr	aw
Hill, 1 st e														-			
2. Johen Sch	hiller, '	"Mo	bile	Co	mmu	nica	tior	ıs",	Pear	son	Edu	catio	n Ind	lia , 2 nd	Editio	n, 2010)
Course Objectiv																	
1. To introd			-								0,						
2. To discus		-			-												
3. To define	-		-	para	amete	rs o	t ad	-ho	c, mo	obile	e wir	eless	netv	vork.			
Course Learnin	0				6.41					1	<u> </u>			Ы	• •	• , •	
CO After the able to	ne cor	mpie	etior	1 0	t the	cou	irse	th	e stu	ider	it sn	ould	be	Bloon	n's Co	gnitive)
														level	Des	criptor	•
CO1 Distingu	uish wi	ired	and	wi	reless	net	wor	k so	enar	io.				2	Und	erstand	ling
CO2 Analyze											ss ne	etwor	k.	4	Ana	lyzing	
CO3 Design	wireles	ss ap	oplic	catio	ons.									6	Crea	ting	
CO-PO Mappin	ig:																
	PO				4 5	6	7	8	9	10	11	12	PSO	01 PSC)2		
	CO1 CO2	3		3									1				
·	CO2 CO3		2	-	3								1				
L	000		-		5	1	1										
Assessments :																	
Teacher Assessr	nent:																
Two components		Sem	neste	er E	Evalua	tion) (IS	SE).	One	Mi	d Se	mest	er Ex	kaminat	tion (N	(SE) ai	nd one
End Semester Ex																,	
	As	sess	mer	nt									l	Marks			
		ISE	1											10			
		MS	SE											30			
		ISE	2											10			
		ES												50			
ISE 1 and ISE 2																	
discussion.[One	e asses	smei	nt to	ool	per IS	SE.	The	ass	sessn	nent	too	l use	d for	ISE 1	shall r	ot be	used
for ISE 2]	,		1	-	0/ 2				. ~	Nт		~	, . 1		1 `		
MSE: Assessme									· · ·			-					
ESE: Assessme									ent v	vith	/0-8	s0%	weig	ntage f	or cou	rse cor	itent
(normally last th		oaul	ies)	cov	reed	artei	IVI	SE.									
Course Content Module 1	5.															п	rs.
Infoquie I																п	1 5.

Introduction to wireless networks, ubiquitous connectivity, types of wireless networks, performance fundamentals of wireless networks, measurement of real world wireless-	4
performance.	
Module 2	Hrs.
Fundamentals of wireless communication technologies, network architectures, IEEE 802.11 standards.	5
Module 3	Hrs.
Wireless internet, mobile IP, TCP in wireless domain	5
Module 4	Hrs.
Ad-hoc wireless networks, MAC protocols for ad-hoc wireless networks, routing protocols for ad-hoc wireless networks.	4
Module 5	Hrs.
Mobile networks, device features and capabilities, radio resource controller, end to end carrier architecture, backhaul capacity and latency, packet flow in a mobile network, heterogeneous networks, real-world 3G, 4G, and WiFi performance.	4
Module 6	Hrs.
Optimization in mobile networks, preserve battery power, eliminate periodic and inefficient data transfers, anticipate network latency overhead, design for variable network interface availability, offload to WiFi networks.	4
Module wise Measurable Students Learning Outcomes :	I
After the completion of the course the student should be able to:	
Module 1: Understand wireless network concept.	
Module 2: Comprehend network technologies and architecture.	
Module 3: Differentiate different network layers.	
Module 4: Examine performance of mac and routing protocol performance.	
Module 5: Compare mobile, adhoc and heterogeneous network.	
Module 6: Evaluate performance of mobile WiFi networks.	
Tutorial Content:	
Tutorial can be conducted as12 Assignments based on module 1 to 6.	

	f the C ledia T				essi	onal	Ele		e-1: IT3		mpu	ter	Gra	phics	&	L 2	T 1		P 0	Cr 3
	quisite (a St	ructu	res. (Prog	amn	ning					I		
Textbo							,		1		0		U							
	David F. 2 nd Edit	ion, 20	02,	27^{th}	rep	orint,	201	5							-		Graphi	ics"	, TM	1GH,
2.	Tay Vau	ghan, '	·Μι	ıltim	nedi	ia Ma	king	it V	Nor	k",	TM	GH, S	$8^{th} Ee$	dition	n, 20	10.				
Referei																				
2.	Newmar Steven I ,1987																			
	Objecti	ves •																		
	To intro		asic	s of	cor	nnute	r or	nhi	cs											
	To acqua					-	-	-		mp	uter s	erapł	nics a	ind m	ode	lling				
	To impa					-				-										
	Learni											I	0	· T						
CO	After able to	the co				of the	e co	urse	e th	e s	tude	nt sł	nould	d be	Bl	oom'	s Cog	gnit	ive	
															lev	vel	Desc	rip	tor	
CO1	Explai		-		tric	tran	sfor	mat	ions	iı	n the	e co	ntext	t of	2		Unde	ersta	andir	ng
GOA	compu				<u>, 1</u>		6					1 .		1	2		A 1	•		
CO2	Implei		alg	gori	thn	15 (1	con	nput	ter	gr	aphi	cs	and	3		Appl	ying	g	
CO2	model			- 4	<u>c 1</u> :	- :4 - 1		·	1:-		1	. 1:	4:		5		F 1	4:		
CO3	Study		ipac	ct o	1 01	gitai	mult	ime	ala	WI	in ap	onca	tions		5		Evalı	lati	ng	
LO-PO) Mappi	ng : PO	1	2	3	4 5	(7	8	9	10	11	12	PSC	1	PSO	2			
		<u>r0</u> C01	1	2	3 1	4 5	6	/	0	9	10	11	12	PSC	Л	F5 0	2			
	-	$\frac{CO1}{CO2}$	4		2							1		1						
		$\frac{CO2}{CO3}$	3		2							1	2	1		1				
	L	05	3										2			1				
Assessr	nents :																			
	r Assess	ment:																		
Гwо со	mponent	ts of In	Se	mes	ter	Evalu	iatio	n (I	SE).	, O	ne M	id S	emes	ter E	xam	ninati	on (M	ISE) and	d one
End Sei	nester E	xamina	atio	n (E	SE)) havi	ng 2	0%	, 309	% 8	and 5	0% v	weigl	hts re	spec	ctivel	y.			
		As	sses	sme	ent										Ν	Iarks				
			IS	E 1												10				
			Μ	SE												30				
			IS	E 2												10				
			ES	SE												50				
ISE 1	and ISE	E 2 are	ba	sed	on	assig	gnme	ent,	ora	l, s	semir	ar, t	est (surpr	rise/o	decla	red/qu	ıiz)	, and	1 gro
	sion.[On																			
_	Assessm	ent is l	pase	ed or	n 5()% of	cou	rse	cont	ten	t (No	rmal	ly fi	st thr	ee r	nodu	les)			
MSE:	1 100000011		June																	
MSE: ESE:							% c	our	se c	con	· ·		-				for	cou	ırse	com
ESE:	Assessi ally last 1	ment is	s ba	ased	or	n 100					· ·		-				for	cou	ırse	con

Module 1	Hrs.
Introduction to Computer Graphics Graphics i/p & o/p devices, Display adapters, Vector & Raster Scan displays Scan conversion Techniques- Real Time, RLE, Frame buffers Visualization of basic mathematical objects- Point, Line, Circle – DDA & Bresenham's Techniques.	4
Module 2	Hrs.
Geometric Transformations Object representations & Transformations- 2D & 3D Affine transformations- Translation, scaling, rotation, reflection, shearing; multiple transformations Plane Geometric Projections- Parallel and Perspective Viewing	4
Module 3	Hrs.
Polygon FillingPolygon listing & filling criteria- ordered edge list representationsPolygon filling algorithms- Edge fill, fence fill, edge flag and seed fill algorithmsAntialising- polygon interiors, simple area antialisingHalftoning- patterning, thresholding & error distribution, ordered dither	5
Module 4	Hrs.
Clipping and Hidden line Elimination Window & Viewport Transformation, Window Clipping –Line subdivision, Midpoint subdivision Visibility & Hidden surface removal -Z Buffer algorithm, Warnock Algorithm	5
Module 5:	Hrs.
Plane & Space CurvesCurve Representation & Visualization- Non-parametric and parametric curves,Interpolation, Cubic Spline, Parabolic Blended curves, Bezier curves and B-spline curves	4
Module 6	Hrs.
Multimedia Elements Multimedia components, Types of Media files, Compression techniques, Media editing & recording software, Portable storage devices Principles an techniques of animation, Introduction to animation software	4
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:Module 1:Explain the basics of computer graphicsModule 2:Practice geometric transformation on graphical objectsModule 3:Analyze polygon filling algorithms with error minimizationModule 4:Identify various algorithms for object visibilityModule 5:Describe curve drawing methodologiesModule 6:Choose appropriate media techniques and storage devicesTutorial Content:	
Tutorial can be conducted as12 Assignments based on module 1 to 6.	

4IT314													ructu		2	1	0	3
	quisite Co	ourse	s:													-	Ŭ	2
				rog	ramm	ing.	Da	ata S	Structu	ires								
Textbo		-				U,												
	Robert Kr Pearson, 2			Tan	do, B	uce	Le	ung	, "Dat	a Stru	icture	e and	Prog	ram	Desi	gn in	С",	
2.	Thomas H Learning,	I. Cor	men	ı, Cl	harles	E. I	Leis	erso	on, et a	al., "I	ntroc	luctio	on to A	Algo	orithn	ns", P	HI	
Referer		<u> </u>	010															
	Peter Bras	s. " A	٩dva	nce	d Dat	a St	ruct	ure	s". Ca	mbri	dge I	Unive	rsitv	Pres	ss. 1s	t Editi	on. 20)08
	Jean-Paul										-		-					
	McGraw-l		-														P	1011
	Objectiv				,													
	To introdu		me c	om	plexit	v iss	sue	& b	alance	d sea	rch t	rees						
	To impart					·							hashi	ng				
	To state th				-					1 0	-			-	oplica	tions		
	Learning				1						0			1	1			
CO	After th	1			n of t	he	cou	rse	the s	tudei	nt sh	ould	be	Blo	om's	Cogr	nitive	
	able to		1											leve		Descr		
CO1	Solve rea	al wor	ld p	rob	lems ı	isin	g ad	lvar	iced d	ata sti	uctu	res.		3		Apply		
CO2			-											4		Analy		
CO3	Evaluate							ent a	algorit	hms				5		Evalu		
) Mapping													-				
		<u>v</u>	1	2	3 4	5	6	7	89	10	11	12	PSO	01	PSO	2		
	C	C O 1	1		2								1					
	C	C O2		2	3										2			
	0	C O3			2													
Assessn	nents:																	
Feache	er Assessm	nent:																
Гwо со	mponents	of in	Sen	nest	er Ev	alua	tior	ı (IS	SE), O	ne M	id Se	emest	er Ex	ami	natio	n (MS	SE) an	d on
End Ser	mester Exa	amina	ition	(ES	SE) ha	ivin	g 20)%,	30%	and 5	0% v	veigh	ts res	pect	tively	•		
		A	sses	sme	ent]	Mar	ks			
			ISI	E 1										10)			
			M	SE										30)			
			ISI	Ε2										10				
			ES	SE										50)			
					•	nme	ent/	decl	ared t	est/qu	iiz/se	emina	r etc.					
ISE 1	and ISE 2	are b		d on	assig										1 1	``		
	and ISE 2 Assessme		asec				cou	rse	conter	IT (INC	orma	lly fir	st tim		nodul	es)		
MSE:		ent is	basec base	d o	n 50%	of						-				/	se con	itent
MSE: ESE:	Assessme	ent is nt is 1	basec base base	d o d o	n 50% n 100	of % c	cour	se c	conten			-				/	se con	tent
MSE: ESE: (norm	Assessme Assessme	ent is int is int is int is intered.	basec base base	d o d o	n 50% n 100	of % c	cour	se c	conten			-				/	se con	itent
MSE: ESE: (norm	Assessme Assessme ally last the Contents	ent is int is int is int is intered.	basec base base	d o d o	n 50% n 100	of % c	cour	se c	conten			-				/	se con	
MSE: ESE: (norm Course Modu	Assessme Assessme ally last the Contents	ent is int is int is intereed in the second	based base base nodu	ed o ed o iles	n 50% n 100) cove	o of % c red	cour afte	se c	conten			-				/		

on time complexity, Iterative Vs Recursive coding, amortized analysis.	11
Module 2:	Hrs.
Advance Tree Structures: Binary Trees, Binary search trees, Threaded Binary trees, Height balanced AVL trees, Splay trees: A self-Adjusting-Data Structure.	4
Module 3:	Hrs.
Heaps: Balanced Search Trees as Heaps, Array-Based Heaps, Heap-Ordered Trees and Half- Ordered Trees, Leftist Heaps, Skew Heaps, Binomial Heaps, Changing Keys in Heaps, Fibonacci Heaps, Double-Ended Heap Structures and Multidimensional Heaps	5
Module 4:	Hrs.
Tree Data Structure Applications: Multiway Trees, Lexicographical Search Trees: Tries, External Searching: B & B+ Trees, Redblack trees, Tree Structured Programs: Look –Ahead in Games.	5
Module 5:	Hrs.
Hashing: Basic Hash Tables and Collision Resolution, Universal Families of Hash Functions, Perfect Hash Functions, Hash Trees, Extendible Hashing, Membership Testers and Bloom Filters.	4
Module 6:	Hrs.
Selected Problems: Graph Problems – Network flows: Max flow – mincut theorem, Probabilistic methods – Markov's inequality, Dynamic Graph Problems.	4
 Module wise Measurable Students Learning Outcomes: Module 1: Answer data structure questions with respect to time complexity. Module 2: Explain balanced search trees to solve the real world problems. Module 3: Relate heaps, binomial heaps, multidimensional heaps etc. Module 4: Associate tree data structure in real application. Module 5: Estimate various static as well as dynamic hashing techniques. Module 6: Assess selected graph problems widely used for real world problem solvin Tutorial Content: Tutorial can be conducted as12 Assignments based on module 1 to 6. 	g.

Intellig	comas 1					5510	1141	-	icci	uvu-	-1:/	Artific		I		Т	Р	Cr
	gence 41	T315												2	2	1	0	3
Pre-Re	quisite																	
T (I		Compu	ter .	Alg	orit	hm												
Textbo		Dichon	чv	مارية	n L	7	~lat	No		A	:fia	ial Int	<u>_</u> 11;_		"MaC	row II:	11a 2md a	dition
													_				lls 3rd e ms", Ma	
	India L		ai.,	, 1	oun	uai	10115	5 01	AII		141 1	mem	gene		i Exper	t Syster	1115, Ivia	Ciiiiaii
			orvi	g."	Arti	fici	al I	ntel	lige	ence	; — /	A Mod	lern	App	roach".	Prentic	e-Hall, 2	2010
0.	(3rd ed		2	- vo							-	1 1.10		- PP	, ,		•	
Refere	nces:																	
	Saroj K																	
	Townse		troc	luct	ion	to [Furł	50 p	orol	0g"								
	e Objec		1	1		1 ·			• 1	т.,	11.							
	To lear												of A	rtifia	ial Intal	11:0000		
	To learn														iai inte	ingence	J .	
	e Learn					1 111	c ui	t III	111		141 1	mem	50110					
CO		the con				f th	e co	our	se t	he s	stud	lent s	houl	ld be	Bloo	m's Co	gnitive	
	able to		I.															
															level		Descri	otor
CO1	Apply	scheme	es o	f kn	owl	ledg	ge re	epre	esen	ntatio	on.				3		applyir	ng
CO2	Demo	nstrate e	expe	ert s	yste	em.									3		applyir	
CO2	Evalua	ate perfo	orm	anc	e of	ÌΑΙ	sys	tem	IS.						5		Evalua	te
CO-PC) Марр	ing :				-	-											
		PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	2	
		CO1	2		3											2		
		CO2			1						3		2	2	1			
		CO3	2										3	2				
	ments :																	
	er Asses	sment:																
				mes	ster	Ev	alua	atio	n (I	SE)	, Oı	ne Mi	d Se	mest	er Exan	ninatio	n (MSE)) and or
End Se	mester l	Examina	atio	n (E	ESE) ha	avin	g 2	0%	, 30 ^o	% a	nd 50	% w	veight	ts respe	ctively.		
		Α		ssm	ent										Ma			
				E 1											10			
				ISE											30			
				E 2											10			
ICE 1	1 101	· · · · · · · · · · · · · · · · · · ·		SE					1 1		1 4 -	- 4 / :	_/		50	0		
	and ISE Assessi					-						-				module		
														-			course co	ontent
	ally last											vv 1111 (-0-/	U /U V	orgina	50 101 (oncit
, norm	ung hast			~1VL	.,				- 141		•							
<u> </u>	Conto	nte																
Course		mus.																

Problem, Problem Spaces and Search, Application, Characteristics of AI, Heuristic, A*,AO*.	4
Module 2: Knowledge Representation & Logic	Hrs.
Predicate calculas, Predicates and arguments, ISA hierarchy, Frames, Unification	5
Module 3: : Logic Programming	Hrs.
Logic programming in Prolog, writing a Prolog program, Structure of Prolog program, Searching and backtracking in prolog, Lists	5
Module 4: Planning	Hrs.
Introduction, Planning as problem solving, STRIPS, Forward and Backward planning,	4
Non linear planning. Module 5: : Neural Networks	Hrs.
History and Introduction to Neural network, Working of neurons, Basic components of ANN, ANN Architecture, Feedforward network, Applications of Neural Network.	4
Module 6: Expert systems & Natural Language Processing.	Hrs.
Introduction, Functionality /components of Expert systems, Architecture of ES, Bulding an Expert system, NLP and Understanding.	4
Module wise Measurable Students Learning Outcomes :	
Module 1: Understanding AI by examining the nature of the difficult problems that Al	seeks to
solve.	
Module 2: Exploring variety of methods for encoding knowledge in computer systems)
Module 3: Learn how to use the logic programming for problem solution	

Module 4: Providing intelligent problem solution

Module 5: Knowing difficulties in understanding and providing solution using constraint satisfaction.

Module 6: Design the expert system by using AI facts and Understanding and evaluating processes for natural language processing

Tutorial Content:

Tutorial can be conducted as12 Assignments based on module 1 to 6.

Syllabus for TY IT SEM VI

Professional Core(Theory)

Fitle of	the Co	urse:	Adv	an	ced	Da	tab	ase	En	gin	eer	ing:	4IT.	321			L	Т	P	C
D D	•••	<u> </u>															3	0	0	0
Pre-Ree	-			·			. / T		1	- 1	r			14						
Tartha		Databas	se E	ngi	neel	ring	3 / L	Jata	ibas	e IV	Tana	agem	ent s	syster	ms					
Textbo		hu Ran	مام	rich	non	Io	han	naa	Ga	hrlz	• "	Data	hasa	Mar	agan	out	Sugt	ama "	2rd E	litior
-	-	Graw-H									С,	Duiu	ibuse	wiur	ugem	eni	syste	ems	, 5 EG	111101
Referen		Jiaw-II		ing		Eut	icai	1011	, 20	14										
		los Core	one	1 St	teve	n N	/lon	is '	"Do	itah	ase	- Svst	ems.	Desi	on In	nnle	men	tatio	n &	
		nageme													511, 11	ipic	men	iuno	ι, α	
-		o Kuma													n and	Api	plica	tions	". 2 nd	
		tion, Pe										1	,			I I			2	
Course		,)											
	•	introduc	e p	aral	llel a	and	dis	trib	ute	d da	itab	ases	archi	itectu	res.					
4	2. To c	deliver a	app	lica	tion	ori	ient	ed a	appı	opr	iate	e data	ıbase	syste	em.					
		develop				l in	nple	eme	ntat	ion	ski	lls fo	r dat	abase	e syste	ems	•			
Course	1	0																		
CO		the co	omp	oleti	ion	of	the	co	urs	e th	ie s	stude	ent s	houl	d be	Bl	oom	's Co	ognitiv	e
	able t	0														lev	vel	Des	cripto	r
CO1	Distin	iguish a	laa	icat	ion	ori	ente	d d	atał	base	e sv	stem	S			2		Und	erstand	ling
CO2		entiate												tures	5	4			lyzing	0
CO3		applica														6			ating	
CO-PO																				
		PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO	1	PSO	2		
		CO1				1											2			
		CO2				1	2													
		CO3		1							2			2						
		000		-							-			-						
Assessn		~~~																		
Teacher Two con			. Sa	ma	otor	$\mathbf{F}\mathbf{v}$	ماير	otio	n (I	CE)	\cap	na M	id Sa	amaa	tor Ev	omi	inatio	on ()	4SE) a	nd or
End Ser	1								· ·		·							· · ·	15L) a	
			sses			<i>)</i> 110	a (111	8 -	0 / 0	, 20	/ • •	u e	0/01	10181		Marl		,.		
				E 1												10				
				ISE												30				
				E 2												10				
				SE												50				
ISE 1 a	and ISE	E 2 are l			on as	ssig	gnm	ent.	ora	al, s	em	inar.	test (surp	rise/d			juiz)	, and g	roup
		ne asses				- C	-							· I				I /	, U	1
for ISE	-					-														
		nent is										· ·		-						
		ment is										t witl	n 70-	80%	weig	htag	ge for	r cou	rse co	ntent
		three n	1	112	1) 00		-ad	ofto	- 14	CE										

Course Contents: Module 1: Parallel and Distributed Databases	Hrs.
Architectures for parallel database, Parallel query Evaluation, Parallelizing individual	
operation, Parallel Query Optimization, Distributed DBMS, Architecture, Storing data	-
in distributed DBMS, Distributed Catalog Management, Distributed query processing,	7
Updating distributed data, Distributed concurrence control, Distributed recovery.	
Module 2: Data Warehousing and Data Mining	Hrs.
Introduction to decision support, OLAP, Implementation Techniques for OLAP, Data	
Warehousing, Views and decision support, view materialization.	0
Data Mining: Introduction, Counting Co-occurrences, Mining for rules, Tree structured	8
rules, Clustering, Similarity search over sequences.	
Module 3: Object Database Systems	Hrs.
Structured data types, Operations, inheritance, Objects, OID and Reference types,	4
design for ORDBMS, Comparing RDBMS with OODBMS and ORDBMS.	4
Module 4: Information Retrieval and Web Databases	Hrs.
Database, information retrieval. Indexing for text search. Web search engines, web	
search architecture, Inverted indexes the IR way, Inverted indexes for web search	7
engines, web crawling, web search statistics. Data model for XML. XML Quires.	
Module 5: Spatial Database	Hrs.
Types of Spatial Data, Spatial Queries, Application, spatial Indexes, space filling	(
Curves, Grid files, R trees.	6
Module 6: Deductive Database and Introduction to Advance Topics	Hrs.
Recursive Queries, least model semantics, fixpoint operator, datalog programs,	
Recursive Queries with Negation, stratification, evaluation of Recursive Queries.	7
Advance transaction processing, Mobile database, Geographic Information systems.	/
Temporal and Sequence database.	
Aodule wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: study parallel and distributed database systems	
Module 2: discuss data warehousing concepts and extend to data mining techniques	
Module 3: summarize object oriented database systems along with OOP concepts.	
Module 4: identify information retrieval and construct web databases.	
Module 5: design spatial database systems	
Module 6: design deductive database systems and discuss new concepts in database s	ystems.
`utorial	
Partial list of tutorials consisting assignments (design and study) and computer prog	grammi
o demonstrate results.	
1. Design the database according to given rules.	
2. Implement user interfaces for entering/updating data in database tables (distributed	1
systems).	
3. Construct OLAP and execute queries over it.	
4. Show execution of commit protocols.	
5. Execute parallel and distributed operations on database.	
6. Implement data mining algorithm on database.	
7. Demonstrate different operations on web, spatial and deductive database.	
8. Develop a web or desktop or mobile application in any programming language and	l/or
platform to show use of application database.	

Title of	f the Co	urse: :	Di	gita	ıl In	nage	Pro	cess	ing 4	4IT3	22				L	Т	P	Cr
		~									-			• 、	3	0	0	3
	equisite	Course	es: I	Mat	hem	atics	-(Ma	atrix	, Foi	urier	Tra	ansfo	rmat	zion).				
Textbo		.1 · 11	()	、· ·	. 1 1	r	D		. ,		c	1 7 7 1		·	and p	1	2010	
														ity Press cessing A				
		sion",C									11	nage	FIO	cosing P	Anarys	515 all	u iviac.	mine
Refere		,,.							,									
				S E	sakk	ciaraj	an ,	Vee	raku	mar,	۴D	igita	l ima	ige proc	essing	",МС	GH,1 st	
		ition,20		1	D	• 1	1 5	***	1	(D)	•,	1 т	Т			1 - 1	.,.	
		tel C. C arson E					d E.	Wo	ods,	"D1	gita	l Ima	age P	rocessir	1g", 31	d Ed	ition,	
Course	e Object		auc	allo	n, 2	008												
Course			n im	age	fun	ndame	ental	s an	d ma	ather	nat	ical t	ransf	forms fo	r imag	ge pro	cessin	g
		descrit		-											, c	1		0
		elabora																
	e Learni														DI			
CO	After to	the coi	nplo	etio	n o	t the	cou	rse	the s	stud	ent	sho	uld t	be able	BIOO	ms	Cognit	ive
	10														level	De	scripto	r
CO1			lame	enta	l co	oncep	ots o	of a	ı diş	gital	in	nage	pro	cessing	2	Un	dersta	nding
000	system					·.	1			<u>, , .</u>	4	1 .			2		1 .	
CO2 CO3	Interpr													sforms	3 4		plying	
COS	Anaryz		,es 1	11 UI		equei	ic y c	10111	ann u	ising	, va	lious	uan	51011115	4	All	alyzin	g
CO-PO) Марр	ing :																
		PO	1	2	3	4 5	5 6	7	8	9	10	11	12	PSO1	PSC)2		
		CO1	2										2		2			
		CO2	1			1 2	2	_					_	1				
•		CO3	3	2									1					
	ments : er Asses	sment:																
	mponer			me	ster	Eval	uatic	on (I	SE).	One	e M	id Se	emes	ter Exar	ninatio	on (N	ISE) a	nd one
	mester I							· ·								· ·	,	
	sment										/lar	ks						
ISE 1											0							
MSE											0							
ISE 2 ESE											0							
	and ISE	2 are l	1950	d or	n as	sionn	nent/	dec	lared			iz/se	mina	r etc				
	Assessr					•					-				modu	les)		
	ule 1Di									- (5 -			,	6 Hrs	
	lamental	-	<u> </u>						digi	tal i	ma	ge pr	oces	sing Ap	plicat	ions	VIII	
of in	nage pro	cessing	g, im	nage	e fur	nctior	ı, im	age	repr	esen	tati	on, s	amp	ling, qua	antizat	ion,		
	r images					polog	ical	pro	perti	ies c	of c	ligita	l im	ages, hi	istogra	ams,		
imag	e qualit	y, noise	e im	age	•													

Module 2Image Enhancement in Spatial Domain	7 Hrs.
Basic intensity transformation: image negation, Log transformation, power law	
transformation, Piecewise linear transformation functions, arithmetic and Logic	
operation, Histogram processing (equalization and matching)	
Module 3 Image Enhancement in Frequency Domain	6 Hrs.
Need of image transformation, Two dimensional Fourier Transform, properties	
of frequency domain, correspondence between filtering in spatial and frequency	
domain, Smoothing and Sharpening frequency domain filters. Convolution	
Theorem	
Module 4Image Segmentation	7 Hrs.
Detection of Discontinuities (point, line edge), Edge Linking and Boundary	
Detection, Threshold, Basic global Threshold, Adaptive Threshold, Region-Based	
Segmentation, region growing, splitting and merging	
Module 5Image Morphology	6 Hrs.
Basic morphological concepts, four morphological principles, binary dilation,	
erosion, Hit or miss transformation, opening and closing; thinning and skeleton	
algorithms	
Module 6.Image Compression	6 Hrs.
Fundamentals of Image Compression, Image compression models, concepts of	
Information Theory, Fundamental coding theorems, Estimation of entropy,	
Variable length coding, Huffman coding, Near optimal variable length coding,	
Near optimal variable length coding, Arithmetic coding, constant area coding, run	
length coding, image compression standards (JPEG, JPEG2000).	
ESE: Assessment is based on 100% course content with 70-80% weightage for cou	irse conten
(normally last three modules) covered after MSE.	
Course Contents: (Arrange contents logically/process-wise/conceptually/theory	followed
pplication)	
Iodule wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Analyze general terminology of digital image processing.	
Module 2: Examine various types of images, intensity transformations and spatial	filtering
techniques.	
Module 3: Develop Fourier transform for image processing in frequency domain.	
Module 4: Identify the methodologies for image segmentation.	
Module 5: Generalize feature extraction techniques using image morphology techn	iques.
Module 6: Relate image compression techniques.	

i itie oi	f the Course: U	nix O)pera	atin	ig Sy	ste	em 4	IT 3	23				Ι		T	Р	C
													3	3	0	0	2
Pre-Re	quisite Courses																
	Operatin	ig Sys	stem														
Textbo		р 1	47 1	г	、 .		CII	·			a ,	ית יי	TT I				
	1. Maurice J.			ne L	Jesig	n o	of Un	1X C	pera	ting	Syste	em [~] , P	HI.				
Dafawar	2. "Unix Man	uais	•														
Referei	1. Sumitabha	Dag	"I Ini	iv (Tono	onte	and	۸n	nlion	tions	" т і	ACH	2rd Ed	litia	n		
	2. Raghvan, L															nents"	
	Auerbach P				iun,		nocu	ucu	Ling	лбу	Stem	Desig	ii uiiu	DU	Clopi	nents	,
Course	Objectives :	uone	201101														
course	1. To introduc	e des	sign 1	prir	ncipa	l ar	nd pł	ilos	ophy	oftl	ne Ui	nix/Lir	ux OS	5.			
	2. To impart t				-		-										
	3. To use syste																
Course	Learning Out																
CO	After the con	nplet	ion	of	the	cou	irse	the	stud	ent s	shou	ld be	Bloo	m's	6 Cogi	nitive	
	able to												loval	1	Decem	inton	
													level		Descri	iptor	
CO1	Interpret desig	gn pr	incip	oal	and	ph	iloso	phy	of t	he U	Jnix/]	Linux	2	J	Under	standiı	ng
	OS																
CO2	Comprehend the					`Ur	nix/L	inux	COS				2	J	Under	standiı	ng
CO3	Use system ca	ll of l	Linu	x/U	nix								3	I	Apply	ing	
CO-PO) Map <u>ping :</u>							1	1		1						
	PO 1	2		4	5 6		7 8	9	10	11	12	PSO	1 P	SO	2		
	CO1		3					2			-						
	<u>CO2</u>	2	-			_	_				2	1					
	CO3		2	1													
Assess	ments :																
	er Assessment:																
	omponents of In	Seme	ester	Ev	aluat	ion	ı (ISI	E). (Dne N	Aid S	Seme	ster Ez	kamina	atio	n (MS	SE) and	d or
	mester Examinat)	
		sessn		/			- f						Marks				
		ISE 1	1										10				
		MSE	Ŧ										30				
		ISE 2	2										10				
		ESE]										50				
	and ISE 2 are ba																
discus	sion.[One assess	sment	t too	l pe	er IS	E.	The	asse	ssme	nt to	ol us	sed for	ISE 1	l sh	all no	t be u	sed
for ISI		and	on 5	0%							-				/		
for ISI MSE:	Assessment is b			4 0 -								/		1.			ant
for ISI MSE: ESE:	Assessment is l	based	l on						nt w	th'/0	-80%	• weig	ntage	IOT	cours	e cont	ent
for ISI MSE: ESE: (norma	Assessment is lally last three mo	based	l on						nt w	th/0	-80%	• weig	ntage	IOT	cours	e cont	ent
for ISI MSE: ESE: (norma	Assessment is lally last three more contents:	based	l on						nt wi	th70	-80%	o weig	ntage	IOT	cours	e cont	

Introduction General Overview of the System History System Structure User Permeetive	
General Overview of the System - History, System Structure, User Perspective, Operating System Services, Assumption About Hardware.	7
Introduction to the KERNEL: Architecture of UNIX OS, Introduction to system	
concepts, Kernel Data Structure, System Administration.	
Module 2	Hrs.
The Buffer Cache	
Buffer headers, structure of the buffer pool, scenarios for retrieval of a buffer, reading	4
and writing disk blocks, advantages and disadvantages of cache.	
Module 3	Hrs.
Internal Representation of Files	
Inodes, structure of the regular file, directories, conversion of a pathname to inode, super block, inode assignment to a new file, allocation of disk blocks, other file types.	6
Module 4	Hrs.
System calls for the file System	
Open, Read, write, File and Record Locking, Adjusting the position of FILE I/O-	
LSEEK, Close, File Creation, Creation of Special File, Change Directory and Change	8
Root, Change Owner and Change Mode, Stat and Fstat, Pipes, Dup, Mounting and	0
Unmounting file systems, Link, Unlink, File System Abstractions, File system	
maintenance.	
Module 5	
	Hrs.
Structure of Process	Hrs.
Structure of Process Process stages and transitions, layout of system memory, the context of a Process,	Hrs.
Structure of Process Process stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.	Hrs. 8
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process	
Structure of Process Process stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space. Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot	
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.	8
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6	
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies Swapping, Demand passing, a hybrid system with demand paging and swapping The I/O Subsystem: Driver interfaces, disk drives, terminal drivers, Streams.	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.
Structure of ProcessProcess stages and transitions, layout of system memory, the context of a Process, saving context of a process, manipulation of the process address space.Process Control: Process creation, signals, process termination, awaiting process termination, invoking other programs, the user id of a process, the shell, system Boot and the Init process, Process Scheduling, system call for time, clock.Module 6Memory Management Policies 	8 Hrs.

	of the C	Course:	Par	alle	l Pro	ogra	mm	ning	54I	T32	4				L 1	Т 0	P 0	Cr 1
re-Re	anisite	e Cours													1	U	U	L
	quisit	Progra		ning	Lan	guag	ge ir	ıC.										
Fextbo	oks:	U		U		0 0												
	1.	Micha	el J.	. Qu	inn,	"Pa	ralle	el P	rog	ram	ımin	g in	C wi	th M	PI and	' Ope	en MI	P "
Refere			1	1	1		11 1									NO		
		nent &																DA. o, 2011.
	e Obje		on u	s pa	Tane	i pic	ogra		ing	∥, IV.	loig	an r	aum	lann,	Peter	5. Pa	achec	0, 2011.
		niliar w	ith r	oara	llel a	nd a	listr	ibut	ed	lang	סמות	es M	PI (Dnen	MP			
		rn the C	-								-		-	-				
		ning Ou					<u> </u>	- 0			0	- 0		-				
CO	After	the co	mpl	letic	on of	' the	col	ırse	e th	e st	ude	nt sh	ould	be	Bloor	n's (Cogni	itive
	able (to													level		Der	scriptor
															ievei			-
CO1		ify para													1			nembering
CO2		y share				ted	&	N	JM	A-	Ad	dress	s sp	ace	3		Ap	plying
<u> </u>	progr	amming	g me	etho	ds.										4		A	- 1 :
CO3	Analy	ze the	para	llel	prog	gram	s us	sing	dif	fere	nt to	ols			4		Ana	alyzing
	Man	ning i																
J U-I () Mapj	PO PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO	1 F	PSO2	7
		<u>CO1</u>		3		•	1	U	,	U	/	10		12	150	2		_
		UUI	_		1		3								1			
							1											_
	-	CO1 CO2 CO3	1	2			L											
	-	CO2	1	2			1											
	ments	CO2 CO3		2			1											
Feache	ments :	CO2 CO3 : essment			ator	Evo	luot	ion			0.20	Mid	Som		- Evor	inot	ion (L
Геасhe Гwo cc	ments : er Asse	CO2 CO3 : essment ents of I	: [n So	eme					·								<pre></pre>	□ MSE) and or
Геасhe Гwo co	ments : er Asse	CO2 CO3 : essment Examin	: In Sonatio	eme on (ESE				·						respec	ctive	<pre></pre>	→ MSE) and or
Геасhe Гwo со	ments : er Asse	CO2 CO3 : essment Examin	in Sonation	eme on (ESE nent				·							etive rks	<pre></pre>	□ MSE) and or
Геасhe Гwo со	ments : er Asse	CO2 CO3 : essment Examin	in Sonation	eme on (ESE nent				·						respec Mar	ctive rks)	<pre></pre>	MSE) and or
Геасhe Гwo со	ments : er Asse	CO2 CO3 : essment Examin	in Sonation Asse	eme on (essm SE 1	ESE nent				·						respec Mar 1(rtive rks))	<pre></pre>	☐ MSE) and or
Feache Fwo co End Se	ments : er Asse ompone mester	CO2 CO3	in Senation	eme on (ssm SE 1 ASE SE 2 ESE	ESE nent) hav	ving	209	<u>%, </u>	30%		1 50%	∕₀ we	ights	respec Mar 10 30 10 50	ctive rks))))	<u>ly.</u>	□ MSE) and or
Teache Two co End Se ISE 1	ments and IS	CO2 CO3	in Senation Assection IS N IS E base	eme on (ssm SE 1 ASE SE 2 ESE sed	ESE nent) hav	mme	nt, c	%, 2	30%	anc	1 50%	% we	ights	respec Mai 10 30 10 50 50	rks)))) ared	ly. /quiz), and group
Teache Two co End Se ISE 1 discus	ments and IS ssion.[C	CO2 CO3	in Senation Assection IS N IS E base	eme on (ssm SE 1 ASE SE 2 ESE sed	ESE nent) hav	mme	nt, c	%, 2	30%	anc	1 50%	% we	ights	respec Mai 10 30 10 50 50	rks)))) ared	ly. /quiz), and group
Teache Two co End Se ISE 1 discus for ISE	ments and IS ssion.[C	CO2 CO3 : :ssment Examin A E 2 are Dne asse	in Sonatic Assee IS N IS E base essn	eme on (essm SE 1 MSE SE 2 ESE Sed of	ESE nent) hav	nme T ISI	nt, c	oral	30%	mina	ar, te	% we st (su tool	ights urpris used	respect Mai 10 30 10 50 50 50 50 50 50 50 50 50 50 50 50 50	etive rks)))) ared E 1	ly. /quizj shall	,
Teache Two co End Se ISE 1 discus for IS MSE:	and IS ssion.[C Assess	CO2 CO3	in Sonatic Assection Assection M Sonatic Assection Assec	eme on (essm SE 1 MSE SE 2 ESE Sed of nent	ESE nent) hav ssigr l per	nmer TSI	<u>, 209</u> nt, c E. T	oral The	30%	mina ent (2	ar, te nent 1	<u>st (su</u> st (su nally	ights urpris used first	respect Man 10 30 10 50 50 50 50 50 50 50 50 50 50 50 50 50	etive rks)))) ared E 1 mod	ly. /quiz shall ules)), and group not be used
Teache Two co End Se ISE 1 discuss for IS MSE: ESE:	and IS and IS Sision.[C E 2] Assess	CO2 CO3	in Sonatic Assee IS N IS E bas essm 3 bas s bas	eme on (essm SE 1 ASE SE 2 ESE Sed (nent sed ased	ESE nent 2 on as t too on 5 on 5) hay ssign l per 0% (1009	nmen T ISI	nt, o E. T	oral The	, sei asso	mina ent (2	ar, te nent 1	<u>st (su</u> st (su nally	ights urpris used first	respect Man 10 30 10 50 50 50 50 50 50 50 50 50 50 50 50 50	etive rks)))) ared E 1 mod	ly. /quiz shall ules)), and group

Module 1 Introduction	Hrs.
Motivation for parallel programming ,Need-Concurrency in computing, Basics of processes, multitasking and threads, cache, cache mappings ,caches and programs, virtual memory , Instruction level parallelism, hardware multi-threading, Parallel Hardware-SIMD, MIMD, Interconnection networks, cache coherence, Issues in shared memory model and distributed memory model.	3
Module 2 Parallel algorithm design	Hrs.
Parallel Software- Caveats- coordinating processes/ threads- hybrid model – shared memory model and distributed memory model - I/O – performance of parallel programs-– parallel program design, Finding the maximum, n-body problem	2
Module 3 Shared Memory paradigm using Open MP	Hrs.
Basics Open MP – Trapezoidal Rule-scope of variables – reduction clause – parallel for directive – loops in OpenMP , scheduling loops	2
Module 4: Distributed memory programming with MPI	Hrs.
Basic MPI programming, MPI_Init and MPI_Finalize, MPI communicators, SPMD,programs– MPI_Send and MPI_Recv, message matching,MPI- I/O,parallel I/O,collective communication – Tree-structured communication -MPI_Reduce , MPI_Allreduce, broadcast, scatter, gather, allgather – MPI derived types – dynamic process management – performance evaluation of MPI programs- A Parallel Sorting Algorithm	2
Module 5 :Graphical Processing paradigms: Introduction to CUDA.	Hrs.
GPGPU architecture of NVidia, Intel ,CUDA model, programming in CUDA	2
Module 6: Application scalability	Hrs.
HPC Application development	2
 Module wise Measurable Students Learning Outcomes : Module 1: Classify the parallel architecture and identify network infrastructure. Module 2: Profile sequential algorithm and identify scope of parallelism Module 3: Able to map the logic using Open MP constructs. 	

Module 4: Able to map the logic using MPI constructs Module 5: Able to identify kernels and configure it using GPGPU. Module 6: Profile of parallel algorithm and to compute speedup.

Professional Core (Lab)

Title of	the C	ourse:	Un	ix O	per	ating	Sy	sten	n L	ab	4IT	373	3				L	Т	P	Cr
N D	• • /	C															0	0	2	1
Pre-Req	uisite				Lau			C	0		:									
Textboo	Jze.	Progr	ami	ning	Lar	iguag	e m	C,	Ope	erat	ing	Syst	.em.							
		Design	ofI	Iniv	One	ratin	σ S1	vste	m"	M	auria	ΡΕΙ	Back	D PH	Π					
		Manua			Opt	Jaim	g D	ysic.	ш,	1010	aurn	<i>с</i> ј.	Daci	1, 1 1 1	1.					
Referen																				
		Conce	pts	and	App	licatio	ons'	', Si	ımi	tabl	ha E	as,	TMG	Н, 3	rd Ed	itio	n.			
2. V	V. Ric	chard S																ce Ha	all (PH	HI),
	.990. Poghy	an, La	A N	laalk	and	on "E	mh	odd	od 1	[in		voto	m D	ngian	and	Dat	valan	mont	-o''	
	•	an, Lao	· ·			aii, l	mu	euu	cu		ux o	ysic		JSIGII	anu	Dev	velop	mem	.5,	
		te : ww				ık/Da	ve/(C/C	E ht	ml										
Course							, .													
		oduce		l use	vari	ious s	yste	em o	all	ofl	Unix	/Lir	nux C	S						
		the va																		
		part the				ving	the	real	wo	rld	prol	olem	ıs.							
Course		0																		
CO	After	the co	omp	oletio	on o	f the	cou	irse	the	e st	ude	nt sl	hould	l be	able		1		ogniti	
	to															le	vel	Des	cripto	r
<u> </u>	<u> </u>	• .1	1.00		1		(1		1	1						~		TT 1		1.
		in the														2			erstar	aing
		ement e nguishi														3 4			lying lyzing	
CO-PO			ng	vario	us 1	103	ava	nau		10	5.					4		Alla	TyZIIIĘ	5
0-10	Intah	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSC)1	PSC	72		
	-	CO1	1	2	5	1	5	U	/	0	,	10	11	14	150	<u>, 1</u>	150	<i>JL</i>		
	ŀ	CO2				-	3							2	1					
	-	CO3		1		2										-	2	2		
	L	000			1 1															
Lab Asso																				
There are								LA	1, L	A2,	LA.	8 and	d Lab	ESE						
IMP: Lat Assessm	1	1s a sep Based		e nea		passi	<u> </u>	ond	note	d b		(Condu	otion	<u> </u>	nd	M	arks	Mar	lze
Assessi	lient	Daseu	on				C	onu	ucu	u n	y		Submi			nu	IVI	ai ks	IVIAI	KS
LA1		Lab			activ	vities,	B	v		С	ours				ek 1	to	wee	k 4	25	
		attenda	ance	e, jou	rnal		Fa	acult	ty			S	ubmis	sion	at the	en	d of v	veek		
					<u> </u>							5								
LA2		Lab				vities,	B			C	ours				ek 5				25	
		attenda	ance	, jou	rnai		Fa	acult	ly			8 8		sion	at the	en	u of v	vеек		
LA3		Lab			activ	vities,	B	v		С	ours			g wee	ek 10	to	week	<u>s 14</u>	25	
		attenda	ance					acult	ty	2					at the					
									·				4							
Lab ES	E	Lab	perf	òrma	nce	and	B	у		C	ours	e I	During	g wee	ek 15	to	week	x 18	25	

related documentation	Faculty	submission at the end of week 18	
Week 1 indicates starting week of the sen	nester	· · ·	
Lab activities shall include performing ex	cperiments, mi	ni-project, presentations, drawing, program	nming and
other suitable activities as per the nature of	of lab course.		
The experimental lab shall have typically	8-10 experim	ients	
Course Contents:			
Content			Hours
1. Processing Environment			
a. fork, vfork, wait, wait pid	(),exec (all va	riations exec), and exit	10
b. IPC: Interrupts and Signals	s: signal(any f	ives type of signal), alarm, kill,	10
signal, signation, pause			
2. File system Internals			
a. Stat, fstat, ustat.			
b. Threading concept: clone	, threads of j	ava.	6
c. IPC: Semaphores: semap			
3. IPC: Message Queues: msgge	v		4
4. IPC: Shared memory and s			
c. IPC: Shared Memory:		nat, shmdt.	6
		C/socket programming of Java.	

	Course:	Par	rall	J P	rnaro	mn	nin	σΤ	aho	rati	nry A	IT37	4	L	Т	Р	Cr
	course:	ral			ogra			g Li	avu	1 all	лу4 	113/	4	0	0	2	1
e-Requisit	te Cours	ses:															
	Progra		ning	Lar	iguag	e in	n C.										
xtbooks:		_		_		_		_									
2.	Micha	el J.	. Qu	inn,	"Par	alle	el P	rog	ram	mir	ıg in	C wit	th M	PI and	'Op	en MI	D",
ferences:	_	_															
3. Imple					-		-	-		-		•		· 1		-	
4. An in		on to	o pa	ralle	el pro	gra	mm	ing	I, M	lorg	an K	aufm	ann,	Peter	S. Pa	achec	o, 2011.
urse Obje																	
3. To fa														MP.			
4. To lea					oaralle	el p	rog	ram	ımin	ıg u	sing	CUD	A.				
urse Lear	rning O	utco	mes	5:													
	r the co	mpl	letio	n o	f the	cou	irse	e th	e sti	ude	nt sh	ould	be	Bloor	n's (Cogni	tive
able	to													laval		Dat	arintar
														level		Des	scriptor
O1 To id	dentify p	aral	lel s	struc	tures	in	the	app	lica	tion	۱.			1		Rer	nembering
O2 App					uted							s sp	ace	3		-	olying
11	ramming	· ·										1					
03								1.0	20		-			4		Ana	alyzing
Ana	lyze the	para	llel	pro	grams	s us	ing	dıf	terei	nt to	ools						
)-PO Maj	oping :																
-	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO	1 I	PSO2]
	CO1		3			1									2	2	
	CO2			1		3								1			
	CO3	1	2			1											
sessments	:																
acher Ass	essment	t:															
b Assessme				_									_ ~ _				
ere are four							LA	1, L	LA2,	LA	3 and	Lab	ESE				
P: Lab ESE			e nea	a oi	passii	<u> </u>	land	l	ad b		Con	ducti	. 	and		Mark	s Marks
	Daseu	on					onu	uci	ed b	y		missio		and		IVIALK	s warks
ssessment	Lab			activ	vities,	В	V	(Cour	se		ng v		1 tc) W	veek	4 25
							acul		Jui	50				he end			
A1		nce	1011			-			٦					$\frac{110^{\circ} \text{ cm}^2}{5 \text{ tc}}$			
A1	attenda	nce,			vities.	B	V		∠our	sei	Duri	ng v	NUUN	J 11) W	veek	8 25
			5	activ	vities,	B Fa	y acul		Cour	se		0		the end			8 25
A1	attenda Lab		jour	activ nal	vities,		acul	ty	Lour Cour		subn	nissio	n at t		of w	veek 8	
A1 A2	attenda Lab attenda	nce,	jour	activ nal activ		Fa B	acul	ty (subn Duri	nissio ng w	n at t veek	he end	of w	veek 8 eek 1	4 25
A1 A2	attenda Lab attenda Lab attenda Lab	ince, ince, perfo	jour jour jour	activ nal activ nal nce	vities, and	Fa B	acul y acul	ty (ty		se	subn Duri subn Duri	nissio ng w nissio ng w	n at t veek n at t veek	$\frac{10 \text{ to}}{10 \text{ to}}$	of w we of w we	veek 8 eek 14 veek 14 eek 1	4 25 4 8 25
A1 A2 A3 ab ESE	attenda Lab attenda Lab attenda Lab p related	nce, nce, perfo docu	jour jour jour rma	activ nal activ nal nce ntati	vities, and on	Fa B Fa B Fa	acul y acul y acul	ty (ty (Cour	se	subn Duri subn Duri	nissio ng w nissio ng w	n at t veek n at t veek	he end 10 to he end	of w we of w we	veek 8 eek 14 veek 14 eek 1	4 25 4 8 25
A1 A2 A3 ab ESE ek 1 indica	attenda Lab attenda Lab attenda Lab p related tes starti	nce, nce, perfo docu ng w	jour jour irma umer veek	activ nal activ nal nce ntati of th	vities, and on ne serr	Fa B Fa B Fa	acul y acul y acul er	ty ty ty ty	Cour Cour	rse rse	subn Duri subn Duri subn	nissio ng w nissio ng w nissio	n at t veek n at t veek n at t	he end 10 to he end 15 to he end	of we of we of we of we	veek 8 eek 1 veek 1 eek 1 veek 18	4 25 4 8 25

The experimental lab shall have typically 8-10 experiments

Course Contents:

- 1. Program based on multithreading.
- Program based on OPEN MPI.
 Program based on MPI.
- 4. Program based on CUDA.
- 5. Program based on arithmetic operation in parallel mode.
- 6. Program based on sorting algorithms.

Title of the Course: Mini-Project III 4IT342	L	Т	Р	Cr
	0	0	2	1

Pre-Requisite Courses: -

Textbooks: -

References: -

Course Objectives :

- 1. To provide guidance to select & build the ideas.
- 2. To help students to address real-world challenges.
- 3. To get students acquainted with team spirit.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom	's Cognitive
	able to	level	Descriptor
CO1	Demonstrate the database design & Use tools like WAMP,	3	Applying
	LAMP and XAMP		
CO2	Identify the real world challenges & try to address it.	4	Analyzing
CO3	Write & explain a detailed project report for submission and	4	Analyzing
	evaluation.		

CO-PO Mapping :

PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		1			2						3		2	
CO2										2				
CO3							3					1		

Lab Assessment

Lab Assessment

There are four components of lab assessment LA1, LA2, LA3 and Lab ESE

IMP: Lab ESE is a separate head of passing

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, Report	By Course Faculty/Guide	During week 1 to week 4 submission at the end of week 5	25
LA2	Lab activities, attendance, Report	By Course Faculty/Guide	During week 5 to week 8 submission at the end of week 8	25
LA3	Lab activities, attendance, Report	By Course Faculty/Guide	During week 10 to week 14 submission at the end of week 14	25
Lab ESE	Lab performance and related documentation/ Report	By Course Faculty/Guide	During week 15 to week 18 submission at the end of week 18	25

Week 1 indicates starting week of the semester

Lab activities shall include performing experiments, Project/mini-project, presentations, drawing, programming and other suitable activities as per the nature of lab course.

Mini-project is to be carried out in a group of maximum 3 to 5 students.

Each group will carry out mini-project on developing any application software based on following areas.

- 1. Web based application development with PHP/NodeJS/Angular etc and back end for data management.
- 2. Mobile application development with Android/Flutter/Swift etc.
- 3. Industry Problem Statement(Sponsored Project)
- 4. Problem statements based on current or previously learned Technology.

Project/Mini-Project group should submit workable project at the end of second semester.

Project report (pre-defined template) should be prepared using Latex/Word and submitted along with soft copy on CD/DVD (with code, PPT, PDF, Text report document & reference material) or on online github.

Students should maintain a project log book containing weekly progress of the project.

Open Elective (OE) (List OE (MOOC/NPTEL) will be published per semester/year)

Profe	ssic	onal	Elect	ive	2					
Title of the Course: Professional Ele	ctiv	e 2:	Machi	ne l	Learı	ning	L	Т	Р	Cr
4IT321							2	1	0	3
Pre-Requisite Courses:		N .		-			.1			
Computer Programming, Da	ita S	struc	tures, (Comp	outer	Algori	thms.			
Textbooks: 1. Aurelien Geron, "Hands-On N	100	hina	Loorni	naw	ith S	oileit I	oorn k	orag	and Tan	sor
Flow: Concepts, Tools and Tec				-			,			1
Edition, 2019	11110	ques	to Dui	iu iii	uenig	ciii by:		, 01	ciiry, 2	
References:										
1. Richard Duda, Peter Hart and I	Dav	id St	ork, "P	atter	n Cla	ssifica	tion", 2	2 nd Ec	lition,20	07
2. Tom Mitchell, "Machine Learn	ing	", M	cGraw	-Hill,	, 2 nd I	Edition	, 1997		-	
Course Objectives:										
1. To explain the concept supervision			1		d ma	chine l	earnin	g tech	iniques	
2. To introduce various machine l		-	-				1 • 1		. 1	
3. To discuss problem solving app	oroa	iches	using	appr	opria	ite ma	chine I	earnii	ng techn	iques
Course Learning Outcomes: CO After the completion of the co		so th	o stud	lont	shou	ld ha	Place	m'a (ognitiv	0
able to	Jui	se u	ie sluu	lent	SIIUU	iu de	DIUUI		oginuv	e
							level	De	escripto	r
CO1 Distinguish various machine lear	ning	g alg	orithm	s			2	Ur	nderstan	d
CO2 Apply appropriate learning method							3		oply	
CO3 Verify Machine Learning al					erforn	nance	5		aluate	
parameters	-			-						
CO- Mapping:							T			
PO 1 2 3 4 5 6	7	8	9 10	11	12	PSO1	l PSC	02		
CO1 1 2						1	_			
CO2 1 2					2		2			
CO3 3					3					
Assessments:										
Teacher Assessment:										
Two components of in Semester Evaluation	n (I	SE),	One M	lid S	emes	ter Exa	minat	ion (N	ASE) an	d one
End Semester Examination (ESE) having 2	0%	, 30%	6 and 5	0% v	weigh			ly.		
Assessment						N	/larks			
ISE 1							10			
MSE							30			
ISE 2							10			
ESE	daal	larad	tost/a	uiz/aa	mino	r ata	50			
ISE 1 and ISE 2 are based on assignment/ MSE: Assessment is based on 50% of cou			-				- modi	ilec)		
ESE: Assessment is based on 100% cou			· · ·					/	urse co	ntent
(normally last three modules) covered after			// 16		, 0 / 0					
Course Contents:										
Module 1:									Hı	·s.
Introduction to Machine Learning:									4	

Applications of Machine Learning, Supervised vs Unsupervised Learning, Python	
libraries suitable for Machine Learning	
Module 2:	Hrs.
Regression Techniques in Machine Learning::	111.5.
Linear Regression, Non-linear Regression, Model evaluation methods: Bias/Variance	5
trade off. Error Analysis Ensemble methods. Precision/Recall trade off	5
Module 3:	Hrs.
Classification Techniques in Machine Learning:	
K-Nearest Neighbour, Decision Trees, Logistic regression: Classification, Hypothesis	
representation, Decision Boundary, Cost Function, Simplified Cost Function and	_
Gradient Descent, Optimization, One vs All.	5
Support Vector Machines: Optimization Objective, Mathematics behind Large	
Margin classification, Kernels, Using an SVM.	
Module 4:	Hrs.
Unsupervised Learning Techniques in Machine Learning::	
K-Means Clustering, Hierarchical Clustering, Density-Based Clustering, Principal	4
Component Analysis, Outlier Detection	
Module 5:	Hrs.
Practical Examples:	
Content-based recommender systems, Collaborative Filtering, Large Scale Machine	4
learning	
Module 6:	Hrs.
Neural Networks:	
Regularization: The problem of Over fitting, Regularized Linear Regression and	
Logistic Regression.	4
Neural Networks: Non Linear Hypothesis, Representation, Multiclass Classification,	
One vs all.	
Module wise Measurable Students Learning Outcomes:	
Module 1: Extricate the concepts of Machine Learning.	
Module 2: Decide Machine Learning algorithms for Regression.	
Module 3: Relate Machine Learning techniques for classification.	
Module 4: Communicate various Machine Learning algorithms for Unsupervised Lea	rning.
Module 5: Prove Machine earning techniques in practical scenarios.	
Module 6: Substantiate Neural Network technique for solving Machine Learning prob	olems.
Tutorial Content:	
Tutorial can be conducted as12 Assignments based on module 1 to 6.	

1. Jame Proc References: Author/s, "N 1. Sear	es E. Smith an cesses", Elsevi	nd Ra	vi Na	-	ns.									L 2	T 1	P 0	Cr 3
Textbooks: 1. Jame Proc References: Author/s, "P 1. Sear	es E. Smith an cesses", Elsevi :	nd Ra	vi Na	-	ns.										1		
Textbooks: 1. Jame Proc References: Author/s, "P 1. Sear	es E. Smith an cesses", Elsevi :	nd Ra	vi Na	-	ns.												
extbooks: 1. Jame Proc References: Author/s, "N 1. Sear	es E. Smith an cesses", Elsevi :	nd Ra	vi Na	-													
Proc eferences uthor/s, "N 1. Sear	cesses", Elsevi :			air, "													
eferences: .uthor/s, "N 1. Sear	:		uu, L					chin	le: V	Vers	satil	e Pla	tfor	ms fo	r Syst	ems and	1
1. Sear	Name of Book"		·														
		, Publ	lisher,	, Edit	ion, y	year											
Edit	n Campbell ar tion, 2006.	nd Mi	chae	l Jerc	onim	0,".	Ap	plie	d V	/irtı	ualiz	zatio	n Te	chno	logy",	, Intel Pi	ress, 1 ^s
	son Ruest, Daı tion, 2009.	nielle	Rue	st, "\	Virtu	aliz	atic	on:	ΑF	Beg	inne	er's C	Guide	e", M	cGrav	v-Hill, 1	st
ourse Obj																	
	arning Outcom After the com	Ì					-	-		Í		d ho		21000		gnitive	
	able to	pietio	n oi	the	cour	se i	ne	stu	uen	l SI	10010	u be			-		
														evel		criptor	
	Explain the co utilization.	ncept	ts of v	virtu	aliza	tior	ı to	inc	rea	ise 1	reso	urce	I	I	Unc	derstand	ling
	Compare virti computing	ualiza	ation	tech	nniqu	ies	to	imj	oler	ner	nt cl	oud	I	II	Арр	olying	_
C O3 A	Analyze differ	ent v	irtua	lizati	ion te	echr	niqu	ues.					Γ	V	Ana	alyzing	
O-PO Ma	apping : (Use 1	, 2, 3	as co	rrela	tion	stre	ngt	ths)									
	РО	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2		
	C01	3		3													
		2		1		1		1					1	1			
	CO2	4	I	1	3	_		1				L		1			

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Introduction to Virtualization	6 Hrs.
Virtualization overview, Benefits of Virtualization, Need of Virtualization,	
Limitations, Traditional v/s Contemporary Virtualization, Hypervisors, Types of	
Provisioning, Impact of Virtualization, Introduction to Cloud Computing, Cloud	
Services and Types.	
Module 2 :Emulation	6 Hrs.
Basic interpretation, Threaded interpretation, Pre-decoding and direct threaded	
interpretation, Interpreting a complex instruction set, Binary translation, Code discovery and	
dynamic translation, control transform optimizations.	
Module 3 : Mechanism	7 Hrs.
Implementation levels of virtualization, virtualization providers, virtualization at the	
OS level, Virtualization structures: <i>Hosted and Bare-Meta</i> , Virtualization mechanisms,	
Virtualization of CPU, Memory and I/O devices.	
Module 4 : Virtualization Techniques	7 Hrs.
Server Virtualization, Terminal Services, Desktop Virtualization, Application	
Virtualization, Storage Virtualization, Managing heterogeneous virtualization	
environment, advanced virtualization.	
Module 5 : Process Virtualization	7 Hrs.
Emulation, virtual machine implementation, compatibility, state mapping, memory	
architecture emulation, operating system emulation, code cache management.	
Module 6 : System Virtualization	6 Hrs.
Applications of system virtualization, key concepts, Resource virtualization:	
Applications of system virtualization, key concepts, Resource virtualization.	1

After the completion of the course the student should be able to:

- Module 1: Explain the basic concepts of Virtualization.
- Module 2: Implement interface and functionality between system and sub-system.
- Module 3: Analyze the structure and levels of virtualization.
- Module 4: Apply various Virtualization Techniques.
- Module 5: Explain concepts and implementation of Process Virtualization

Module 6: Explain concepts and implementation of System Virtualization.

Tutorial Content:

Tutorial can be conducted as12 Assignments based on module 1 to 6.

Applications 4IT333		101	Зу	stem	is and		Т	Р	Cr
						2	1	0	3
Pre-Requisite Courses: Basic Electronics, Co	mpute	er Net	work	S					
Textbooks:	- 1 - 7		0 751		T 11	· _	1 1		
1. Pethuru Raj and Anupama C. Raman "T					s: Enabli	ing Tec	hnolo	gies,	
Platforms, and Use Cases", CRC Press,					II		1- 11		
 Arshdeep Bahga and Vijay Madisetti "In Universities Press, 1st Edition, 2015 	aterne	1 01 1	nings	5. A	Hands-0	on Appi	oacn	,	
References:									
1. Waltenegus Dargie, Christian Poellabaue	er "Fi	ındam	nental	ls of	Wireles	s Senso	or Net	works	
Theory and Practice", 1 st Edition, Willey			lentu	15 01	vi neles	5 Sense		WOIK5.	•
2. Jan Holler, VlasiosTsiatsis, Catherine M			efan A	Aves	and. Sta	matis F	Karno	uskos.	
David Boyle, "From Machine-to-Machin									ew
Age of Intelligence", 1 st Edition, Acade					C				
Course Objectives :									
1. To infer the concept of Internet of Thing		/							
2. To apply basic WSN protocols for IoT s	•								
3. To create IoT based applications in diffe	erent p	aradi	gms.						
Course Learning Outcomes:									_
CO After the completion of the cour	se the	e stud	dent	shou	uld be	Bloon			
able to					-	Cogni	1	• 4	
CO1 Apply IoT concent in real time seen	orio					level		cripto	r
CO1Apply IoT concept in real time scenaCO2Analyze use of WSN protocols in Io		licati	200			3 4		<u>lying</u> lyzing	
CO3 Develop IoT enabled services.	, i app	ncati	5115.			6		ating	
CO-PO Mapping :						0	Citt	ung	
PO 1 2 3 4 5 6 7	89	10	11	12	PSO1	PSO2	2		
IO I Z J I J I	1	10	11	1	1501				
CO2 2 2	-		3	1		1			
CO3 2 3 3			3	3	1	-			
			5	0	-				
Assessments :									
Teacher Assessment:									
Two components of In Semester Evaluation (IS	//							E) and	d on
End Semester Examination (ESE) having 20%,	30% a	and 5	0% w	reigh		2			
Assessment						urks			
ISE 1						0			
MSE						0			
ISE 2						$\frac{0}{0}$			
	1		tagt (5	0)		

for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with 70-80% weightage for course content

(normally last three modules) covered after MSE.	
Course Contents:	
Module 1	Hrs.
Introduction to IoT, Sensing, Actuation, Basics of Networking.	5
Module 2	Hrs.
Communication Protocols, Sensor Networks, Machine-to-Machine Communications.	5
Module 3	Hrs.
Introduction to SDN, SDN for IoT, Data Handling and Analytics, Cloud Computing, Fog/Edge Computing.	4
Module 4	Hrs.
Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino.	5
Module 5	Hrs.
Introduction to Python programming, Introduction to Raspberry, Implementation of IoT with Raspberry-Pi.	4
Module 6	Hrs.
Case study: Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Agriculture, Healthcare, Activity Monitoring.	4
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
Module 1: Describe basics of Internet of Things.	
Module 2: Apply sensor network protocols in IoT systems.	
Module 3: Categorize SDN, Cloud and Fog based IoT enabled services.	
Module 4: Demonstrate arduino programming and arduino based IoT based systems.	
Module 5: Demonstrate python programming and Raspberry-Pi based IoT based syste	ms.
Module 6: Test IoT based services.	
Tutorial Content:	
Tutorial can be conducted as12 Assignments based on module 1 to 6.	

		ourse:		ofe	ssio	nal	El	ecti	ive	2:I	nfo	rmat	ion	Stor			Γ	P	Cı
Manage	ment 4	IT334														2	1	0	3
Pre-Req	uisite	Course	es:	Cor	npu	iter	netv	wor	ks							•			•
Fextboo	ks:																		
1. S	omasu	ndaran	n Gr	nana	asur	ndar	am	, Al	lok	Shr	ivas	stava,	"Inf	òrma	ation Sto	orage an	d		
Ν	/lanage	ment",	EM	1C]	Edu	cati	on	Ser	vice	es (V	Wile	ey In	dia),	$2^{nd} E$	Edition, 2	2012.			
2. U	Jlf Trop	ppen, R	Rain	er E	Erke	ens,	Wo	lfg	ang	Μï	iller	;, "S	torag	e Ne	tworks]	Explain	ed"(Wiley	India
/	. 2nd E	dition,	201	6															
Referen		~		~					-							a			
		-	-		rag	e No	etw	ork	s: 1	he o	com	plete	e Ref	erend	ce", Mc	Graw H	1ll E	ducati	on
	ndian e				~ C	tore		A		Latur	vo ml	· · · · ·	Dro	otion	1 Dafara	naa far	Inna	lomont	inc
															l Refere edition		шр	lement	ing
Course (nu i	гs	AIN	SAC	iuis	onv	vv CS	siey	ГЦ	10551	onai,	, 211 u	cultion	12010.			
	o intro		tora	oe :	tecł	nol	ngi	es											
	o acqu			-			-		chit	ectu	ires								
	o cates				-	-													
Course l	Learni	ng Ou	tcor	nes	: (V	Vrit	te fi	ron	n sti	ude	nt p	bersp	ectiv	ve)					
CO 4	After 1	the cor	nple	etio	n o	f th	e c	our	se	the	stu	dent	sho	uld t	oe able	Bloom	ı's (Cogniti	ve
1	to															level	Da	scripto	r
CO1	Evnlair	n tha	100	ical		nd	nhi			con	nno	nonte		2	storage	2		derstar	
	infrastr		log	ical	a	nu	pny	y51C	ai	COL	npo	neme	5 01	a	storage	2	UII	ucisiai	lume
			vled	ge	of	stor	age	e ne	etwo	orki	ng	techr	nolog	gies i	in data	3	Ap	plying	
	center			0-	-					-	0		2	,		_	г	r	
CO3	Disting	uish be	etwe	een	bac	kup	an	d re	ecov	/ery	' tec	hnol	ogies			4	An	alyzing	3
CO-PO																<u> </u>			
		PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	2		
		CO1	2		1														
		CO2					3							2		2			
		CO3		2										1	1				
Assessm	ents ·																		
Teacher		sment:																	
Two con				me	ster	Eva	alua	atio	n (I	SE)	, 0	ne M	id Se	emes	ter Exar	ninatio	ı (M	(SE) ar	nd or
End Sem	-								· · ·		·						· ·	/	
Assessn												Mar							
ISE 1												10							
MSE												30							
ISE 2												10							
ESE												50							
ISE 1 at						-						-							
MSE: A																			
ESE: A												t wit	h 70	-80%	weight	tage for	cou	irse co	nten
	Utr loct	throo n	nodi	nlad	1 00	11/01	·ed	atte	⊳r ∿/	マイト									
<u>(normal</u> C ourse	-				<i>.</i>									1		1 /1		0 11	1 1

Module 1: Introduction to information storage and Data centre	4Hrs.
Information Storage, Evolution of Storage Architecture, Data Centre Infrastructure,	
Virtualization and Cloud Computing , Application, Database Management System	
(DBMS), Host, Connectivity, Storage, Disk Drive Components Disk Drive	
Performance, Host Access to Data, Direct-Attached Storage	
Module 2: Data Protection and Intelligence Storage System	Hrs.
RAID Implementation Methods, RAID Array Components, RAID Techniques, RAID	
Levels, RAID Impact on Disk Performance, RAID Comparison, Hot Spares,	_
Components of an Intelligent Storage System, Storage Provisioning, Types of	5
Intelligent Storage Systems, Concepts in Practice: EMC Symmetrix and VNX	
Module 3: Fibre Channel Storage Area Networks	Hrs.
Fibre Channel: Overview, The SAN and Its Evolution, Components of FC SAN, FC	
Connectivity, Switched Fabric Ports, Fibre Channel Architecture, Fabric Services,	5
Switched Fabric Login Types, Zoning, FC SAN Topologies, Virtualization in SAN,	3
Concepts in Practice: EMC Connectrix and EMC VPLEX	
Module 4: IP SAN and FCoE and Network-Attached Storage, Object-Based and	Hrs.
Unified Storage iSCSI, FCIP, FCoE, General-Purpose Servers versus NAS Devices, Benefi ts of NAS,	
File Systems and Network File Sharing, Components of NAS, NAS I/O Operation,	
NAS Implementations, NAS File-Sharing Protocols, Factors Affecting NAS	
Performance, File-Level Virtualization, Object-Based Storage Devices, Content-	4
Addressed Storage, CAS Use Cases, Unified Storage, Concepts in Practice: EMC	
Atmos, EMC VNX, and EMC Centre	
Module 5: Business Continuity Backup and Recovery	Hrs.
Information Availability, BC Terminology, BC Planning Life Cycle, Failure Analysis,	
Business Impact Analysis, BC Technology Solutions, Concept in Practice: EMC Power	
Path, Backup Purpose, Backup Considerations, Backup Granularity, Recovery	
Considerations, Backup Methods, Backup Architecture, Backup and Restore	4
Operations, Backup Topologies, Backup in NAS Environments, Backup Targets, Data	
Doduntization for Boolann Boolann in Virtualized Environments Data Archive	
Deduplication for Backup, Backup in Virtualized Environments, Data Archive,	
Archiving Solution Architecture.	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage	Hrs.
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure	Hrs.
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local	Hrs.
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and	Hrs.
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local	Hrs.
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three-	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a Virtualized Environment, Information Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking,	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a Virtualized Environment, Information Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking, Module wise Measurable Students Learning Outcomes :	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a Virtualized Environment, Information Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking, Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to: Module 1: Explain basic components of storage architecture	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a Virtualized Environment, Information Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking, Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to: Module 1: Explain basic components of storage architecture Module 2: Identify various mechanisms for effective and protective storage	
Archiving Solution Architecture. Module 6: Replication, Securing the Storage Infrastructure, Managing the Storage Infrastructure Replication Terminology, Uses of Local Replicas, Replica Consistency, Local Replication Technologies, Tracking Changes to Source and Replica, Restore and Restart Considerations, Creating Multiple Replicas, Local Replication in a Virtualized Environment, Modes of Remote Replication, Remote Replication Technologies, Three- Site Replication, Data Migration Solutions, Remote Replication and Migration in a Virtualized Environment, Information Security Framework, Risk Triad, Storage Security Domains, Security Implementations in Storage Networking, Module wise Measurable Students Learning Outcomes : After the completion of the course the student should be able to: Module 1: Explain basic components of storage architecture	

Module 5: Analyse different backup and recovery techniques **Module 6:** Analyse various storage infrastructures

Tutorial Content:

Tutorial can be conducted as12 Assignments based on module 1 to 6.

Title of the Course: Professional Elective 2:Intellectual Property	L	Т	Р	Cr
Right(IPR) 4IT335	2	1	0	3
Pre-Requisite Courses:NA		1		
Textbooks:				
 Howard B. Rockman, "Intellectual Property Law for Engine first edition, May 2004. JeffreyG. Sheldon, How to Write a Patent Application, Thir Institute, 2016. 				-
References:				
 Indian Patents Act, 1970 Ove Granstrand, The Economic and management of Intel Narayanan, V. K., Managing technology and inne advantage, first edition, Pearson education, New Delhi, 2 Idris, K., Intellectual property: a power tool for economi WIPO publication no. 888,Switzerland, 2003 Additional Reading - WIPO - http://www.wipo.int/pate 	ovation 006 c grov	n for vth, sec	comp	etitive
Course Objectives :				
 To disseminate fundamental aspects of Intellectual prope To provide awareness of IPR and government policies ab Course Learning Outcomes: CO After the completion of the course the student should 	out IP	-		rocess
he able to				
	level]	Descri	ptor
CO1 Identify and apply IPR for intellectualwork.	3		Apply	ing
CO2 Analyze the intellectual work for economical, moral,	4	1	Analy	zing
ethical issues and social importance with respect to IPR				
CO-PO Mapping :				
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10	PO11	PO12	PSO1	PSO2
CO1 3 2			1	
CO2		2		
Assessments :				
Teacher Assessment:				

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1: Fundamentals of IPR	Hrs.
Introduction to IPR: Definition, Types of IPR, IPR Acts, Nature of Intellectual	
Property right(IPR) protection of IP, IPR and Economic Development,	3
Instruments relating to the protection of IP:Berne Convention, Paris Convention,	5
TRIPS	
Module 2: Patent and patentability	Hrs.
Introduction to patent: Definition, concepts, Patentability Criteria:How to	5
Identify whether my invention is patentable?, Criteria for obtaining	
patents:Novelty, Inventive step, Utility, Non patentable inventions, Patentability	
check - various tools. Understanding the Patents Act, 1970, Prioir art and patent.	
Module 3: Patents procedures and filing	Hrs.
Procedure for registration/filing (forms), Term of patent, Rights of patentee,	
Basic concept of Compulsory license and Government use of patent,	5
Infringement of patents and remedies. Important sections of form2. Drafting	5
patent and claim.	
Module 4: Copyright, Trademark, Designs and Geographical Indication(GI)	Hrs.
Copy right :Ownership of copyright, Term of copyright, Rights of	
owner:Economic Rights, Moral Rights, Assignment and license of rights,	6
Performers rights and Broadcasters rights, Infringement of copyright, Fail use	O
and Fair Dealing concepts, Categories of Trademark: Certification Mark,	

NT (*		
	nal Marks, Concept of distinctiveness, Doctrine honest user,	
registration and	protection.	
Design: Concer	ot of original design, Difference between GI and Trade Marks,	
Concept of Aut	norized user, GI: Homonymous GI.	
Module 5: Pate	nt Licensing	Hrs.
Compulsory Li	censing; Compulsory Licensing-Working of Patents, Grounds	•
for Grant of Con	npulsory License, Revocation; Patent Licensing.	3
Module 6: Type	es of patent applications	Hrs.
Compulsory Lie	censing; Compulsory Licensing – Working of Patents, Grounds	
for Grant of Con	npulsory License, Revocation; Patent Licensing; Patent	
Applications ; F	atent Application – Who Can Apply, True and First Inventor,	4
How to Make a	Patent Application, What to include in a Patent Application,	
Types of Patent	Applications, Patents of Addition, Dating of Application.	
, ,	$\sim \sim $	
Module wise Mo	easurable Students Learning Outcomes : etion of the course the student should be able to:	
Module wise Mo	etion of the course the student should be able to: To Overview of IPR	
Module wise Mo	etion of the course the student should be able to: To Overview of IPR	
Module wise Mo After the comple Module 1:	etion of the course the student should be able to:	
Module wise Mo After the comple Module 1: Module 2:	etion of the course the student should be able to: To Overview of IPR To Comprehend the IPR	
Module wise Mo After the comple Module 1: Module 2: Module 3:	etion of the course the student should be able to: To Overview of IPR To Comprehend the IPR To identify the IPR	