Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

Course Contents (Syllabus) for

Final Year B. Tech. (Mechanical Engineering) Sem - VII to VIII

AY 2020-21

Professional Core (Theory) Courses

Pre-Requisite Courses:	
Textbooks:	
1. Khanna O.P., "Industrial Engineering and Management", Dhanpat Rai Publications (P) ltd,	, New Delhi.
Year 2003	
2. Martand Telsang "Industrial Engineering and Production Management" S. Chand & Compa	any Ltd.,
New Delhi Year 2003	
3. Dinesh Seth, Subhash Rastogi "Global management solutions demystified "Cengage learning	ıg
publications II edition, Year 2009	
References:	
1.Gavrial Salvendy "Hand book of Industrial engineering" John Wiley and sons, New York, 20	007
2. M. I. Khan "Industrial engineering" New age international(P) ltd, New Delhi,2004	
3. International labour office, "Introduction to work study" Publisher International labour offic	ce,1969.
Digitalized 2008	
Course Objectives:	
1. To make the students perform in industry for effective planning, controlling, and i	implementing
projects.	
2. To utilize the principles of science, technology and engineering for solving industry relevant	1
3. To associate with growth of industrial economic sectors using analytical tools a	and effective
computational approaches.	
4. To develop managerial skills relevant to the industry.	
Course Learning Outcomes:	
CO After the completion of the course the student should be able to	
level Des	scriptor
	derstanding
CO2 Illustrate the basic concepts of modern industrial engineering in II A	Applying
manufacturing and service sector.	
CO3 Examine various method study, work measurement and inventory IV A	analyzing
management techniques.	, 0
CO-PO mapping:-	
1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2	

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1					Μ				L				Н	
CO2				L	Η	Μ							Μ	Μ
CO3					Μ		Μ	L						L

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Semester Examination (ESE) having 20%, 50% and	50% weightage respectively.
Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment, oral, seminar, assessment tool per ISE. The assessment tool used for IS MSE: Assessment is based on 50% of course content (N	SE 1 shall not be used for ISE 2]

Definitions, functions and status of I.E. department in Manufacturing organization and Service sector, Productivity – concept and objectives, factors affecting, tools and techniques, Value analysis. Production Planning and Control – Elements and functions of PPC, Sales forecasting and methods of Capacity requirement planning.
Module 2: Plant Layout and material handling7HrsPlant layout:-Site selection, principles and objectives, production types, tools and techniques used, maintenance, line balancing, layout planning.7HrsMaterial handling:- Objective, elements, functions, principles, types of material handling equipments, unit load concept, Economics of material handling.7Hrs
Module 3: Method study6HrsDefinitions, objectives, various recording techniques, methods improvement techniques, principles of motion economy, Therbligs, micro-motion study, MOST.
Module 4: Work measurement6 HrsDefinitions, objectives, activity and elements, performance rating, rating methods, allowances, group timing techniques, work sampling, PMTS.
Module 5: Inventory Control and Network Techniques7 HrsDifferent Models of Inventory Systems, MRP, Make or Buy decision. Network Techniques: CPM andPERT, Construction, Time cost trade off.
Module 6: Recent trends6 Hrs5S, Kaizen, 6 sigma, Just in time, Toyota production system, Lean manufacturing, Managementinformation system, Total productive maintenance, Poka-Yoke
 Module wise Measurable Students Learning Outcomes: Student should be able to: Discuss the underlying concepts related to productivity, its importance, its measurement etc. Explain various types of plant layouts, principles of a good plant layout and principle of line balancing, principles and methods of material handling. Classify and use different method study techniques. Identify and use different work measurement techniques. Detect and solve simple inventory management and network analysis problems Illustrate recent trends in industrial engineering.

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three

8Hrs

modules) covered after MSE.

Module 1: Introduction of I.E., Productivity and PPC

Course Contents:

12

SME 402 3 0 0 3 Pre-Requisite Courses: Textbooks: 1. C. P. Arora, "Refrigeration and Air conditioning", Tata McGraw Hill Education Private Limi third edition,2008 2. Roy J. Dossat "Principles of Refrigeration", Pearson, fourth edition, 2007. References: 1. Wilbert F. Stoecker, Industrial refrigeration handbook, 1st edn., McGraw-Hill Professi Publishing,1998 2. Wilbert F. Stoecker, Jerold W. Jones, "Refrigeration and Air Conditioning", McGraw-Publishing, 2nd ed. 2008 3. Shan K. Wang, "Handbook of air conditioning and refrigeration" McGraw-Hill internati edition, second edition. Course Objectives : 1. To enable the students to analyze and solve refrigeration related problems by applying princi of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To practice effective communication skill to demonstrate refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outomes: Course Completion of the course the student should be able to <td co<="" th=""><th></th><th>.02</th><th>50.10</th><th>ciiig</th><th>crain</th><th>on ai</th><th>IU A</th><th></th><th>nunn</th><th>Jiiiig</th><th>, Cou</th><th>irse C</th><th>ode :</th><th></th><th>L</th><th>T</th><th>P</th><th></th></td>	<th></th> <th>.02</th> <th>50.10</th> <th>ciiig</th> <th>crain</th> <th>on ai</th> <th>IU A</th> <th></th> <th>nunn</th> <th>Jiiiig</th> <th>, Cou</th> <th>irse C</th> <th>ode :</th> <th></th> <th>L</th> <th>T</th> <th>P</th> <th></th>		.02	50.10	ciiig	crain	on ai	IU A		nunn	Jiiiig	, Cou	irse C	ode :		L	T	P	
<th a="" be="" of="" set="" tex="" tex<="" text="" th="" the="" to=""><th>mo Da</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>3</th><th>0</th><th>0</th><th>3</th></th>	<th>mo Da</th> <th></th> <th>3</th> <th>0</th> <th>0</th> <th>3</th>	mo Da														3	0	0	3
1. C. P. Arora , "Refrigeration and Air conditioning", Tata McGraw Hill Education Private Limit third edition, 2008 2. Roy J. Dossat "Principles of Refrigeration ", Pearson, fourth edition, 2007. References: 1. Wilbert F. Stoecker, Industrial refrigeration handbook, 1st edn., McGraw-Hill Professi Publishing, 1998 2. Wilbert F. Stoecker, Jerold W. Jones, "Refrigeration and Air Conditioning", McGraw-Publishing, 2nd ed., 2008 3. Shan K. Wang, "Handbook of air conditioning and refrigeration" McGraw-Hill internati edition, second edition. Course Objectives : 1. To enable the students to analyze and solve refrigeration related problems by applying princio of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To arctice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to		-	urse	s:															
References: 1. Wilbert F. Stoecker, Industrial refrigeration handbook, 1st edn., McGraw-Hill Professi Publishing, 1998 2. Wilbert F. Stoecker, Jerold W. Jones, "Refrigeration and Air Conditioning", McGraw- Publishing, 2nd ed., 2008 3. Shan K. Wang, "Handbook of air conditioning and refrigeration" McGraw-Hill internati edition, second edition. Course Objectives: 1. To enable the students to analyze and solve refrigeration related problems by applying princi of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To practice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to IV Optimizer and air conditioning and cryogenic CO After the completion of the course the student should be able to IV Optimizeration, air conditioning and cryogenic CO	1.	C. P. Aror third editio	on,20	08							-					tion Pr	ivate I	Limite	
1. Wilbert F. Stoecker, Industrial refrigeration handbook, 1st edn., McGraw-Hill Professi Publishing,1998 2. Wilbert F. Stoecker, Jerold W. Jones, "Refrigeration and Air Conditioning", McGraw-Publishing, 2nd ed. 2008 3. Shan K. Wang, "Handbook of air conditioning and refrigeration" McGraw-Hill internati edition, second edition. Course Objectives : 1. To enable the students to analyze and solve refrigeration related problems by applying princio of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To prepare students to use modern tools, techniques. 3. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Implications, air conditioning and cryogenic CO After the completion of the course the student should be able to Implications, air conditioning and cryogenic CO After the completion of the course the student should be able to Implications. <td col<="" td=""><td>2.</td><td>Roy J. Dos</td><td>ssai</td><td>I IIIC</td><td>ipica</td><td>5 01 1</td><td><i>tejn</i>a</td><td>gerui</td><td>, ,</td><td>i cai</td><td>.5011,</td><td>Iouru</td><td>i cun</td><td>1011, 20</td><td>507.</td><td></td><td></td><td></td></td>	<td>2.</td> <td>Roy J. Dos</td> <td>ssai</td> <td>I IIIC</td> <td>ipica</td> <td>5 01 1</td> <td><i>tejn</i>a</td> <td>gerui</td> <td>, ,</td> <td>i cai</td> <td>.5011,</td> <td>Iouru</td> <td>i cun</td> <td>1011, 20</td> <td>507.</td> <td></td> <td></td> <td></td>	2.	Roy J. Dos	ssai	I IIIC	ipica	5 01 1	<i>tejn</i> a	gerui	, ,	i cai	.5011,	Iouru	i cun	1011, 20	507.			
Publishing , 2nd ed. ,2008 3. Shan K. Wang, "Handbook of air conditioning and refrigeration" McGraw-Hill internati edition, second edition. Course Objectives : 1. To enable the students to analyze and solve refrigeration related problems by applying princiol of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To practice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive able to III Or progene systems with their applications. CO2 Analyze different refrigeration, air conditioning and ryogenic CO3 Evaluate refrigeration and air-conditioning systems under different conditions. CO After the completion of the course the student should be able to IIII Apply knowledge of mathemati	1.	Wilbert F			er, <i>Iı</i>	ndusi	trial	refr	igera	tion	hana	lbook,	, 1st	edn.	, McGr	aw-Hil	ll Prof	fessio	
edition, second edition. Course Objectives : 1. To enable the students to analyze and solve refrigeration related problems by applying princiol of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To preatice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive able to level Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic IV CO2 Analyze different refrigeration, air conditioning and cryogenic IV CO3 Evaluate refrigeration and air-conditioning systems under V CO4 Analyze different refrigeration, air conditioning systems under	2.	Publishing	, 2no	d ed.	,200	8					-					•			
1. To enable the students to analyze and solve refrigeration related problems by applying principle of mathematics, science and engineering. 2. To prepare students to use modern tools, techniques. 3. To practice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive able to Bloom's Cognitive level CO2 Analyze different refrigeration, air conditioning and cryogenic III CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping CO I 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO After the completion and air-conditioning systems under different conditions. V Evaluating. CO2 Analyze different refrigeration and air-condit	3.					book	of	air (condi	tionii	ng ar	nd ref	frige	ration'	' McGr	aw-Hil	l inter	rnatio	
 2. To prepare students to use modern tools, techniques. 3. To practice effective communication skill to demonstrate refrigeration / air conditioning theorie 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic CO2 Analyze different refrigeration, air conditioning and cryogenic CO3 Evaluate refrigeration and air-conditioning systems under V Evaluating. CO4-PO Mapping 		•		stude	nts to	o ana	alyze	e and	solv	e refi	rigera	tion 1	relate	ed prol	blems b	y apply	ying p	rincip	
 To practice effective communication skill to demonstrate refrigeration / air conditioning theorie To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic CO2 Analyze different refrigeration, air conditioning and cryogenic CO3 Evaluate refrigeration and air-conditioning systems under different conditions. CO3 Evaluate refrigeration and air-conditioning systems under V Evaluating. CO4 M M																			
 4. To develop skills in the analysis of refrigeration / air conditioning/cryogenics systems in rese or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive level Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic CO2 Analyze different refrigeration, air conditioning and cryogenic CO3 Evaluate refrigeration and air-conditioning systems under different conditions. CO3 Evaluate refrigeration and air-conditioning systems under V Evaluating. CO4 PO Mapping										-			c ·	<i>.</i> .	, .	1	• .1		
or design and industrial needs. 5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive able to CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic CO2 Analyze different refrigeration, air conditioning and cryogenic CO3 Evaluate refrigeration and air-conditioning systems under different conditions. CO-PO Mapping CO1 M 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M O 1 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 OLIPHICAL		-											-				-		
5. To develop a professional approach to lifelong learning in the refrigeration / conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive able to CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping X 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M H I 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO-PO Mapping	4.	-						of re	Irigei	ation	i / air	cond	1111011	ing/cr	yogenic	s syste	ms in	resear	
conditioning/cryogenics to include the awareness of social and environment issues. Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive Ievel Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic systems with their applications. V Evaluating. CO-RO Mapping III 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M M III 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO-PO Mapping	-	0							1						а	<u>.</u>		,	
Course Learning Outcomes: CO After the completion of the course the student should be able to Bloom's Cognitive Ievel Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping I 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M Image: CO2 M M Image: CO2 H M M	5.			a pi	rofes	siona	al a	nnro	aab										
CO After the completion of the course the student should be able to Bloom's Cognitive Ievel Descriptor Ievel Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping I 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M Image: CO2 M M Image: CO2 H M		conditionii															eration	n /	
CO After the completion of the course the student should be able to Bloom's Cognitive Ievel Descriptor Ievel Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping I 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M Image: CO2 M M Image: CO2 H M			ng/cr	yogei	nics												eration	n /	
able to level Descriptor CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO4 I 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M I I I I I H M			<u> </u>														eration	n /	
CO1 Apply knowledge of mathematics, science, and engineering for the needs in refrigeration, air conditioning and cryogenic III Applying CO2 Analyze different refrigeration, air conditioning and cryogenic IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO4 Applying V Evaluating. CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO4 M V Evaluating. V Evaluating. CO4 M V V Evaluating. V CO5 M V V Evaluating. V Evaluating. V Evaluating. CO4 M V V V V V V Evaluating. V CO3 V V V V V V V V V V V V V </th <th></th> <th>e Learning</th> <th>Out</th> <th>come</th> <th>es:</th> <th>to in</th> <th>clude</th> <th>e the</th> <th>awar</th> <th>eness</th> <th>of so</th> <th>ocial a</th> <th>ind e</th> <th>nviron</th> <th>ment iss</th> <th>sues.</th> <th></th> <th>n /</th>		e Learning	Out	come	es:	to in	clude	e the	awar	eness	of so	ocial a	ind e	nviron	ment iss	sues.		n /	
for the needs in refrigeration, air conditioning and cryogenic INTEGENTION CO2 Analyze different refrigeration, air conditioning and IV Analyzing cryogenic systems with their applications. INTEGENTION Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping Integent Integent Integent Integent CO1 M Integent Integent H M CO2 M M Integent Integent H M		e Learning After the	Out	come	es:	to in	clude	e the	awar	eness	of so	ocial a	ind e	nviron	ment iss	sues.		n /	
CO2 Analyze different refrigeration, air conditioning and cryogenic systems with their applications. IV Analyzing CO3 Evaluate refrigeration and air-conditioning systems under different conditions. V Evaluating. CO-PO Mapping I 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M I <td></td> <td>e Learning After the</td> <td>Out</td> <td>come</td> <td>es:</td> <td>to in</td> <td>clude</td> <td>e the</td> <td>awar</td> <td>eness</td> <td>of so</td> <td>ocial a</td> <td>ind e</td> <td>nviron Bloo</td> <td>ment iss m's Cog</td> <td>sues.</td> <td></td> <td>n /</td>		e Learning After the	Out	come	es:	to in	clude	e the	awar	eness	of so	ocial a	ind e	nviron Bloo	ment iss m's Cog	sues.		n /	
different conditions. CO-PO Mapping Image: Image of the system of the syste	CO	e Learning After the able to Apply kn	Out com	come pleti	es: on o	to ind	clude	rse t	award he str ence,	uden and	of sc t sho engin	uld be	e g	nviron Bloo level	ment iss m's Cog Desc	gnitive criptor		n /	
1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2 CO1 M I	CO CO1	e Learning After the able to Apply kn for the ne Analyze	Out com owled eds in diff	come pleti dge o n refr	es: on o of ma rigera t re	to ind f the athen ation	clude cou	rse t s, sci cond	awar he stu ence, itioni air	uden and ng ar	of sc t sho engin nd cry	uld be	e g ic	nviron Bloo level III	ment iss m's Cog Deso App	gnitive criptor lying		n /	
CO1 M Image: M <th>CO CO1 CO2</th> <th> Learning After the able to Apply knifter the new for the new for the new cryogenic Evaluate to </th> <th>Out com owled eds in diff c syst refrig</th> <th>come pleti dge o n refr erent ems v gerati</th> <th>es: fon o of ma rigera t re with on a</th> <th>to ind f the athen ation efrige their</th> <th>clude cou natica , air eratic</th> <th>rse t rse t s, sci cond on, licati</th> <th>awar he str ence, litioni air ons.</th> <th>uden and ng an cond</th> <th>t sho engin nd cry lition</th> <th>uld be</th> <th>e g ic</th> <th>Bloo level III IV</th> <th>ment iss m's Cog Desc App Ana</th> <th>gnitive criptor lying lyzing</th> <th></th> <th>n /</th>	CO CO1 CO2	 Learning After the able to Apply knifter the new for the new for the new cryogenic Evaluate to 	Out com owled eds in diff c syst refrig	come pleti dge o n refr erent ems v gerati	es: fon o of ma rigera t re with on a	to ind f the athen ation efrige their	clude cou natica , air eratic	rse t rse t s, sci cond on, licati	awar he str ence, litioni air ons.	uden and ng an cond	t sho engin nd cry lition	uld be	e g ic	Bloo level III IV	ment iss m's Cog Desc App Ana	gnitive criptor lying lyzing		n /	
CO1 M H CO2 M M H H	CO CO1 CO2 CO3	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different	Out com owled eds in diff c syst refrig condi	come pleti dge o n refr erent ems v gerati	es: fon o of ma rigera t re with on a	to ind f the athen ation efrige their	clude cou natica , air eratic	rse t rse t s, sci cond on, licati	awar he str ence, litioni air ons.	uden and ng an cond	t sho engin nd cry lition	uld be	e g ic	Bloo level III IV	ment iss m's Cog Desc App Ana	gnitive criptor lying lyzing			
CO2 M M	CO CO1 CO2 CO3	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different	Out com owled eds in diff c syst refrig condi	come pleti dge o n refr Ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f the athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval	sues. gnitive criptor lying lyzing luating		n /	
	CO CO1 CO2 CO3	e Learning After the able to Apply known for the ne Analyze cryogenic Evaluate different of D Mapping	Out com owled eds in diff condi condi g	come pleti dge o n refr Ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f the athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval	sues. gnitive criptor lying lyzing luating		n /	
	CO CO1 CO2 CO3	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different D Mapping	Out com owled eds in diff syst refrig condi g 1 M	come pleti dge o n refr ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f the athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval PSO1 H	sues. gnitive criptor lying lyzing uating		n /	
	CO CO1 CO2 CO3	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different O Mapping	Out com owlea eds in diff syst refrig condi I M M	come pleti dge o n refr ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f then athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval PSO1 H	sues. gnitive criptor lying lyzing luating PS		n /	
Assessment:	CO CO1 CO2 CO3	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different O Mapping	Out com owlea eds in diff syst refrig condi I M M	come pleti dge o n refr ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f then athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval PSO1 H	sues. gnitive criptor lying lyzing luating PS			
Two components of In-Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End	CO CO1 CO2 CO3 CO-PC	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different O Mapping	Out com owlea eds in diff syst refrig condi I M M	come pleti dge o n refr ferent ems v gerati itions	es: fon o of ma rigera t re with on an s.	to ind f then athen ation efrige their nd ai	e cou natica , air eratic r-cor	s, sci cond n, licati nditio	award he stu ence, litioni air ons. oning	and ng and syste	t sho engin nd cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval PSO1 H	sues. gnitive criptor lying lyzing luating PS			
Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.	CO1 CO2 CO3 CO-PC	e Learning After the able to Apply kn for the ne Analyze cryogenic Evaluate different O Mapping CO1 CO2 CO3	Out com owlea eds in diff syst refrig condi J M M M M	come pleti dge o n refr ferent ems v gerati itions	of marigera t rewith on an	to ind f then athen ation efrige their nd ai	clude cou natica, air eratic r-coi	s, sci cond on, licati ditio	award he stu ence, litioni air ons. oning	and ng and cond syste	engin d cry litioni ems u	uld be eering ogen ing nder	e g ic and	Bloo level III IV V	ment iss m's Cog Desc App Ana Eval PSO1 H M	sues. gnitive criptor lying lyzing luating M M M			

Assessment	Marks	
ISE 1	10	
MSE	30	
ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment, oral, seminar assessment tool per ISE. The assessment tool used for I MSE: Assessment is based on 50% of course content (N ESE: Assessment is based on 100% course content wit	SE 1 shall not be used for ISE 2] Normally first three modules)	-
modules) covered after MSE.	1170-80% weightage for course content (norm	liany last the
Course Contents:		
Module 1		Hrs.
Review of Thermodynamics:		1115
Laws, General equations, Processes, Equations apprefrigeration. Basic Refrigeration Cycles: Carnot cycle, Reversed Carnot cycle, Simple Va cooling, suction vapor superheating, Liquid Calculations and performance of above cycles, A Coleman - Reversed Bryton cycle, Air cycles for a	por compression cycle, effect of sub- to suction vapor heat exchanger, Actual vapor compression cycle, Bell	7
Module 2 Multi pressure System and Refrigera	· · · · · · · · · · · · · · · · · · ·	Hrs.
Removal of flash gas, Flash inter-cooling, Water-c and Cascade System. Refrigerants: Classification, Desirable Properties like Therr Comparison among commonly used refrigerants, Ozone depletion and global warming, Alternative I	nodynamic, physical and chemical. , Selection of Refrigerants, Effect on	6
Module 3 Cryogenics and Vapor Absorption Sy	· · ·	Hrs.
Cryogenics: Introduction to cryogenic engineering and applicat Vapor Absorption System: Aqua Ammonia system, Enthalpy-Concentration c Lithium Bromide -water vapor absorption sy Comparison with Vapor Compression cycle. (Desc	ion, liquefiers and cryocoolers. hart, analysis of system. ystem, Coefficient of Performance,	7
Module 4 Refrigeration Equipments:		Hrs.
Types of Compressor, Condenser, Evaporator, Exp insulation, its types and applications.	pansion devices, and selection, use of	6
Module 5 Psychrometry:		Hrs.
Moist air as a working substance, Psychrometric p tables and charts, processes, combinations and ca sensible heat factor, bypass factor, air washer and i Comfort: Thermal exchange between human body and en	alculations, ADP, Coil condition line, it's applications.	7
effective temperature, comfort chart, ventilation re	•	
Module 6 Heating and Cooling Load Calculation	on:	Hrs.

Representation of actual air conditioning process by layouts and on Psychrometric charts, load analysis, RSHF, GSHF, ESHF, Enumeration and brief explanation of the factors forming the load on refrigeration and air conditioning systems, Energy requirements of different types of air conditioning systems, Energy conservation in air conditioning.	6	
Module wise Measurable Students Learning Outcomes :		
Students should be able to		
1. Describe and recall basics of thermodynamics and study and analyze VCC.		
2. Carry out performance study of multistage VCC. Classify the refrigerants; explai	n the phy	ysical,
chemical properties of refrigerants.		
3 Study the applications and cryogenic systems. Analyze vapor absorption system.		
4. Select different equipment used in refrigeration and become familiar with application of r	efrigeratio	on.
5. Describe and recall basics of thermodynamics and air conditioning.	-	
6. Calculate heating and cooling load for air conditioning systems.		

Professional Core (Lab) Courses

Title o	f the Course: Refrigeration and Air Conditioning Lab, Course Co	ode: I		Т	Р	Cr
3ME 4		()	0	2	1
Pre-Re	equisite Courses:					
Textbo						
1.	<i>C. P.</i> Arora , <i>"Refrigeration and Air conditioning"</i> , Tata McGrav third edition,2008	w Hill E	duca	ation P	rivate I	imited,
2.	Roy J. Dossat "Principles of Refrigeration", Pearson, fourth edition	on, 2007	7.			
Refere	nces:					
1.	Wilbert F. Stoecker, Industrial refrigeration handbook, 1st Publishing,1998	edn., 1	МcG	raw-Hi	ill Prof	essional
2.	Wilbert F. Stoecker, Jerold W. Jones, "Refrigeration and Publishing, 2nd ed., 2008	Air Co	nditi	oning"	, McG	raw-Hil
3.	Shan K. Wang, "Handbook of air conditioning and refrigerated edition, second edition.	ation" N	мсG	raw-Hi	ll inter	mational
Journa	l: Journal of Air conditioning and refrigeration- ISHRAE, ASHR	AE				
Course	e Objectives :					
	To enable the students to perform the experiment and analyze mathematics, science and engineering.	ze resul	ts ba	ased o	n princ	iples of
2.	To prepare students to use modern tools and techniques.					
	To train students with effective communication skill to demonst	trate ref	rige	ration/a	air conc	litioning
4	theories. To develop skills to fulfill industrial poods					
	To develop skills to fulfill industrial needs. To develop a professional approach to lifelong learning in the refi /cryogenics.	rigeratio	n/ ai	r condi	tioning	
Course	e Learning Outcomes:					
СО	After the completion of the course the student should be able to	Bloom	's C	ognitiv	e]
		level	De	escripto	or	
CO1	Performance the experiments in refrigeration and air- conditioning as per given objectives.	III	Ap	plying	•	
CO2	Analyze different refrigeration, air conditioning and cryogenic systems with their applications.	IV	Ar	nalyzin	g.	
CO3	Measure the performance of different systems under different conditions	V	Ev	aluatin	g	

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	Μ							Μ		Н		Μ	Н	
CO2	Μ	Μ			Η							Μ	М	М
CO3	Μ									Н	Η	Μ		L

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Following practical's be considered for ISE and ESE evaluation

Experiments

- 1 Trial on vapour compression refrigeration system.
- 2 Trial on Heat Pump.
- 3 Trial on ice plant.
- 4 Trial on Cascade system.
- 5 Trial on air conditioning system.

Demonstration / Study (any six)

- 1. Study and demonstration of refrigeration system for house hold refrigerator, water cooler, ice plant and cold storage.(Industrial visit is desirable)
- 2. Study and demonstration of controls in refrigeration.
- 3. Study and demonstration on window, split and central air conditioner.
- 4. Study of dehydration, charging, leak testing and testing of refrigeration system.
- 5. Study and demonstration of absorption system.
- 6. Study of method for star rating and EER for domestic appliances like house hold refrigerator.
- 7. Study/trial on Vortex tube /pulse tube refrigeration.
- 8. Study/ trial on multi-stage compression refrigeration system
- 9. Study/ trial on air washer.
- 10. Study/trial on multi-evaporator refrigeration system.

itle o	of the C	ours	se: I	Proje	ect I	, Co	urse	Cod	e : 3N	AE49	91				L	-		<u>Р</u> 4	Cr 4
`ovth	ooks: -	Suit	able	boo	yke h	acad	on t		ntont	s of t	han	roject	calact	ad				+	
												U							
	ences:												selec	ted ar	nd res	searc	ch pape	ers fi	om
	ed nation e Objec			men	latio	nai je	Juilla	ais ai		nere	nces.	•							
	help stu			ider	ntify	real	life r	needs	and	discu	iss ni	roiect i	reauir	emer	nts				
	give tec														105.				
	direct s						0		0			1			olutic	ons.			
					I			5		Г									
ourse	e Learn	ing (Out	com	es:														
CO	After	the o	com	pleti	ion o	of the	e cou	rse t	he stı	ıden	t sho	uld be	è	Bloc	om's (Cog	nitive		
	able t	0												Leve	el	Des	criptor		
204		<u> </u>		0															_
<u>201</u>									evelop					II			lerstand	ling	_
CO2								priat	e soft	ware	tools	and		II	I	Applying			
203	proto							work for effective execution of								Ana	lyze		_
.05	the ta		unu	man	ige ti		inwo	work for effective execution of							1	ппа	IYZC		
D-PC) Mapp		:																
			1	2	3	4	5	6 7 8 9 10 11						12 PSO1 PSO2					
	CC)1	Η								Η			Η	Н	H			
	CC)2			Η						Η		Η		Μ	[L		
	CC)3		Η						Η							L		
h Ac	ssessme	nt·																	
	are four		non	ents	of la	h ass	essm	ent	LA1	LA2	LA	3 and 1	Lab E	SE					
	ab ESE		-						<u> </u>		,	e una i		<u>о</u> ப .					
			1			1		U											
Asse	ssment			Base	d on			Co	nducte	ed by							missior	n]	Marks
L	.A1	Pro	ogre	ss of	the p	rojec	t	Coι	ırse Fa	aculty		During					1 -		25
			•		•	Ũ						Submis					ek 5		_
L	.A2	Pro	ogre	88 OI	the p	rojec	ι	Coi	irse Fa	aculty	7	During Submis					ek Q		25
-		Pro	ogre	ss of	the p	rojec	t	6	-			During							
		\	0		- P	- j - c		Coi	irse Fa	aculty									25
	.A3					•								n at the end of Week 14 eek 15 to Week 18					
L	ESE	Pro	ogre	ss of	the p	rojec			nal Ex	•		Submis							25

drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

ISE are based on presentations, demos & seminar etc.

ESE: Assessment is based on 100% implementation, execution & validation

Course Contents

Project group should submit project report at the end of semester.

Project report should be prepared submitted along with soft copy (with code, PPT, PDF, Text report document & reference material).

Students should maintain a project log book containing weekly progress of the project.

Professional Elective (Theory) Courses

Pre-	e of the	e Cours	e: I	Dyna	mics	of M	Iachi	nes,	Cou	se C	ode :	3ME4	411		L	T ^	P	Cr		
re-	D	-:4- C													03	0	0	03		
	-	site Co	urse	s:																
	tbooks				1 3 7	•••	,	N T					- 1	T			000			
															hird Edi					
															econd E					
		onal Put								And .	Practi	ice U	n me	cnan	ical Vil	bration	s , 1N	ew Ag		
	erence		DIISH	ers, s	Secol			1, 19	99											
		S: Church ,	"Ma	chan	ical '	Vibro	tion	," W	/ialv]	Facto	rn Fi	ret Ed	lition	1063	2					
		,						· ·					,		, aw-Hill,	1976				
	-	o, "Mec										induov	JK , IV	1001	uvv 11111,	, 1770				
		jective		- un	1014		,		Luiti	, 2	000									
				vare	abor	it car	ises a	and e	ffects	of th	ne vih	ration	on m	echa	nical sys	stems				
		iss type													•	stems.				
		orate the																		
		ostrate i													-					
		arning							0											
Γ	CO	After				on of	the	cour	se the	e stu	dent s	shoul	d be]	Bloom's	Cogni	tive			
		able to	D	-										1	evel	Descriptor				
	CO1	Explai	n the	e bas	sics o	of vit	oratio	on, ca	auses	and I	oasic	eleme	ents ai	nd	II	Understanding				
		its me	asure	emen	t										11					
	CO2	Apply	nur	neric	al n	netho	ds i	n fir	nding	natu	ral fi	requer	ncy ai	nd	III	Apply	ving			
		corres												111						
	CO3	Analy													Analyze					
		degree										ons, f	for the	eir	IV					
L		natura																		
	CO4	Evalua	ate sł	nafts	base	d on	their	r crit	ical sp	peeds					V	Evalu	ate			
C O-	PO M	apping	:																	
	Г				-							1.10								
		~~	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSC)2			
	-	<u>CO1</u>	Μ		-					H				3.6	H					
	-	CO2		-	L									M	Μ	M				
		CO3		L		Μ								Η		L	(

Course Contents:	
	Hrs
Module 1: Introduction:	
Importance and scope, Concepts and terms used, SHM, vector method of representing harmonic motions, Complex method of representing vibration, Fourier series and harmonic analysis, stiffness of springs in combinations.	7Hrs
Module 2: Single degree free and forced vibration: Damped and undamped	8
(a) Undamped free vibrations, derivation of differential equation with solution, energy method, types of damping, free vibrations with viscous damping, logarithmic decrement, coulomb damping, and damping materials.	Hrs
(b) Forced Vibrations: Types of excitation, forced excitation, forced vibrations with constant harmonic excitation, steady state vibration, excitation due to unbalance in machines, support excitation, response due to above types of excitations, transmissibility, force transmissibility and motion transmissibility, vibration isolators, commercial isolation materials and shock mounts	7
Module 3: Two degree free and forced vibration	7 Hrs
(a) Free un-damped vibrations – Principal modes and natural frequencies, co-ordinate coupling and principal co-ordinates. (b) Forced vibrations (Un damped) – Harmonic excitation, vibration, dampers and absorbers, dynamic vibration absorber – tuned and Un tuned type	1115
Module 4: Torsional Vibration	6Hrs
Natural frequency of free torsional vibrations, effect of inertia of the constraint on torsional vibrations, free torsional vibrations of a single rotor system, two rotor system and three rotor system. Torsionally equivalent shaft, free torsional vibrations of a geared system.	
Module 5: Vibration Measuring Instruments	6
Instruments for measurement of displacement, velocity, acceleration and frequency of vibration, introduction of $X - Y$ plotter, spectral analyzers, FFT analyzer.	Hrs
Introduction to Numerical Methods in Vibration	
Holzer method, Releigh's method, matrix iteration method, introduction to F. E. M., Analysis techniques used in vibration (Eigen value analysis)	
terningues used in vibration (Ergen value analysis)	6
Module 6: Critical Speed of Shaft	Hrs
Critical speed of a light shaft having a single disc with and without damping, Critical speeds of a	
shaft having multiple discs, secondary critical speeds	
Iodule wise Measurable Students Learning Outcomes :	
tudents should be able to:	
1. Explain basics of vibrations	
2. Discuss Single degree free and forced vibration: Damped and undamped	
3. Analyze Two degree free and forced vibration	
4. Analyze Torsional Vibration	
5. Apply Numerical Methods in Vibration, and demonstrate Vibration Measuring Instruments	
6. Evaluate Critical Speed of Shaft	

Title of the Course: Computational Fluid Dynamics, Course Code :	L	Т	Р	Cr
3ME412	3	0	0	3

Pre-Requisite:

Textbooks:

- 1. Anderson, J.D., "Introduction to Computational fluid Dynamics", McGrawHill Publication 2008
- 2. Muralidhar K. and Sundararajan T., "*Computational Fluid Flow and Heat Transfer*", Narosa Publishing House, 2nd edition, New Delhi 2011.
- 3. Hoffmann K.A "*Computational fluid Dynamics*" Publication of engineering education system, 2000.

References:

- 1. Suhas V. Patankar, "Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 2. H.K.Versteeg and W Malalasekera, "Introduction to Computational Fluid Dynamics" Longman group, 1998.
- 3. Fletcher C.A.J., "Computational Techniques for Fluid Dynamics I," Fundamental and General Techniques, Springer-Verlag, 1987.

Course Objectives:

- 1. To familiarize the students about different prediction methods and role of CFD.
- 2. To prepare the students to derive different forms of governing equations used in CFD and their significance.
- 3. To analyze N-S equations and the different numerical techniques used in CFD.
- 4. To train the students to select the appropriate conditions to solve the problem with CFD.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Summarize the prediction methods and basic methodology of CFD.	II	Understanding		
CO2	Derive various governing equations in different forms.	III	Applying		
CO3	Analyze the different numerical techniques for solving fluid problems.	IV	Analyzing		
CO4	Evaluate the operating parameters using numerical techniques.	V	Evaluate		

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	L												Н	
CO2			L									Η	Μ	Μ
CO3		L												L

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Module 1 Introduction:	Hrs.
Prediction method, experimental techniques, analytical methods, CFD application,	
typical problems/ Problem Solving with CFD – Methodology.	7
Module 2 Conservation laws and the model equations:	Hrs.
Governing equations of fluid flow and heat transfer, Equations of the state, Navier- Stokes equations for a Newtonian fluid, Conservative form of the governing equations of fluid flow, Differential and integral forms of the general transport equations, Classification of physical behavior.	6
Module 3 Exact solution of the Navier-Stokes equations and boundary conditions	Hrs.
Introduction, Transformation of the Governing Partial Differential Equations, Grid Generation Techniques. Boundary conditions: introduction, types of boundary conditions, Potential pitfalls and final remarks.	7
Module 4 Basic computational techniques:	Hrs.
Finite Difference Formulations: Introductory remarks, Taylor Series Expansions, Finite difference by Polynomials, Finite difference equations, Applications. Finite Volume Method: Introduction, Steady one-dimensional problem, the central discretization schemes, Properties of discretization schemes, Assessment of the central differencing scheme for convection-diffusion problems, 1-D examples, 2-D examples.	6
Module 5 Solution methods:	Hrs.
This chapter deals with basic numerical discretization approaches discussed in earlier chapter and mold them into various techniques that will allow the numerical solution of flow problems. Lax- Wendroff Technique McCormack's Technique, Crank-Nicolson Technique, Relaxation Technique, ADI Technique, Pressure correction Technique.	7
Module 6 Post processing:	Hrs.
Results are usually reviewed in one of two ways. Graphically and Alpha numerically. Graphically: Vector plots, Contours, Iso-surfaces, Flow lines, Animation. Alpha	6

- 2. Derive various governing equations in different form and interpretation of these equations.
- 3. Solve the N-S equation for simple cases.
- 4. Understand the FDM and FVM methods; and apply the same to solve fluid problems.
- 5. Select the appropriate solution method, and analyze the same.
- 6. Choose the appropriate post processing method, carry out and compare the various results.

Title of the Course:	Advanced Manufacturing Techniques,	Course Code : 3ME413
The of the course.	riavancea manaractaring reeningaes,	

L T P Cr 3 0 0 3

Pre-Requisites of Courses:

Textbooks:

- 1. B.L. Juneja, "Fundamental of Metal Forming Processes", New Age International Publisheres, 2003.
- 2. AmitabhaGhosh, A.K. Mallik, "Manufacturing Science", EWP Publisher.1999

Reference Books:

- 1. George E.Dieter, "Mechanical Metallurgy", McGraw Hill Int., 1997
- 2. S.Kalpakjian, S.R.Schmid, "Manufacturing Engineering and Technology", Prentice Hall, 2009
- 3. Surendra Kumar, "Principal of Metal Working", PH learning Pvt.Ltd, 2008

Course Objectives:

- 1. To make the students aware of theory of plasticity, various forming processes and their applications.
- 2. To impart the knowledge of recent developments in metal forming processes to students.
- 3. Toprepare the student for the use of non-conventional machining processes.
- 4. To develop thestudent for practical knowledge in the field of sheet metal working processes.

Course Learning Outcomes:

CO	After the completion of the course the student should be able	Bloom	n's Cognitive
	to	level	Descriptor
CO1	Summarize basic mechanical forming operations	II	Understanding
CO2	Use the forming limit diagram and able to design die for given	III	Applying
	forming processes		
CO3	Explain practical knowledge of different metal forming and non-	IV	Analyzing
	conventional machining processes.		
CO4	Calculate the number of rolls required in rolling operation to	V	Evaluating
	achieve the required job sizes		
CO5	Design the forging die as well as extrusion and drawing dies for	VI	Creating
	given application		

CO-PO Mapping:

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1				Η				Η					Н	
CO2	Η			Μ								Μ	Μ	Μ
CO3			Η					Μ						L
CO4	Μ		Η	Μ									L	
CO5	Η			Μ				Η						Н

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment, oral, seminar, to	est (surprise/declared/quiz), and group discussion.[One

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules)

Course Contents:	
Module 1:	Hrs.
Study of various Forming processes, their special features with respect to other manufacturing process. Metallurgical consideration, hot, cold and worm working. Recovery and Recrystallization. Theory of Plasticity: Flow curve, Concepts of true stress and true strain, yield criteria and their comparison, plastic stress strain relationships. Parameters affecting the yield strength of materials	6
Module 2:	Hrs.
 a. Rolling Classification of rolling processes, rolling mill types, condition for natural entry in rolling operation, number of passes in rolling, roll bite, elongation, reduction, rolling of sheets, plates, bars, sections and tubes, applications and defects in rolling. b. Forging Basic operations, types of forging, forging hammers/ presses, forging stages and force calculations, die design considerations, forging defects, applications. 	3+3 =6
Module 3:	Hrs.
a. Extrusion	
 Equipment and principles, types of extrusion, direct, indirect, impact, continuous, hydrostatic, tube extrusion, metal flow in extrusion, defects, factors affecting extrusion load b. Drawing Types of Drawing, Rod/wire drawing, equipment and principles of process, defects, Tube drawing, Seamless Pipe Manufacturing 	4+4 =8
Module 4:	Hrs.
Introduction, press operations, types of dies, Nesting (strip layout) of sheet, Forces in blanking, Drawability of sheet metal, Deep drawing, Redrawing, Hydrostatic pressure forming, Tractrix dies, Forming limit diagrams (FLD). Die-less forming of sheet metal.	6
Module 5:	Hrs.
Mechanization, computerization in metal forming, High energy rate forming processes such as Explosive forming, Electro-hydraulic forming, Electromagnetic forming, Magnetic pulse forming etc. Metal forming in mashy state, forming by Laser beam / plasma arc, isothermal forging.	7
Module 6:	Hrs.
Importance and scope of various non-conventional machining processes like Electro-Chemical machining (ECM), Electro-Discharge machining (EDM), wire EDM, Abrasive Jet machining (AJM), Laser Beam Machining (LBM), Ultrasonic machining	7
Module wise Measurable Students Learning Outcomes :	
 Students should be able to 1. Understand the Concept and importance of cold working and hot working processes. 2. Calculate the number of rolls required in rolling operation to achieve the required job sizes. 3. Design the forging die for given application. 4. Fabricate the dies for extrusion and cold drawing. 5. Explain the forming limit diagram and able to design die for given forming process. 6. Summarize importance and principles of operation of various non-conventional forming process 	

	0	3
Pre-Requisite Courses:		
Fextbooks:		
I CALDUURS:		
. S. S. Rao, "Finite Element Method in Engineering", Elsevier Publication, 4 th Edition, 20	04	
2. P. Seshu, "Textbook of Finite Element Analysis", 1 st Edition. 2008.		
3. M. J Fagan, "Finite Element Analysis- Theory and Practice"; Longman Scientific & Teo	chnical,	1st
Edition, 1992		
References:	and	L T 11.1
1. J. N. Reddy, "An Introduction to Finite Element Method", Tata McGraw Hill publication 1993	$1 \text{ co. } 2^{-1}$	Editi
2. Logan D. L. "A first course in Finite Element Method", Cengage learning, 4th Edition, 2	008	
3. O. C, Zienkiewicz "The Finite Element Method – Basic Concepts and Linear App		лс" Т
McGraw Hill publication co., 5th Edition, 2000.	neanor	<i>i</i> 5, 1
Course Objectives :		
1. To explain the general steps in finite element method.		
2. To solve various field problems using finite element method.		
3. To apply variational formulation method to solve mechanical engineering problems.		
4. To use modern software to simulate structural, thermal and fluid problems.		
Course Learning Outcomes:		
CO After the completion of the course the student should be Bloom's Cogniti	ve	
able to level Description	ntor	_
	5,01	
	tanding	_
CO2 Use modern tools, software, and equipments to analyze and III Applyin	ng	
solve the problems and interpret the data		_
CO3 Analyze mechanical components, systems and projects IV Analyz	ing	
required for industry by using FEM.		_
CO4 Verify the analytical results of engineering problems using V Evaluat	ting	
advanced tools.		
CO-PO Mapping :		
1 2 3 4 5 6 7 8 9 10 11 12 PSO1 P	SO2	
CO1 M H		
	Μ	
CO3 M M M	L	
CO4 M M M		
Assessment:		
Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE)	and one	e End
Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.		
Assessment Marks		
ISE 1 10		

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10

ESE	50	
ISE 1 and ISE 2 are based on assignment, oral, seminar assessment tool per ISE. The assessment tool used for ISE MSE: Assessment is based on 50% of course content (N	SE 1 shall not be used for ISE 2]	cussion.[One
ESE: Assessment is based on 100% course content with modules) covered after MSE.		mally last three
Course Contents:		
Module 1: Introduction to FEM		6 Hrs.
Basic concepts of FEM – Historical background, reapproximation, applications of FEM in various FEM.		
Module 2:		7 Hrs.
Introduction Discretization, interpolation, shape characteristics matrices, assembly and solution.	e function, formulation of element	
Module 3		7 Hrs.
Introduction, Geometrical approximations, Simple element shapes and behaviour, Choice of element Element shape and distortion, Location of nodes, N	t type, Size and number of elements,	
Module 4	C	7 Hrs.
Types of elements, order of element. Formulation vectors for elasticity problems : One dimensional axi-symmetric elasticity. Formulation procedure weighted residual method. Thermal problems, dimensional heat transfer, Torsional problems, Flui	elasticity – two dimensional elasticity, es, the variational formulation, the one dimensional heat transfer, two	
Module 5	-	6 Hrs.
Introduction, co- ordinate transformations, assemb of the boundary conditions, solution of the equa method, penalty method		
Module 6		7 Hrs.
Model validity and accuracy, mesh design and r processing, model checking.	efinement, element distortions, result	
Module wise Measurable Students Learning Out	comes :	
Student should be able to		
1. Explain the use of mathematical modeling ar		
2. Apply the general steps of finite element met	6 61	
3. Use the discretization techniques to mesh the	-	
4. Solve the structural, thermal and fluid proble	ms using variational formulation method	ds.

- 5. Describe the difference between various boundary conditions.
 6. Interpret the finite element model and its simulation results.

Title of	the Cours	se: C	ryog	enics	s, Co	ourse	e Cod	le : 3N	ЛЕ 4	15				L	T	P	Cr
Duo Do	anisita Ca													3	0	0	3
Textbo	quisite Co	urse	S:														
	bks: Barron, R,	"Cr	vogei	nic S	vsten	<i>ıs</i> ".	McG	raw-F	Hill.	1966.							
	Thomas M	•	<u> </u>								gineer	ring",	Inc. 1	New Yo	ork, 19	997.	
Referer	nces:																
1 Mar	hall Cittia		Van	Naat	han d	$\mathbf{C}_{\mathbf{a}}$	· C				1	1 4	- 1: 4	:	n a NI	orre Vord	- 1062
	shall Sittig, Is D. Tim						•	-									
	tion,1989.		nuus	, 111	omu	, 1,1,	119	,	Cryc	,senie	170	0000	Liigii	icering	,1 101		onshing
Course	Objective	s:															
	To make st		nts av	vare	abou	t Cry	yogei	nics, i	ts im	portai	nce an	id app	olicati	ons			
	To explore																
	<u>Fo familia</u>				vith r	neas	urem	ent sy	/stem	ns for	low te	emper	ature	applica	ations		
Course CO	Learning				fthe			hast	ıdan	tahar	ld ba		Dloc	om's Co	aniti		٦
CO	After the able to	COIL	ipiet		n uie	e cou	irse i	ne su	luen	t Shot	na be	;	leve		escrip		_
															csemp		
CO1	Summariz	ze the	e app	olicat	ions	and	impo	rtance	e of C	Cryoge	enics		II	U	nderst	tanding	
CO2	Illustrate												III Appl			-	
CO3	Explain th		easu	reme	nt sy	stem	s for	low t	empe	erature	e		IV	A	nalyze	e	
	applicatio Mapping																
0-10			2	3	4	5	6	7	8	9	10	11	12	PSO 1	P	SO2	
	CO1	H	-		-				0	H	10		H	Н			
	CO2			Η						Н		Η		М		L	
	CO3		Н						Н							L	
Assessn	nent:																
	mponents o													,	ASE)	and one	End
Semeste	er Examina		`	/	0	20%	, 309	% and	50%	weig	htage	resp		2			
		A	ssess. ISE										N	<u>/larks</u> 10			
			MS											30			
			ISE											10			
			ES											50			
	nd ISE 2 ar														oup di	scussion	.[One
	Assessment																
ESE: A	Assessment	is ba	sed o	n 100											nt (noi	rmally la	st three
module	es) covered a	after	MSE	•													

Module 1	Hrs.
Introduction to Cryogenic: History and development, cryogenic temperature scale. Application Of Cryogenic Systems: Super conductive devices, cryogenic space	6
technology- cryogenics in biology and medicine.	
Module 2	Hrs.
Material Properties: Low temperature properties of engineering materials- Mechanical properties, Thermal properties, electric and magnetic properties.	7
Module 3	Hrs.
Gas Liquefaction Systems: Introduction - production of low temperature, Liquefaction systems for freoen, hydrogen, helium and other gases. Cryo-coolers: Sterling, G-M and pluse tube cryocoolers.	7
Module 4	Hrs.
Gas Separation And Purification Systems: The Thermodynamically ideal separation systems properties of mixtures, principles of gas separation – Linde single column and double column system of air separation	6
Module 5	Hrs.
Measurement Systems For Low Temperatures: Temperature measurement – pressure	
measurement – flow rate measurement. Measurement and importance of vacuum in cryogenics.	7
Module 6	Hrs.
Cryogenic Fluid Storage and Transfer Systems: Cryogenic fluid storage vessels- Insulation– cryogenic fluid transfer systems.	6
Module wise Measurable Students Learning Outcomes : Students should be able to	
1. Describe basics of cryogenic systems and their applications	
2. Explain importance of Cryogenics in material characterization	
3. Discuss the gas liquification systems, and classify the Cryo-coolers	
4. Depict the Gas Seperation and Purification systems	
5. Articulate measurement systems for Low Temperature applications.	

Titl	e of the	e Cours	e:Co	ompu	iter I	ntegr	ated	Man	ufact	uring	and l	Robot	ics,		L	Т	Р	Cr		
Cou	irse Co	de: 3M	E41	6						_					3	0	0	3		
Pre	-Requi	site Co	urse	s:																
Tex	tbooks	:																		
			uton	iatio	n, Pr	oduc	ction	Syst	ems a	nd C	'ompu	ter In	tegra	ted N	Ianufaci	turing"	, Pren	tice Hal		
		onal pub						2			1		0		0	0	,			
		uttan K.					Inter	natic	onal o	ublic	ation,	2007.								
3.G	roover	M.P.,	Nag	gel J	R.N.,	Or	dey	N.C	Ъ. " <i>П</i>	ndust	rial	Robot	tics-	Tech	nology,	Prog	ramm	ing and		
		ons, " N													01	0		0		
	erence																			
1. R	Richard	M. Mur	rai, Z	Zexia	ang L	i, S	Shan	kar S	Sasrty	, "Ra	obotic	Mani	pulat	ion,"	CRC Pr	ress, 20)01			
2. S	.R. Del	o, " <i>Rob</i> a	otics	Tech	inolo	gy ai	nd Fl	lexib	le Au	toma	tion,"	Tata	McG	aw I	Hill, 200	0				
3. U	Jrich Re	embold,	"Со	mput	ter Ir	itegr	ated	Man	ufact	uring	Tech	nolog	y and	Syst	em," 19	95				
Coι	ırse Ol	jective	s:																	
1. T	lo expo	se the st	uder	nt to f	the v	ariou	ıs fur	ndam	ental	s of c	compu	iter as	sistec	l mar	nufacturi	ing sys	tems.			
	-										-				issociate			vare and		
CA	D/CAM	I databa	ise fo	or des	sign a	and r	nanu	factu	ıring.											
3. T	To expla	ain stud	ents	abou	it Ro	botic	es an	d its	allie	d inte	erdisc	iplina	ry ap	proac	ch, comp	ponent	design	n, senso		
		, compi							-											
		-		nt co	mpo	nent	of A	Autor	nated	Mai	nufact	uring	Syste	ems	and con	trollers	s to p	erform a		
-		ed tasks																		
Cou	irse Le	arning																		
	CO	After		comp	oletio	on of	the	cour	se the	e stu	dent s	hould	l be		Bloom's	-				
		able to	-												level	Desci				
	CO1	Deterr							-		Aut	omatio	on a	nd	II	Unde	rstand	ing		
		Produ			_		-								п					
	CO2	Choos					rs ar	nd m	otion	con	versic	on dev	vices	in	III	Apply	ying			
		robot i		_																
	CO3	Defen			orking	g of	Rob	ot	softw	'are/	hardv	vare i	in CI	Μ	V	Evalu	ating			
		enviro												_		~				
	CO4	Design				rn i	nforr	natic	on pi	oces	sing	syste	m a	nd	VI	Creat	ing			
~ ~		advan		oboti	ICS.															
CO	-PO M	apping	1				-		_			10			DCO4	DO				
		<u> </u>	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	02			
		<u>CO1</u>		!	L										H		-			
	-	CO2			H			M							Μ	N				
	-	CO3						Η						Μ		I	4			
		CO4											Μ							
	essmen																			
		ssessm		C		.		/-		~ •	1.10		-				1	F 1		
	-								, .						ation (N	1SE) ai	nd one	End		
Sen	nester E	Examina				ving	20%	, 30%	% and	50%	weig	nts re	spect							
			A	ssessi ISE						_	Marks									
				MS											10 30					
				IVIS.	<u>ப</u>										30					

ISE 2	10	
ESE	50	
ISE 1 and ISE 2 are based on assignment/declared test/qu		
MSE: Assessment is based on 50% of course content (No		
ESE: Assessment is based on 50% of course content (if ESE: Assessment is based on 100% course content with		st three
modules) covered after MSE.	10-70% weightage for course content (normany fa	st unce
Course Contents:		
Module 1: Computer Integrated Manufacturing		6 Hrs.
- Introduction, definition, importance, compone		01115.
Advantages, limitations, scope and globalization vie	w.	
- Product Development through CIM:		
Introduction, product development cycle, sequer		
comparison between SE and CE, implementation of		
characteristics of CE, success of CE, applications of		
Module 2: Automated Quality Control and CIM	•	7 Hrs.
- In-process and post process methodologies, inte	grations of CNC machines, robot in CIM	
environment.		
- Communication, software/ Hardware:		
Availability of software, network topologies for L	AN, network interface card and protocols,	
Network operating systems.		
- CIM models:		
Introduction, ESPRIT- CIM OSA model, the NIST	Γ- AMRF hierarchical model, the Siemens	
model, digital equipment corporation model, IBM co		
Module 3: Robotics in CIM:	1	6 Hrs.
Historical development, various terminologies, class	sification, degrees of freedom and degrees	
of motion, manipulation of robot components,		
envelope, accuracy and repeatability, configuration,		
Module 4: Robot Programming and Modular Co	÷	7 Hrs.
Methods, languages, advantages and limitations		/ 11150
Industries, specifications of robot, operational ca		
components, wrist mechanism, Numerical examples	±	
Module 5: Robot Sensors, Actuators and Motion		7 Hrs.
-Internal and external sensors, force sensors, th		7 1115.
standard test signals, controllers, PLC and robotics.	ernocoupies, performance enaracteristics,	
-Robot actuators, micro grippers, motion conversion	systems harmonic drives robot safety	
Module 6: Advanced Robot Systems:	systems, narmonic unves, robot sarcty.	6 Hrs.
Heuristics decision for robot, Fuzzy logic for rob	pot control Artificial Naural Natwork for	0 1115.
robotics, Biped Robot, Biomimetic robotics, calibrat		
Module wise Measurable Students Learning Outco		
1. Explain advanced manufacturing systems	omes. Students should be able to	
-		
 Introduce the idea of implementation of CIM Use of robot in CIM environment 		
	dular componente	
4. Apply the robot Programming and other related mo	ounar components	
5. Observe anatomy parameters of robot		
6. Describe new trends in robotics		

nue or	the Cou	se: N	/lecha	anica	l Sys	stem	Desi	gn, (Cours	se Co	de : 3	ME4	17	L	Т	Р	Cr
					•			- ·						3	1	0	3
re-Re	quisite C	ourses	5:														
extbo	oks:																
V.B.I	Bhandari	"Des	ign o	f Ma	chin	e Ele	emen	t", Ta	ita M	c- Gr	aw Hi	ll Pul	olicati	on, 4^{th}	Edition	n, 200)1
Shigl	ey and C.	R.Mis	cke,	"Me	echar	nical	Engi	neeri	ng De	esign	", Tata	a Mc-	Grav	v Hill P	ublicat	tion, 2	001
	Spotts , "I																
Black	c P.H.and	O.Eug	gene	Ada	ms , '	"Mac	chine	Desi	gn", '	Tata 1	Mc- C	braw l	Hill P	ublicati	on, 3^{ra}	Editio	on, 19
	.Mayall , '	Indus	trial	Desi	gn fo	r En	ginee	ers", l	Illife,	1967	7						
eferei					_			_									
	.Joshi, " F																
	ert L.Nor													1			
	ag Dixit,				•		•			-							
	yH.Hill "		cience	e of I	Engir	ieeri	ng D	esign	<i>"</i> , Ho	olt Me	cDoug	gal,19	70.				
	Objectiv				1	1			· 1	- 4 I.	1. •	1	. . .				
-	repare the						-			-		-			• •	1	1
	Provide s			th a	sou	na f	ound	ation	ın r	necha	inical	syste	em de	esign re	equired	to s	olve
-	olems in in		•	. f	1	cc: . : .		•	- C - 4		.1	<u>.</u>	1	1	-14		
	ain the stu				na e.			esign	of str	uctur	ai par	ts of t	ne me	echanic	al syste	em.	
CO	Learning After th				ftho	0011	nco ti		idant	char	ld ho		Plaa	m's Co	anitiva		
	able to	e com	pieti	UII U	i the	cou	rse u	ie stu	iuein	. SHOL	na be	;	DIOO	III S CO	ginuve		
													level	De	escripto	or	
CO1	Explain	ha the	oru (of pr	200114			anda	oor b	or de	nian		II	Un	Idersta	ndina	
CO1	Use Johr		-	-					-		sign.		11		plying	U	
	mechani				-	umu	in ue	sigii t	0 ues	ign			III		prynig	,	
CO3	Estimate		-			eliah	ility	of m	echa	nical				Ev	aluatin	σ	_
005	compone					Unau	inty	or m	Cena	incai			V		aiuatill	5	
CO4	Design t					e ne	eds o	f soci	ietv c	onsid	lering			. Cr	eating		
	aesthetic	-		-						51.510	9		VI		8		
CO-PO	Mappin		6			r								<u> </u>			
	1.1.	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSC)2	
	CO1	Н		Μ					1		1	1	Η	Η			
	CO2			Μ	1		l		Μ				Μ	Μ	Μ	[
	CO3		Μ	L	L	1	1		1			1			L		
		Н		M			1						Н				
			1		1	1	1	1	1	I	1	1					

Semester Examination (ESE) naving 20%, 50% and 50% werginage respectively.								
Assessment	Marks							
ISE 1	10							
MSE	30							
ISE 2	10							

ESE 50	
ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group dis assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2] MSE: Assessment is based on 50% of course content (Normally first three modules) ESE: Assessment is based on 100% course content with70-80% weightage for course content (nor modules) covered after MSE.	
Course Contents:	
Module 1:	6 Hrs.
Thin and thick cylinders; failure criteria of vessels; Lame's equation; Clavarino's and Birnie's equation; Autofrettage and compound cylinders; Types of pressure vessels-Horizontal and vertical; Classification of pressure vessel as per IS2825, 1969.Introdduction to design of pressure vessels as per IS Codes. Shell and end closures. Effect of opening & nozzles in shell & covers. Types of pressure vessel support.	
Module 2:	7 Hrs.
Determination of variable speed range- Graphical representation of speeds- Structure diagram- Deviation diagram- Ray diagram- Selection of optimum ray diagram-Difference between number of teeth of successive gears in a change gear box- Analysis of twelve speed gear box- Compound ray diagram	
Module 3 :	7 Hrs.
System Approach to Design; Mathematical model; Lumped system; Dynamic response of lumped & distributed system; Modeling of masses, Elasticity, Inertia, Damping and friction.	
Module 4:	7 Hrs.
Introduction to optimum design for mechanical elements, adequate and optimum design, Johnson's method of optimum design- simple problems in optimum design like axially loaded members, shafts subjected to torsional and bending moments, helical spring, levers. Optimum design with in Lagrange multipliers	
Module 5:	6 Hrs.
 (a) Statistics in design, probability, random variables- sample and populations, Normal distribution, Sampling distribution, Confidence intervals, population combinations (Introductory treatment, no questions to be asked in examinations on 5(a) (b) Design for natural tolerances, Statistical analysis of tolerances. Introductions to reliability and its applications for selections of factor of safety, study of process capability for design. 	
Module 6:	7 Hrs.
Approach to industrial product based on idea generation and innovations to meet the creative process involved in idea marketing, designers, mind-criticism, design process, creation needs of the developing society. Design and development process of industrial products, various steps such as Ergonomics and aesthetic requirements of product design, quality and maintainability consideration in product design, Use of modeling technique, prototype designs, conceptual design	
Module wise Measurable Students Learning Outcomes : Student should be able to	· · ·
 Explain the theory of pressure vessels design. Discuss the theory of gear box design. Demonstrate the approach in system design 	
4. Use Johnson's method of optimum design to design mechanical components.	

- 5. Estmate the tolerances and reliability of mechanical components and systems.
- 6. Design the products as per the needs of society considering aesthetics and ergonomics concept.

	f the Cour	se: P	roduc	t Lifec	ycle]	Mana	ageme	ent, (Cours	e Cod	e :		L	Т	P	Cr
3ME41	-												3	0	0	3
Pre-Re	quisite C	ourse	s:													
Textbo																
	ark John, I		ct Life	ecycle	Mana	agem	ent - 2	21st (Centu	ry Pai	adigm	for F	Product	Realiza	tion,	
1	ringer, 20			F 11	-		P									
	offer J, Pre	scott	M, M	cFadde	en F,	Mod	ern D	ataba	ase M	anage	ment,	Prent	ice Ha	1, 2007.		
Referen		m D a		la ul ra T	Dat	- 1-	Ман		a a set C		~ M.(٦	ם ווידו		2002	
	makrishna siak A, Co							•		•						
	agrab E,															
	velopmen											ouuc	a and	1100058	b Desi	gii and
	Objectiv						10000	, 01			•					
	provide th		owled	ge of d	liffere	ent in	form	ation	syste	ms us	ed in a	n eng	gineerir	ng enterp	orises	
																ifecycle
2. To impart the recent knowledge in the broader field of product development and various lifecycle aspects involved																
	provide e	-	ire to a	applica	ation	of so	ftwar	e too	ls for	addre	ssing p	oroble	ems in	product	design	and
	velopment															
	Learning	-				41			•11.1		4			<u> </u>		T
CO	Upon co	mple	tion o	of this of	cours	se the	e stud	lent	will b	e able	e to	B	loom´s	Cognitiv	ve	
												le	vel D	Descripto	r	
														_		
CO1	Explain	vari	ous	phases	in	pro	oduct	life	cyc	ele a	nd its	S .	II U	Indersta	nding	
	consider	ations	s in pro	oduct o	level	opme	ent						11			
1				nd tool	molo	niac	and it		1	ntatio	12		п	Indersta		
CO2	Discuss 1	PLM	backe	na teci		gies	anu n	s im	pleme	Intatio	n		II U	nueistai	naing	
CO2 CO3	Discuss I Apply D					<u> </u>			-	Inatio	Π			pplying	-	
		FX pı	rincipl	les for	produ	uct de	evelop	omen	it			I	II A			-
CO3	Apply D	FX pı	rincipl	les for	produ	uct de	evelop	omen	it			I	II A	pplying		-
CO3	Apply D	FX pı	rincipl	les for	produ	uct de	evelop	omen	it			I	II A	pplying		
CO3 CO4	Apply D Compare	FX pr func	rincipl	les for	produ	uct de	evelop	omen	it			I	II A	pplying		
CO3 CO4	Apply D	FX pr func g:	rincipl tional	les for ities of	produ Vario	uct de ous c	evelop ommo	omen ercia	it I PLN	1 syste	ems	1 1	III A V A	Applying Analyzing	g	
CO3 CO4	Apply D Compare Mappin	FX pr func g: 1	rincipl tional	les for	produ	uct de ous c	evelop	omen	I PLM		ems 11	12	III A V A PSO1	pplying	g	
CO3 CO4	Apply D Compare Mappin CO1	FX pr e func g: 1 M	rincipl tional	les for ities of 3 4	produ Vario	uct de ous c	evelop ommo	omen ercia	it I PLN	1 syste	ems 11	1 1	III A V A PSO1 H	Applying Analyzing	g	
CO3 CO4	Apply D Compare Mappin CO1 CO2	FX pr func g: 1	tional	 a for ities of b for ities of b for ities of c for ities of d for ities of <	produ E vario	uct de ous c	evelop ommo	omen ercia	I PLM	1 syste	ems 11	12	III A V A PSO1	pplying analyzing PSO2	g	
CO3 CO4	Apply D Compare Mappin CO1	FX pr e func g: 1 M	tional	les for ities of 3 4	produ Vario	uct de ous c	evelop ommo	omen ercia	I PLM	1 syste	ems 11	12	III A V A PSO1 H	Applying Analyzing	g	

Assessment:

Course Contents:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End								
Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.								
Assessment	Marks							
ISE 1	10							

ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Module 1 Introduction	6 Hrs.
Globalization and international business, Global competitiveness and manufacturing	
excellence, Operating environment, Business challenges, Emergence of information Age,	
Data and information management, Role of information systems.	
Module 2 PLM evolution	7 Hrs.
Pre-PLM era, Sequential engineering, Concurrent engineering, Integrated product	
process development (IPPD), DFX, Design for manufacturability, Design for assembly,	
Design for disassembly, Design for environment	
Module 3Product Lifecycle Management	6 Hrs.
PLM Need, PLM overview, PLM system architecture, PLM functionalities, PLM	
systems and its benchmarking	
Module 4 Pillars of PLM systems	7 Hrs.
Computer aided design (CAD), Product data management (PDM), Enterprise resource	
planning (ERP), Supply chain management (SCM), Customer relationship management	
(CRM), Knowledge management (KM)	
Module 5 PLM and Database Management System	6 Hrs.
Database modeling (relational, object-oriented models, web models), Database systems	
(i.e., databases and rule management), Data warehousing, Databases and WWW, XML	
databases, Information retrieval, Distributed databases, Heterogeneous databases and	
data integration	
Module 6 PLM implementation	7 Hrs.
PLM implementation, Challenges, Data Interoperability, Business Process	
Reengineering, PLM implementation case studies.	
Module wise Measurable Students Learning Outcomes :	
Student should be able to:	
1. Summarize current trends in global product development and related practices	
2. Illustrate the principles of DFX for product development	
3. Explain various functionalities in PLM systems	
4 Compare various commercial PLM systems	

- 4. Compare various commercial PLM systems
- 5. Associate the role of database management systems in PLM
- 6. Describe various issues related to PLM implementation

Title of the Course: Precision Engineering, Course Code : 3ME419
--

L	Т	Р	Cr
3	0	0	3

Pre-Requisite Courses:

Textbooks:

1. Murty, R. L, "*Precision Engineering in Manufacturing*", New Age International Publishers,ed.- 1st ,2009.

- 2. Venkatesh, V.C. and Izman, S. "Precision Engineering", (TMH),2007.
- 3. G. Henzold, "Geometric Dimensioning and Tolerancing for Design, Manufacturing and Inspection", Butterworth Heinemann Elsevier Ltd., 2006.

References:

1. Dornfeld, David and Lee, Dae-Eun, - "Precision Manufacturing", (Springer Science + Business Media, LLC), ISBN: 978-0-387-32467-8, 2008

2. Meadows, James D., "Geometric Dimensioning and Tolerancing", Marcel Dekker Inc., 1995.

3. Drake, Paul J. Jr., "Dimensioning and Tolerancing Handbook", (McGraw Hill), ISBN:0-07-018131-4, 1999

Course Objectives:

- 1. To develop an interest in precision engineering and precision components.
- 2. To make the students familiar with fundamentals of precision machining.
- 3. To acquire the knowledge of recent developments in precision machining.
- 4. To gain knowledge of selection of optimum process parameters in precision engineering.
- 5. To make aware of measurement techniques used in precision components.

Course Learning Outcomes:

CO	After the completion of the course the student should be	Bloom's Cognitive			
	able to	level	Descriptor		
CO1	Summarize different machining processes for precision components	II	Understanding		
CO2	Interpret appropriate geometrical features and tolerances for precision components	III	Applying		
CO3	Identify various process parameters for defect free precision components	IV	Analyzing		

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	Μ											Μ	Н	М
CO2			Μ	Μ								Η	М	
CO3		Μ	L									Η		L

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30

ISE 2	10	
ISE 2 ESE	10 50	
ISE 1 and ISE 2 are based on assignment, oral, seminar,	= -	cussion [On
assessment tool per ISE. The assessment tool used for IS		cussion.[On
MSE: Assessment is based on 50% of course content (N		
ESE: Assessment is based on 20% of course content (it)		nally last th
modules) covered after MSE.	vo oo vo werginage for eourse coment (nor	inally fast th
Course Contents:		
Module 1: Precision Engineering		6 Hrs.
Definition, difference in precision and accuracy,	need for high precision. Classes of	0 111 50
achievable machining accuracy – normal, precisio		
machining; Concept of accuracy – part accuracy, er		
errors in relative location of surfaces, machin		
Applications of Precision Manufacturing: Semicon		
steps, Micro electro mechanical devices –		
manufacturing.	applications, ratare of precision	
Module 2: Geometrical Dimensioning and Toler	ancing	7 Hrs.
Geometrical tolerances, tolerance zones – form,		/ 1113.
zones, Datum and precedence – primary, secondar		
zones, form; Combination of dimensional coo		
tolerancing, Defining substitute elements (best fit e		
Maximum Material Requirements and Minimum		
applications; Accumulation of tolerances (tolerance	-	
Module 3: Machine Tools and Accuracy	stacking)	7 Hrs.
General concept of accuracy of machine tool, spi	ndle rotation accuracy displacement	/ 1115.
accuracy, the philosophy of precision machine desig		
factors affecting workpiece accuracy from the point		
of CNC machines – errors due to input interpolation	•	
Sources and transmission of thermal errors in prec	-	
compensation, environment control of precision n		
and factory enclosures.	lacinitely- machine enclosures, room	
Module 4: Tool Materials for Precision Machini	ng	6 Hrs.
Classes of tool materials and their properties, coater	0	0 111 5.
1 1		
coated carbides, Cermets, Ceramics - hot pressed, S		
ceramics, Diamonds – crystallographic planes, polycrystalline diamonds, diamond coated tools,		
	Cubic boron minudes (CBN), coaled	
CBNs, Tool and work material compatibility		7 11
Module 5: Processing and Accuracy	a on accurracy clamping and acting	7 Hrs.
Dimensional wear of cutting tools and its influence		
errors, errors due to location; Surface roughne	•	
Terminology, influence of machining parameters	•	
lapping and super finishing, Process capability	_	
capability metrics, Cp, Cpk, Methods for improving	accuracy and Surface finish.	7 II
Module 6: Precision Machining Processes		7 Hrs.
Classification of material removal processes in term		
tool- workpiece reaction, influence of machining pa	rameters, work material and tool	

geometry, Diamond turning and milling machines, tool design and alignment, Fixed		
abrasive processes - Basic mechanics of rinding, finish grinding, precision cylindrical,		
internal and surface grinding bondless diamond grinding wheels, jig grinding, electrolytic		
in-process dressing, Ultra-precision grinding, nano-grinding; Loose abrasive processes		
polishing, modes of material removal.		
Module wise Measurable Students Learning Outcomes :		
Students should be able to		
1. Understand the precision engineering, its classification, application, advantages and limit	ations.	
2. Know the importance of geometrical dimensioning and tolerances in precision engineerin	lg.	

3. Describe the role of machine tools and accuracy in precision engineering.

4. Distinguish the tool materials used in precision engineering, CVD and PVD processes.

5. Explain the role of processing in precision engineering, errors in precision engineering and methods for improving surface finish and accuracy.

6. Narrate the precision machining processes their capabilities and applications.

Title of	the Course: Thermal systems Course code: 3ME420	L	Т	Р	Cr
		3	0	0	3
Textbo	oks:	1		1	1
	Wakil, "Power plant Technology", M.M., McGraw Hill, 1st Edit		7		
	. Nag, <i>"Power Plant Engineering"</i> , Tata McGraw Hill, 4 th Editi		1.4. 04	010	
3. Dor	nkundwar, Arora, "Power plant Technology", Dhanpat Rai and C	.o. sixth	edition 2	013	
Refere	ices:				
1. We	sman, J., and Eckert, L., "Modem Power Plant Engineering", Pr	entice H	all, 1 st edi	tion, 199	9
	n W. Li and A. Paul Priddy, "Power Plant System Design", John				
3. Ibra	him Dincer, Marc A. Rosen, " Thermal Energy Storage: S	ystems d	and Appl	ications"	, Wiley
Pub	lication 2nd Edition 2010.				
Course	Objectives :				
1. To i	ntroduce the students about working of thermal systems.				
	amiliarize about failure theories and economics of thermal syster	ns.			
	udge the performance and economics of thermal systems.				
Course	Learning Outcomes:				
60			Bloom's	Cognitive	;
CO	After the completion of the course the student should be able	to	Level	Descript	or
C01	Interpret the working of various thermal systems.		II	-	tanding
CO2	Apply the fundamental laws of thermodynamics to thermal syste	ems.	III	Appl	ying
CO3	Analyze the performance of various thermal systems.		IV	Anal	yzing

CO-PO Mapping :

	1	2	3	4	5	6	7	8	9	10	11	12	PSO-1	PSO-2
CO1	Η	Μ											L	
CO2	Η	Μ	L										L	
CO3	Η	Μ	Η		Μ	L							L	

Assessments :

Teacher Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weights respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50
ISE 1 and ISE 2 are based on assignment/declared test/	quiz/seminar etc.
MSE: Assessment is based on 50% of course content (I	Normally first three modules)

ESE: Assessment is based on 100% course content with 70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module-1 - High Pressure Boilers	Hrs.
Introduction, Advantages of High Pressure Boilers, LaMont Boiler, Benson Boiler, Loeffler Boiler	8
, Supercharged Boilers , Waste Heat Boilers , Corrosion in Boilers and its Prevention , Causes of	
Boiler Tube Failures and Prevention	
Module-2 Fluidized Bed Combustion (Fbc)	Hrs.
Introduction, Principle of FBC, Types of FBC, FBC for low grade fuels, Corrosion of FBC system	6
,Control of FBC system, Starting of Fluid-Bed Firing system. Erosion and Corrosion and its	
prevention in FBC Boilers, Advantages of Fluidized Bed Systems	
prevention in FBC Boners, Advantages of Fluidized Bed Systems	
Module -3 Combined Cycle Technology	Hrs.
Introduction, Arrangement of Combined Cycles, Combined Cycle with Gas Production from coal	5
, Combined cycles using PFBC system. Optimum design of Gas Turbine Unit for Combined cycle	
plant, Advantages of Combined Cycle, Performance of Combined Cycle, Economics of Combined	
Cycle	
Module-4 Cogeneration	Hrs.
Concepts, Types of Co generating Systems, Performance Evaluation of Co generating System	6
Module-5 Waste Heat Recovery System	Hrs.
Introduction, Sources of Waste Heat and their Grading, Thermodynamic Cycles for Waste Heat	7
Recovery. Heat Recovery Forms and Methods, Other Uses of Heat, Heat Pump Systems, Different	
Wastes for Power Generation .	
Module-6 Thermal Storage System	Hrs.
Introduction, need of thermal storage, methods, design and analysis of thermal storage systems.	6
Module wise Measurable Students Learning Outcomes :	
After the completion of the course the student should be able to:	
1. Understand the high pressure boiler and its components.	
2.Distinguish the different FBC.	
3. Apply the laws of thermodynamics to various thermal systems.	
4. Interpret the need of cogeneration and its performance.	
5.Understand the various techniques of waste heat recovery. 6. Understand the significance of thermal storage system.	
T THOPISTAND THE STUMPLICANCE OF INFINIAL STORAGE SVSTEM	

6. Understand the significance of thermal storage system.

Professional Elective (Lab) Courses

itle of th														0	0	2	1
														U	0	2	1
re-Requi	isite Cou	ırses	:														
extbooks	5:																
G. K. G																	
Dr. V. P																	
J. S. F									nd I	Practi	ce Of	f Mee	chani	cal Vit	orations	s", Ne	ew A
Internatio		olishe	ers, S	lecon	d Ed	ition	i, 199	99									
eference																	
Austin C																	
Cyril M											ndboo	k", M	lcGra	w-Hill,	1976		
S. S. Ra	o, "Mec	hanic	al V	ibrat	ions'	', Fo	urth	Editic	on, 20)06							
ourse Ol																	
	be awar		out ca	auses	and	effe	cte o	fthax	-1			honio	al eve	atoma			
<u>э</u> т-	-											manne	ai sy.	stems.			
	demons			hanic	cal vi	brati	ion n	neasur	ing i	nstrui	nents		•				
3. To	analyze	type	s of v	hanic vibra	cal vi tions	brati nan	ion m nely i	neasur un-da	ring i mped	nstrui I, dan	nents iped, f	free a	nd fo		orations		
3. To		type	s of v	hanic vibra	cal vi tions	brati nan	ion m nely i	neasur un-da	ring i mped	nstrui I, dan	nents iped, f	free a	nd fo		orations		
 To To 	analyze determi	type ne th	s of v e trai	hanic vibra nsmi	cal vi tions	brati nan	ion m nely i	neasur un-da	ring i mped	nstrui I, dan	nents iped, f	free a	nd fo		orations		
3. To	analyze determi	type ne th	s of v e trai	hanic vibra nsmi	cal vi tions	brati nan	ion m nely i	neasur un-da	ring i mped	nstrui I, dan	nents iped, f	free a	nd fo		prations	•	
3. To 4. To ourse Le	analyze determin earning	type ne the Outo	s of v e tran	hanic vibra nsmi es:	cal vi tions ssion	brati nam of f	ion m nely i orce	neasur un-da and n	ring in mped notion	nstrui l, dan n due	nents ped, t to vib	free an pration	nd fo	rced vib			
 To To 	analyze determin earning After	type ne the Outc the c	s of v e tran	hanic vibra nsmi es:	cal vi tions ssion	brati nam of f	ion m nely i orce	neasur un-da and n	ring in mped notion	nstrui l, dan n due	nents ped, t to vib	free an pration	nd for n.	rced vib	Cognit	tive	
3. To 4. To ourse Le	analyze determin earning After able to	type ne the Outco the c	s of vertrained the second sec	hanic vibra nsmi es: letio	cal vi tions ssion	brati nam of f	ion m nely t force	neasur un-da and n	ring in mped notion	nstrui l, dam n due	nents aped, f to vib	free an pration	nd for n.	rced vib Bloom's evel	Cognit	ive	ing
3. To 4. To ourse Le	analyze determin earning After able to Demor	type ne the Outco the co nstrat	s of vertrained the second sec	hanic vibra nsmi es: letio	cal vi tions ssion n of once	brati nam of f the o	ion m nely t orce	neasur un-da and n	ring in mped notion	nstrui l, dam n due	nents aped, f to vib	free an pration	nd for n.	rced vib	Cognit	ive	ing
3. To 4. To ourse Le CO CO1	analyze determin earning After able to Demon elemen	type ne the Outco the co nstratents ar	s of vertrained the second sec	hanic vibra nsmi es: letio	cal vi tions ssion on of once	brati nam of f the of pt c ment	ion m nely t force cours	neasur un-da: and n se the	ring in mped notion	nstrui I, dam n due lent s	ments aped, f to vib	free an pration	nd for n. E le	rced vib Bloom's evel II	Cognit Descri Under	ive ptor standi	ing
3. To 4. To ourse Le	analyze determin earning After able to Demon elemen Determ	type ne the Outco the co nstratents are nine	s of vertrained the second sec	hanic vibra nsmi es: letio	cal vi tions ssion on of once	brati nam of f the of pt c ment	ion m nely t force cours	neasur un-da: and n se the	ring in mped notion	nstrui I, dam n due lent s	ments aped, f to vib	free an pration	nd for n. E le	rced vib Bloom's evel	Cognit	ive ptor standi	ng
3. To 4. To ourse Le CO CO1 CO2	analyze determine earning After able to Demon elemen Determ of syst	type ne the Outco the co nstratents ar nine ems	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi	eal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the	ring in mped notion	nstrui I, dam n due lent s causes ding :	ments aped, f to vib hould s and mode	free an oration	nd for n. E le	rced vib Bloom's evel II	Cognit Descri Under Apply	ive ptor standi	ing
3. To 4. To ourse Le CO CO1 CO2 CO3	analyze determin earning After able to Demon elemen Determ of syst Measu	type ne the Outco the co histration nine ems re fo	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi	eal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the	ring in mped notion	nstrui I, dam n due lent s causes ding :	ments aped, f to vib hould s and mode	free an oration	nd for n. E le	rced vib Bloom's evel II III	Cognit Descri Under	ive ptor standi	ing
3. To 4. To ourse Le CO CO1 CO2	analyze determin earning After able to Demon elemen Determ of syst Measu	type ne the Outco the co nstrate nine ems re fo	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi	cal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the corre	ring in mped notion e stud on, c spond ity of	nstrui I, dam n due lent s causes ding	ments ped, f to vib hould s and mode n syste	free an pration	nd for n. E le ic es	Bloom's evel II III IV	Cognit Descri Under Apply Analy	ive ptor standi ing ze	ing
3. To 4. To ourse Le CO CO1 CO2 CO3	analyze determin earning After able to Demon elemer Determ of syst Measu	type ne the Outco the co nstrate nine ems re fo : 1	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi	eal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the	ring in mped notion e stud on, c spond ity of 8	nstrui I, dam n due lent s causes ding :	ments aped, f to vib hould s and mode	free an oration	nd for n. E le	Bloom's evel II III IV PSO1	Cognit Descri Under Apply Analy	ive ptor standi ing ze	ing
3. To 4. To ourse Le CO CO1 CO2 CO3	analyze determine earning After able to Demone elemene Determ of syst Measu [apping CO1	type ne the Outco the co nstrate nine ems re fo	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi und m 3	cal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the corre	ring in mped notion e stud on, c spond ity of	nstrui I, dam n due lent s causes ding	ments ped, f to vib hould s and mode n syste	free an pration be bas shape em 11	nd for n. E le ic es	Bloom's evel II III IV PSO1 H	Cognit Descri Under Apply Analy	ive iptor standi ing ze	ing
3. To 4. To ourse Le CO CO1 CO2 CO3	analyze determin earning After able to Demon elemer Determ of syst Measu	type ne the Outco the co nstrate nine ems re fo : 1	s of vertrained transformed to the second se	hanic vibra nsmi es: letio ne c s mea ral fi	cal vi tions ssion on of once sure reque	brati nam of f the o pt c ment ency	cours of vit and	se the corre	ring in mped notion e stud on, c spond ity of 8	nstrui I, dam n due lent s causes ding	ments ped, f to vib hould s and mode n syste	free an pration	nd for n. E le ic es	Bloom's evel II III IV PSO1	Cognit Descri Under Apply Analy	ive iptor standi ing ze	ing

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 4 Submission at the end of Week 5	25
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 5 to Week 8 Submission at the end of Week 9	25
LA3	Lab activities, attendance, journal	Lab Course Faculty	During Week 10 to Week 14 Submission at the end of Week 14	25
Lab ESE	Lab Performance and related documentation	Lab Course faculty	During Week 15 to Week 18 Submission at the end of Week 18	25

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Any ten experiments/lab sessions from the list given below

- 1. Determination of stiffness of spring from static deflection
- 2. Determination of natural frequency of single degree of freedom spring mass system
- 3. Determination of natural frequency of two degree of freedom spring mass system
- 4. Determination of natural frequency of double pendulum system
- 5. Measurement of torsional vibrations
- 6. Plot response curve of system under forced vibration
- 7. Determining damping coefficient of a viscous damper
- 8. Determine damping effect on a system under forced vibration with viscous damping
- 9. Determine optimal frequency for dynamic vibration absorber
- 10. Determine critical speed of shaft
- 11. Measure various parameters of vibrations
- 12. Diagnose fault in a system based on FFT
- 13. Determine mode shapes of a thin plate
- 14. Study of numerical methods of natural frequency determination

Title of the Course: Computational Fluid Dynamics Lab, Course Code:				
3ME453	L	Т	Р	Cr
	3	0	0	3

Pre-Requisite Courses: The subject requires the student should know basic of fluid mechanics, partial differential equations, numerical methods, heat transfer.

Textbooks:

- 1. Anderson, J.D., "Introduction to Computational fluid Dynamics", McGrawHill Publication 2008
- 2. Muralidhar K. and Sundararajan T., "*Computational Fluid Flow and Heat Transfer*", Narosa Publishing House, 2nd edition, New Delhi 2011.
- 3. Hoffmann K.A, "Computational fluid Dynamics" Publication of engineering education system, 2000

References:

- 1. Suhas V. Patankar"Numerical heat transfer fluid flow", Hemisphere Publishing Corporation, 1980.
- 2. H.K.Versteeg and W Malalasekera, "Introduction to Computational Fluid Dynamics" Longman group, 1998.
- 3. Fletcher, C.A.J., "Computational Techniques for Fluid Dynamics 1," Fundamental and General Techniques, Springer-Verlag, 1987.

Course Objectives:

- 1. To introduce students about the prediction methods and methodology of CFD simulation.
- 2. To prepare the students to use tools for geometry creation, meshing, boundary conditions and numerical techniques.
- 3. To inculcate the students for interpretation of CFD results.
- 4. To develop skills in the analysis of fluid systems for lifelong learning.

CO	After the completion of the course the student should be able to	Bloom'	s Cognitive
		level	Descriptor
CO1	Interpret the different prediction methods and explain the Methodology of CFD simulation.	II	Understanding
CO2	Select the grids, boundary conditions, solver / numerical technique, post processing techniques etc.	III	Applying
CO3	Analyze the fluid problems using CFD technique.	IV	Analyzing
CO4	Measure the performance parameters mechanical systems through CFD simulation.	V	Evaluate

lapping	•													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1			Μ										Н	
CO2			Н		L							Μ	М	М
CO3		Η									L			L
CO4				Η				Μ						

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation		Submission at the end of Week 18	23

Week 1 indicates starting week of Semester.

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents: (Any ten out of the following list)

- 1. Methodology to simulate the problem with CFD.
- 2. Different types of grids and grid generation techniques.
- 3. Applying FDM and FVM solve the simple problem in thermal engineering.
- 4. Simulation of flow through pipes: Parallel flow, Series Flow etc.
- 5. Simulation of flow through orifice.
- 6. Simulation of flow through venture.
- 7. Flow around Cylinder/Sphere/ Aerofoil.
- 8. Simulation of flow through duct.
- 9. Simulation of natural convection heat transfer.
- 10. Simulation of forced convection heat transfer problem.
- 11. Simulation radiation heat transfer problem.
- 12. Simulation of flow and heat transfer through porous media.
- 13. Simulation of Parallel flow heat exchanger.
- 14. Simulation of Counter flow heat exchanger.
- 15. Simulation of phase change phenomenon.
- 16. Simulation of flow in Turbomachines.
- 17. Simulation of unsteady state heat transfer problem.

Title of the Course: Advanced Manufacturing Techniques Lab, Course				
Code: 3ME454	L	Т	Р	Cr
	0	0	2	1

Pre-Requisite Courses:

Textbooks:

B.L. Juneja, *"Fundamental of Metal Forming Processes"*, New Age International Publisheres, 2003
 AmitabhaGhosh, A.K. Mallik, *"Manufacturing Science"*, EWP Publisher, 1999

3. Surendra Kumar, "Principal of Metal Working", PH learning Pvt.Ltd., 2008

References:

1. Johnson W. & Mellor P.B., D. VanNostrand, "Plasticity for Mechanical Engineers", 1992

2.Black and Kosher "Materials and Processes in Manufacturing", PHI Publisher, 2001

3. Pearson C., "Extrusions of Metals",., Willy Eastern Ltd., New York.2007

4.E.CLarke "Rolling of Strips, Sheet & Plate", , Chapman and Hall, 1957

Course Objectives :

- 1. To make the students familiar practical knowledge of forming processes.
- 2. To demonstrate the experiment on the theory of plasticity using UTM.
- 3. To prepare the students for calculations of the no. of passes / stages and forces required in forming processes.
- 4. To demonstrate carry out experimentson the non –conventional machining processes.

Course	Lear	ning	Outcomes:	
		-		

CO	After the completion of the course the student should be	Bloom's	s Cognitive
	able to	level	Descriptor
CO1	Demonstrate the practices for advanced machining processes and forming operations	III	Applying
CO2	Estimate press capacity and forces and die-design for forging, extrusion etc.	IV	Analyzing
CO3	Calculate the number of passes required in rolling and wire drawing operation to achieve the required job sizes.	V	Evaluating
CO-PC	Mapping :		
		12 PS	SO1 PSO2

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1	Η					L		Μ					Н	
CO2		Μ		L								L	Μ	Μ
CO3		Η		Μ								Μ		L

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE. IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks		
LA1	Lab activities,	Lab Course Faculty	b Course Foundate During Week 1 to Week 4			
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	25		
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25		
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25		
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25		

	attendance, journal		Submission at the end of Week 14	
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25
Lau ESE	related documentation	Lab Course faculty	Submission at the end of Week 18	23

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Any six experiments from 1 to 7 following list, Industrial visits are compulsory:

- 1. Study and demonstration and tensile on Universal Testing Machine.
- 2. Exercise on Rolling: Number of passes and force calculation for various sections like I section, round, square bar etc.
- 3. Exercise on Forging: Number of passes, force calculation etc. for various components such as connecting rod, cam shaft etc.
- 4. Exercise on Extrusion process.
- 5. Designing layout for multi pass wire drawing.
- 6. Exercise on Press working: press capacity calculation, force calculation.
- 7. Demonstration and hands on experiments on EDM machine.
- 8. Industrial visit to rolling mill, wire drawing and extrusion industry.
- 9. Industrial visit for studying the sheet metal forming processes.
- 10. Industrial visit for studying conventional and the non-conventional
- machining/forming processes in Industrial estates.

Title of the Course: Finite Element Method Lab, Course Code: 3ME455	L	Т	Р	Cr						
	0	0	2	1						
Pre-Requisite Courses:										
Textbooks: 1. S. S. Rao, " <i>Finite Element Method in Engineering</i> ", Elsevier Publication, 4 th Edition, 2004 2. P. Seshu, " <i>Textbook of Finite Element Analysis</i> ", 1 st Edition, PHI publication, 2008.										

3. M. J Fagan, "*Finite Element Analysis- Theory and Practice*"; Longman Scientific & Technical, 1st Edition, 1992

References:

1. J. N. Reddy, "An Introduction to Finite Element Method", Tata McGraw Hill publication co. 2nd Edition, 1993

2. Logan D. L. "A first course in Finite Element Method", Cengage learning, 4th Edition, 2008.

3. O. C, Zienkiewicz "*The Finite Element Method – Basic Concepts and Linear Applications*", Tata McGraw Hill publication co., 4th Edition.

Course Objectives :

1. To explain the finite element method, its fundamentals and general steps.

2. To describe the underlying theory, assumptions and modeling issues in FEM.

3. To provide hands on experience using finite element software to model, analyze and design systems of mechanical engineering.

4. To provide hands on experience using finite element software to simulate structural, fluid and thermal problems.

Course Learning Outcomes:

CO	After the completion of the course the student should be able to	Bloom's	s Cognitive
		level	Descriptor
CO1	Execute the structural, thermal and dynamic analysis using FEM software.	III	Applying
CO2	Categorize the mathematical methods and finite element procedures for engineering applications.	IV	Analyzing
CO3	Select the procedures for structural, thermal and fluid analysis of 1D, 2D and 3D problems.	V	Evaluating

CO-PO Mapping :

<u></u>	8 '													
	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1		Μ		Η				Η					Н	
CO2		Μ		Μ				Μ					Μ	Μ
CO3		Μ	Μ									L		L

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25

		attendance, journal		Submission at the end of Week 5				
ĺ	LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8	25			
	LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	23			
	LA3	Lab activities,	Lab activities, Lab Course Faculty During Week 10 to Week 14					
	LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	25			
ĺ	Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25			
	related documentation		Lab Course faculty	Submission at the end of Week 18	23			

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

Term work shall consist of minimum ten based on the topics given below. The students are expected to solve the problems by using any FEM software.

- 1. Analysis of stepped bar
- 2. Thermal analysis of composite wall
- 3. Torsional analysis of shaft
- 4. Analysis of truss
- 5. Problems on shape functions
- 6. Structural 2D analysis
- 7. Structural 3D analysis
- 8. Modal Analysis
- 9. Thermal 2D analysis
- 10. Thermal 3D analysis
- 11. Geometrical nonlinear analysis
- 12. Contact nonlinear analysis
- 13. Material nonlinear analysis
- 14. Industrial Visit to Software Company.

Title of the Co	ourse:	C	ryog	genic	s La	b, C	Cours	e Coc	le: 31	ME4	56			L 0		T 0	F 2		Cr 1
Pre-Requisite	Cour	ses	5:											0				-	-
Textbooks: 1. Barron, 2. Thoma		-	~	-								ring",	Inc.	New	Yor	k, 199	€7.		
References: 1. Marshall Si 2. Klaus D. 7 Corporation,19 Course Objec (1) To demons	Fimm 989. tives :	erh	aus,	Tho	omas	M.	Flyr	ın, "(Cryog	geni	c Proe	cess I	Engin	eerin	g",				
(2) To describe(3) To preparetemperature ap(3) To Expose) To demonstrate the importance of Cryogenics through laboratory experimentation) To describe the working of Cryogenic systems through Hands-On) To prepare the students to use the tools, techniques and skills to fulfill the needs related to low mperature applications) To Expose the students for real-life cases in Cryogenics. 																		
CO After	the co	Outcomes:completion of the course the student should beBloom's Cognitive																	
able to	0	level Descriptor																	
CO1 Handl			<u> </u>										II			Apply			
CO2 Inspec							<u> </u>						I			Analyz	<u> </u>		
CO3 Justify charac						eryo	genic	s for	mach	11111	ig, mai	terial	V	/		Evalu	ate		
СО-РО Марр	ing :										-								
		1	2	3	4	5	6	7	8	9	10	11	12	PS	01	PSC	02		
CC				Μ			H			Η				-			-		
CO		H	Μ	N			Η		Η				11	H		M			
CO	03	H		M									H	H	1	L			
Lab Assessme There are four IMP: Lab ESE	comp							LA1,	LA2	, LA	A3 and	Lab E	SE.						
Assessment		I	Base	d on			Со	nduct	ed by		Cond	luctior	and l	Marks	s Suł	omissi	on	Mar	ks
LA1				ivitie e, jou	-		Lab C	Course	Facu	lty	Durin Subm	g Wee				eek 5		25	5
LA2				ivitie e, jou	-		Lab Course Facu			lty		g Wee				eek 9		25	5
LA3				ivitie e, jou			Lab Course Faculty				During Week 10 to Week 14 Submission at the end of Week 14							25	5
Lab ESE				manc umen			Lab Course faculty During Week 15 Submission at the						15 to Week 18 the end of Week 18			25	5		

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

- 1. Measurement of various mechanical properties at Cryogenic Temperature
- 2. Study / Trial on Cryo-cooler
- 3. Study of Cryogenic Insulators
- 4. Measurement of Thermal Conductivity of Cryogenic Insulators
- 5. Trial on Cascade Tutor
- 6. Demonstration of Cryogenic Storage systems
- 7. Demonstration of Liquifaction Systems
- 8. Study of Cryogenic
- 9. Study of Cryogenic Transportation System
- 10. Visit to Industry / Cryogenic Research Lab

Pre-Requisite Courses:

Textbooks:

- 1. Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing,", Prentice Hall International, 2004
- 2. Groover M.P., Nagel R.N., Ordey N.G., "Industrial Robotics- Technology, Programming and Applications", McGraw Hill International, 1999
- 3. R.K. Mittal, I.J. Nagrath, "Robotics and Control,", Tata McGraw Hill, 1997
- 4. Pradeep Chaturvedi, N.K. Tewari, P.V. Rao, G.S. Yadav, "Modern Trends in Manufacturing Technology,", IE India, New Delhi, 2002

References:

- 1. Richard M. Murrai, Zexiang Li, S Shankar Sasrty, "Robotic Manipulation," CRC Press, 2001
- 2. S.R. Deb, "Robotics Technology and Flexible Automation," Tata McGraw Hill, 2000
- 3. Urich Rembold, "Computer Integrated Manufacturing Technology and System," 1995

Course Objectives :

1. To deliver the knowledge of advance concepts and implementation of Industrial Automation and Robot programming.

2.To provide the basic understanding of Hydraulic and Pneumatic systems, SCADA and DCS systems and Robotics systems use in modern industries.

3. To acquire knowledge of various power systems in industries, Industrial distribution systems, buses, protocols, Electrical controls of motors etc.

Course	Learning	Outo	come	es:													
CO	After the	com	pleti	on o	f the	cou	rse tl	he stu	dent	: shou	ld be		Bloc	om's (Cogn	itive	
	able to												leve		Desc	riptor	
CO1		emonstrate how CIM knowledge is useful in engineering and III Applying onsumer products in day-to-day life.															
CO2		stimate continuous-time control using software for the IV Analyzing hanipulation, transmission, and recording of data.															
CO3	Decide su embedded					d sei	isors	and	integ	rate tl	hem w	vith	V		Ev	aluating	5
CO4	Ũ	embedded control systems. Image: Control systems of the systems o															
CO-PC) Mapping	:															
		1	2	3	4	5	6	7	8	9	10	11	12	PSC)1	PSO2	
		1					1										1

	-	-	J	-	•	U	'	U		10	.	14	1001	IDUE
CO1						Μ						Μ	Н	
CO2		Μ											М	М
CO3				Η								L		L
CO4			Η						Н					

Lab Assessment:

There are four components of lab assessment, LA1, LA2, LA3 and Lab ESE.

IMP: Lab ESE is a separate head of passing.

Assessment	Based on	Conducted by	Conduction and Marks Submission	Marks			
LA1	Lab activities,	Lab Course Faculty	During Week 1 to Week 4	25			
LAI	attendance, journal	Lab Course Faculty	Submission at the end of Week 5	23			
LA2	Lab activities,	Lab Course Faculty	During Week 5 to Week 8				
LAZ	attendance, journal	Lab Course Faculty	Submission at the end of Week 9	25			
LA3	Lab activities,	Lab Course Faculty	During Week 10 to Week 14	25			
LAS	attendance, journal	Lab Course Faculty	Submission at the end of Week 14	23			
Lab ESE	Lab Performance and	Lab Course faculty	During Week 15 to Week 18	25			
Lauese	related documentation		Submission at the end of Week 18	23			

Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Course Contents:

1. Various features of Gripper system in Robot

- 2. Various Robot programming parameters
- 3. Robot programme for simple pick and place
- 4. Robot programming for complex pick and place
- 5. Robot programming for simple palletization
- 6. Robot programming for complex palletization
- 7. Robot programming for comparison of two or more jobs
- 8. Study, designing system and demonstration of robot anatomy
- 9. Study, designing system and demonstration of various drive systems used in robotics
- 10. Study, designing system and demonstration of various sensors used in robot

11. Study, designing system and demonstration of various mechanisms, ball screws etc. used in robot

Open Electives Courses

itle of	the Cour	ile E	ngin	eerii	ıg, C	ourse	e Cod	e:10	E429	L	Т	Р											
														3	0	0							
re-Re	quisite Co	ourse	es:											•	·								
ſextbo	oks:																						
	Kripal Sir 2007	ıgh,	Auto	mob	ile E	Engin	eerir	ıg Va	ol II,	Stand	dard 1	Publis	hers	Distrib	utors, '	Tenth E							
2.	P S Gill, A	utor	nobil	e En	gine	ering	II, S	5 K K	ataria	a and	Sons,	Secon	nd Ed	lition, 2	012								
3.	R K Rajpt	ıt, Aı	utom	obile	Eng	ineer	ring,	Laxn	ni Pu	blicat	ions, I	First E	Editio	n, 2007	1								
Refere																th							
	Newton, S 1989	Steed	ls and	d Ga	rrett	, The	e Mo	tor V	ehicl	e, Bu	tterwo	orths 1	Interr	national	Editio	on, 11^{m}							
		rouse and Anglin, Automotive Mechanics, McGrawhill Publication, Tenth Edition, 2007													2007								
	Objective																						
	To make students familiar with various basic systems of a modern automobile.																						
	To introduce the mathematical treatments required for vehicle performance and for													d for s									
	important systems such as steering system and brake system.																						
	To make students aware about latest trends in transportation towards a safe, pollution free a																						
	automatic vehicle. To empower students to face the real life automotive usage with greater confidence.																						
					face	the	real l	ife au	itomo	otive u	usage	with g	greate	er confi	dence.								
	Learning	/											T										
CO	After the	com	pletio	on of	the c	ourse	e the	stude	ent sh	ould b	e able	e to	Bloc	om's Co	gnitive								
													leve	el D	escript	or							
CO1	Compreh	end	aboi	it va	ariou	s au	tom	otive	syste	ems a	and r	ecent	I	ΙŪ	Inderst	anding							
	trends in								•					-									
	assembly				U	,	1	L	,														
CO2	Relate co		ots of	vehi	icle d	lynar	nics	with	daily	expe	rience	es.	Ι	II	Appl	ying							
CO3	Analyze	-											Г	V	Analy								
	vehicle ir					-		-	- 1						5	U							
CO4	Compare								eir co	nstruc	ction,		V	V	Evalu	ating							
	working										,					C							
CO-PC	Mapping		-										•										
		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PS	502							
	CO1		Μ	L								L		Н									
	CO2	Η	Н		L	İ		1		1	1			Μ]	М							
	CO3		Н		Μ					1	1	1	L			L							
	CO4	1	Μ		L	L																	
		1		1	<u> </u>	<u> </u>	1	1	1	1	1	1	1	L	<u> </u>	I							
Assessi	nent:																						
	mponents	of Ir	n Sen	neste	r Eva	aluat	ion (ISE).	One	Mid S	Semes	ster Ex	kamir	nation ()	MSE) a	and one							
	er Examina														, -								
			Assess			, .,	, 20				00	P		Marks									
			TOT	7 1										10		IVIALKS							

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1 Introduction, classification and Automotive power plants	6 Hrs.
Introduction, Broad classification of Automobiles. Major components and their	
functions. Types of vehicle layouts, Types of bodies.	
Requirements of automotive power plants, Comparison and suitability considerations.	
Electric and Hybrid vehicles- Layout, advantages and limitations.	
Module 2 Vehicle Performance	7 Hrs.
Resistance to vehicle motion, Air, Rolling and Gradient resistance, Acceleration,	
Gradeability and draw bar pull, Traction and Tractive effort, Distribution of weight,	
Power required for vehicle propulsion, Selection of gear ratio, Rear axle ratio.	
Module 3 Transmission System	7 Hrs.
Automobile clutch requirements, Types & functions, Single plate, Multi plate,	
Centrifugal and Fluid clutches.	
Requirements of gear box, Types of gearboxes, construction and Working	
Principle of operation of automatic transmission, Torque converter, Epicyclic gear train,	
Construction and working of Propeller shaft, Universal joint, Final drive, Differential,	
Rear axles.	
Module 4 Suspension and Steering System	7 Hrs.
Suspension requirements, Sprung and Un sprung mass, Types of automotive suspension	
systems. Conventional and Independent, Shock absorber, Types of springs, Hotch- kiss	
and Torque tube drive, Reaction members-Radius rods, Stabilizer bar, Air suspension	
system.	
Function of steering, Steering system layout, Automotive steering mechanism, Types of	
steering gear boxes, Condition for true rolling, Steering geometry-Camber, Caster, King	
pin inclination, Toe-in and Toe-out, Wheel alignment, Slip angle, Under steer & over	
steer conditions, Introduction of power steering,	
Module 5 Braking and Electrical System	7 Hrs.
Function of automotive brake system, Types of braking mechanism, internal expanding	
& Disc brake, Mechanical, Hydraulic & Air brake system, Servo and power brakes,	
Calculation of braking force required, stopping distance and dynamic weight transfer	
Automotive batteries, Automotive lighting system, Starting system, Charging system,	
Voltage and current regulator, Electric horn, Dash board gauges, Wiper & side indicator	
circuit, Engine electronic control modules, Safety devices.	
Module 6 Recent trends in Automotive Development	6 Hrs.
NVH and crashworthiness of vehicles, Emission norms and control, automotive	
electronics, Automotive manufacturing and assembly, material and vendor management,	
Testing and certification of vehicles	
Module wise Measurable Students Learning Outcomes :	
Students should be able to	
1. To select proper engine for given vehicular application	
2. To analyze vehicle performance	

- 3. To discuss various types of transmission systems
- To relate concepts of vehicle dynamics with daily experiences
 To calculate braking performance of the vehicle in different conditions
- 6. To comprehend recent trends in automobile development

10E43	f the Course: Energy Modeling and Management, Course Code:	L	,	Т	Р	Cr
1021	•	3		0	0	3
Pre-R	equisite Courses:					
Textb	ooks:					
1.	Ari Rabl, "Active solar collectors and their applications", Oxford 1985.	univers	ity pr	ess, Fii	st edi	tion,
2.	Bureau of Energy Efficiency "General aspects of energy manage	ment" N	linist	ry of po	ower g	govt of
2	India, 2007		tura E	ingt a di	tion N	lan
э.	J K Nayak "Hand book on Energy conscious buildings", Solar energy 2006	ergy cen	ue, г	irst eur	uon, r	viay
Refere	ences:					
	Solar Energy by S P Sukahtme, Mcgraw hill education , third edit					
	John Twiddle, Renewable Energy reources, Taylor and Francis, S	econd e	lition	2005.		
3.	W F Stocker "Design of thermal system" McGraw Hill, 1981					
	e Objectives :					
1. To c	lescribe performance assessment in various devices.					
2. To e	explain different types of co-generation systems.					
3. To t	each principal components and types of industrial heat recovery sy	stems.				
4. To e	explain parameters to check performance of solar and wind energy	systems				
5. To 1	arrate energy conservation opportunities in buildings and model th	e energ	y syste	ems.		
	e Learning Outcomes:					-
CO	After the completion of the course the student should be	Bloom	's Cog	gnitive		
	able to	level	De	scripto	r	
CO1	Recognize the energy conservation opportunities in co-	Ι	Re	membe	er	
	generation and waste heat management	1				
CO2	Distinguish the heat and comfort conditions in various	II	Un	derstar	nd	
	structures					

CO-PO Mapping : Civil

CO3 Estimate solar and wind energy available

	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
CO1					Μ				L				Н	
CO2							L		L				Μ	Μ
CO3					L		L		L					L

Analyzing

IV

Tlaatmart																
Electronic		1	2	2	Α	_	(7	0	9	10	11	10	DCO1	DCO2	
	<u>CO1</u>	1	2	3	4	5	6 M	/	8	<u>у</u>	10 T	11	12	PSO1	PSO2	
	CO1				T		M	<u> </u>		<u> </u>	L			H		
	CO2				L	1	L				L			Μ	M	
	CO3				L		L				L				L	
Electrical				1	1			1	1	1	1		1			
		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
	CO1								L		L			Н		
	CO2				L						L			Μ	Μ	
	CO3				1				L		L				L	
	005				1				L		L				L	
Computer	r Scienc	ß														
computer		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
	C01	1	4	3	L	L	U	/	0	•	10	11	14	H	1502	
	CO1 CO2				L	L								<u>н</u> М	Μ	
						L								IVI		
	CO3				L										L	
If ow	· · · · ·															
Informati	on Tech	1	0.	2	4	_		-	0	0	10	11	10	DCO1	DCOO	
	001	1	2	3	4 T	5	6	7	8 T	9	10	11	12	PSO1	PSO2	
	CO1				L				L					Н		
					-											
	CO2				L				T					Μ	M	
	CO2 CO3 nt:				L				L						L	
Гwo comp	CO2 CO3 nt:	tion	(ESF	E) ha	L Eva		```		One N				ctive	ation (MS ly.	L	ne End
Two comp	CO2 CO3 nt:	tion		E) ha ment	L Eva		```		One N				ctive	ation (MS	L	ne End
Two comp	CO2 CO3 nt:	tion	(ESE ssessi	E) ha ment 1	L Eva		```		One N				ctive	ation (MS ly. Iarks	L	ne End
Two comp	CO2 CO3 nt:	tion	(ESE ssessi ISE	E) ha ment 1 E	L Eva		```		One N				ctive	ation (MS ly. Iarks 10	L	ne End
Two comp Semester I	CO2 CO3 nt: ponents o Examina	tion As	(ESE ssessi ISE MS ISE ESI	E) ha ment 1 E 2 E	L Eva ving	20%	, 309	% and	Dne N 50%	weig	tage	respe	ctive N	ation (MS ly. <u>farks</u> 10 30 10 50	L SE) and or	
Two comp Semester I	CO2 CO3 nt: ponents o Examina	tion As e base	(ESE ssessi ISE MSI ISE ESI ed on	E) ha ment 1 E 2 E a assig	L Eva ving	20%	, 309	6 and	Dne N 50%	weig	ghtage	respe	ctive M	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou	L SE) and or	
Fwo comp Semester I ISE 1 and assessmen	CO2 CO3 nt: ponents c Examina ISE 2 are at tool per	tion As e base	(ESE ssessi ISE MS ISE ESI ed on . The	E) ha ment 1 E 2 E assig	L Eva ving	20%	, 309	6 and minar d for I	Dne N 50%	weig (surpr shall 1	ise/dec	respe clared/ used f	ctive N quiz) or ISI	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou	L SE) and or	
Two comp Semester I ISE 1 and assessmen MSE: Ass	CO2 CO3 nt: ponents o Examina ISE 2 are at tool per sessment	tion As e base r ISE is bas	(ESE ssessi ISE MS ISE ESI ed on . The sed o	E) ha ment 1 E 2 E asses n 50%	L Eva ving gnme ssmer % of c	nt, or nt too	, 309 ral, se l used	6 and minar d for I tent (N	Dne N 50%	(surpr shall r ally fir	ise/dec not be	respe clared/ used f	ctive M (quiz) or ISI ules)	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou 5 2]	L SE) and or	on.[One
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass	CO2 CO3 nt: ponents of Examina ISE 2 are at tool per sessment sessment	tion As e base r ISE is bas	(ESE ssessi ISE MS ISE ESE ed on . The sed or	E) ha ment E 2 E assig asses n 50% n 100	L Eva ving gnme ssmer % of c	nt, or nt too	, 309 ral, se l used	6 and minar d for I tent (N	Dne N 50%	(surpr shall r ally fir	ise/dec not be	respe clared/ used f	ctive M (quiz) or ISI ules)	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou 5 2]	L SE) and or	on.[One
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules)	CO2 CO3 nt: ponents of Examina ISE 2 ard nt tool per sessment covered a	tion As base r ISE is bas is bas after 1	(ESE ssessi ISE MS ISE ESE ed on . The sed or	E) ha ment E 2 E assig asses n 50% n 100	L Eva ving gnme ssmer % of c	nt, or nt too	, 309 ral, se l used	6 and minar d for I tent (N	Dne N 50%	(surpr shall r ally fir	ise/dec not be	respe clared/ used f	ctive M (quiz) or ISI ules)	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou 5 2]	L SE) and or	on.[One
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) o Course Co	CO2 CO3 nt: ponents of Examina ISE 2 are at tool per sessment covered a ontents:	tion As e base r ISE is bas is bas after 1	(ESE ssessi ISE ISE ESI ed on . The sed of sed of MSE	E) ha ment E 2 E asses n 50% n 100	L Eva ving gnme ssmer % of c	nt, or nt too course	, 309 ral, se l usec e conte	76 and minar d for I tent (N nt wit	Dne N 50% , test SE 1 Norma h70-8	(surpr shall 1 ally fin 30% w	ise/dec not be rst thre reighta	clared/ used for ge for	ctive M quiz) or ISI ules) cours	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou 5 2]	L SE) and or	on.[One last thre
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) o Course Co Module 1	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor	tion As e base r ISE is bas is bas after l rma	(ESE ssessi ISE MS ISE ESE ed on The sed of sed of MSE	E) ha ment 1 E 2 asses n 50% n 100	L Eva ving gnme ssmer % of c 9% co	20% nt, or nt too course ourse nt of	, 309 ral, se il used conte e conte	6 and minar d for I tent (N nt wit	Dne N 50% , test SE 1 Norma h70-8	(surpr (surpr shall r ally fin 30% w	ise/dec not be rest thre reighta	respe clared/ used f e mod ge for //stem	quiz) or ISI ules) cours s:	ation (MS ly. farks 10 30 10 50 , and grou E 2] se content	L SE) and or op discussion (normally	on.[One
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) o Course Co Module 1 Conserva	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor	tion As e base r ISE is bas is bas after 1 rma energ	(ESE ssessi ISE MS ISE ESE ed on The sed of sed of MSE.	E) ha ment 1 E 2 E asses n 50% n 100	L Eva ving gnme ssmer % of co 9% co smer sourc	nt, or nt too ourse nt of ces, c	al, se al, se l usec e conte equi carbo	6 and minar d for I tent (N nt wit pmer n foo	Dne N 50% , test SE 1 Norma h70-8	(surpr (surpr shall r ally fir 30% w nd uti nts, K	ise/dec not be rst thre reighta	elared/ used fr e mod ge for vstem protoc	ctive M (quiz) or ISI ules) cours s: col, S	ation (MS ly. <u>farks</u> 10 30 10 50 , and grou E 2] the content	L SE) and on p discussion (normally stribution	on.[One last thre
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) of Course Co Module 1 Conserva systems,	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor ttion of of steam tr	tion As e base r ISE is bas is bas after 1 energ aps.	(ESE ssessi ISE MS ISE ESE ed on The sed of sed of MSE mce a gy ar Simp	E) ha ment 1 E 2 E asses asses n 50% n 100 usses nd real ole H	L Eva ving gnme ssmer % of co % co Smer source	20%	, 309 ral, se l used conte equi carbo tem,	6 and minar d for I tent (N nt wit pmer n foo COP	Dne N 50% , test SE 1 Norma h70-8 nts ar t prin , Ene	weig (surpr shall r ally fir 0% w nd uti nts, K rgy e	ise/dec not be reighta ility sy fficien	clared/ used for ge for vstem protoc	ctive M (quiz) or ISI ules) cours s: col, S tio, p	ation (MS ly. farks 10 30 10 50 , and grou 22] the content team dis ower ton	L SE) and or p discussion (normally tribution , Energy	on.[One last thre
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) Course Co Module 1 Conserva systems, consumption	CO2 CO3 nt: ponents of Examina ISE 2 ard nt tool per sessment covered a ontents: 1 Perfor tion of of steam tr tion and	tion As e base r ISE is bas after 1 energ aps. perf	(ESE ssessi ISE MS ISE ESI ed on Sed of sed of MSE. nce a gy ar Simp corma	E) ha ment 1 E 2 E asses asses n 50% n 100 usses nd real ole H	L Eva ving gnme ssmer % of co % co Smer source	20%	, 309 ral, se l used conte equi carbo tem,	6 and minar d for I tent (N nt wit pmer n foo COP	Dne N 50% , test SE 1 Norma h70-8 nts ar t prin , Ene	weig (surpr shall r ally fir 0% w nd uti nts, K rgy e	ise/dec not be reighta ility sy fficien	clared/ used for ge for vstem protoc	ctive M (quiz) or ISI ules) cours s: col, S tio, p	ation (MS ly. farks 10 30 10 50 , and grou 22] the content team dis ower ton	L SE) and or p discussion (normally tribution , Energy	on.[One last thr Hrs.
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) of Course Co Module 1 Conserva systems, consumpt blowers, of	CO2 CO3 nt: ponents of Examina ISE 2 are at tool per sessment covered a ontents: 1 Perfor steam tr tion and compres	tion As e base r ISE is bas is bas after l energ aps. perf ssors.	(ESE ssessi ISE MS ISE ESE ed on The sed of MSE mce a gy ar Simp forma	E) ha ment 1 E 2 E asses asses n 50% n 100	L Eva ving gnme ssmer % of co % co Smer sourc IVAC asse	nt, or nt too ourse nt of ces, c C sys ssme	<u>, 309</u> al, se al used conte conte equi carbo tem, ent of	minar d for I tent (P nt wit pmer n foc COP f mec	Dne N 50% , test SE 1 Norma h70-8 nts ar t prin , Ene	weig (surpr shall r ally fir 0% w nd uti nts, K rgy e	ise/dec not be reighta ility sy fficien	clared/ used for ge for vstem protoc	ctive M (quiz) or ISI ules) cours s: col, S tio, p	ation (MS ly. farks 10 30 10 50 , and grou 22] the content team dis ower ton	L SE) and or p discussion (normally tribution , Energy	on.[One last thr Hrs. 5
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) of Course Co Module 1 Conserva systems, a consumpt blowers, of Module 2	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor tion of of steam tr tion and compress 2 Waste	tion As e base r ISE is bas is bas after 1 energ aps. perf ssors. e He	(ESE ssessi ISE MS ISE ESE ed on The sed or sed or MSE mce a gy ar Simp formation	E) ha ment 1 E 2 E asses asses n 50% n 100 asses nd rep ole H ance cove	L Eva ving gnme ssmer % of co % co smer source VAC asse ry a	20%	, 309 ral, se l used e conte conte equi carbo tem, ent of	minar d for I tent (N nt wit pmer n foo COP f mec tion:	Dne N 50% , test SE 1 Norma h70-8 h70-8	(surpr shall r ally fir 0% w nd uti nts, K rgy e cal de	ise/dec not be reighta liity sy Lyoto p fficien	elared/ used fr e mod ge for ystem protoc acy ra such	ctive M (quiz) or ISI ules) cours s: col, S tio, p as w	ation (MS ly. farks 10 30 10 50 , and grou 22] the content team dis ower ton ater pum	L SE) and or SE) and or op discussion (normally tribution tribution t, Energy ps, fans,	on.[One last thr Hrs.
assessmen MSE: Ass ESE: Ass modules) of Course Co Module 1 Conserva systems, f consumpt blowers, of Module 2 Commerce	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor tion of of steam tr tion and compres 2 Waste cial devi	tion As e base r ISE is bas is bas after 1 energ aps. perf ssors. e Hea ces 1	(ESE ssessi ISE MS ISE ESI ed on The sed of sed of MSE. nce a gy ar Simp forma	E) ha ment 1 E 2 E asses asses n 50% n 100	L Eva ving gnme ssmer % of c 0% co Smer sourc IVAC asse ry a ors, 1	20% nt, or nt too course ourse <u>nt of</u> ces, c C sys ssme nd In regen	, 309 ral, se il used e conte conte equi carbo tem, ent of nsula nerato	6 and minar d for I tent (N nt wit pmer n foc COP f mec tion: prs, h	Dne N 50% , test SE 1 Vorma h70-8 nts ar t prin , Ene hanic	(surpr shall r ally fin 30% w nd uti nts, K rgy e: cal de	ise/dec not be rst thre reighta, fficier vices nd its	respe clared/ used f e mod ge for vstem protoc ncy ra such Appl	ctive M (quiz) or ISI ules) cours s: col, S tio, p as w icatio	ation (MS ly. farks 10 30 10 50 , and grou E 2] the content team dis ower ton ater pum	L SE) and or SE) and or point of the second point of the second po	on.[One last thr Hrs. 5
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) of Course Co Module 1 Conserva systems, a consumpt blowers, of Module 2	CO2 CO3 nt: ponents of Examina ISE 2 ard at tool per sessment covered a ontents: 1 Perfor tion of of steam tr tion and compres 2 Waste cial devi	tion As e base r ISE is bas is bas after 1 energ aps. perf ssors. e Hea ces 1	(ESE ssessi ISE MS ISE ESI ed on The sed of sed of MSE. nce a gy ar Simp forma	E) ha ment 1 E 2 E asses asses n 50% n 100	L Eva ving gnme ssmer % of c 0% co Smer sourc IVAC asse ry a ors, 1	20% nt, or nt too course ourse <u>nt of</u> ces, c C sys ssme nd In regen	, 309 ral, se il used e conte conte equi carbo tem, ent of nsula nerato	6 and minar d for I tent (N nt wit pmer n foc COP f mec tion: prs, h	Dne N 50% , test SE 1 Vorma h70-8 nts ar t prin , Ene hanic	(surpr shall r ally fin 30% w nd uti nts, K rgy e: cal de	ise/dec not be rst thre reighta, fficier vices nd its	respe clared/ used f e mod ge for vstem protoc ncy ra such Appl	ctive M (quiz) or ISI ules) cours s: col, S tio, p as w icatio	ation (MS ly. <u>farks</u> 10 30 10 50 , and grou E 2] the content team dis ower ton ater pum	L SE) and or SE) and or point of the second point of the second po	on.[One last thr Hrs. 5 Hrs.
Two comp Semester I ISE 1 and assessmen MSE: Ass ESE: Ass modules) Course Ce Module 1 Conserva systems, consumpt blowers, o Module 2 Commerce	CO2 CO3 nt: ponents of Examina ISE 2 are at tool per- sessment covered a ontents: 1 Perfor tion of of steam tr tion and compress 2 Waste cial devii tube he	tion As e base r ISE is bas is bas after l energ aps. perf ssors. e Hea ces t eat e	(ESE ssessi ISE MS ISE ESE ed on The sed on MSE MSE Simp formation at re recup xcha	E) ha ment 1 E 2 E asses n 50% n 100 asses n 50% n 100 asses nd real ple H ance cove perate	L Eva ving gnme ssmer % of c % co Smer sourc VAC asse ry an ors, 1 . Eff	20% nt, or nt too course ourse too course course ourse	<u>, 309</u> ral, se l used e conte conte equi carbo tem, ent of nerato on eff	minar d for I tent (I nt wit pmer n foc COP f mec tion: prs, h ficien	Dne N 50% , test SE 1 Norma h70-8 nts ar t prin , Ene hanic eat p cy du	weig (surpr shall r ally fin 30% w nd uti nts, K rgy e: cal de ipe at ue to	ise/dec not be reighta ist thre reighta ility sy fficien vices nd its heat	clared/ used fi e mod ge for ystem protoc acy ra such Appl recov	ctive M (quiz) or ISH ules) cours s: col, S tio, p as w icatio ery c	ation (MS ly. <u>1arks</u> 10 30 10 50 , and grou 2 2] the content team dis ower ton ater pum	L SE) and on SE) and on p discussion (normally tribution tribution , Energy ps, fans, pnomizer Types of	on.[One last thr Hrs. 5

Module 3 Co-generation:	Hrs.
Need of co-generation, Co-generation for steam turbine, gas turbine and IC Engine. Use of low-grade energy with the help co-generation, Topping and bottoming cycles in Co-generation. Heat power ratio, Power output, Overall Efficiency (Numerical) Load patterns, performance assessment, Case study, Analysis of co-generation systems.	7
Module 4 Simulation of solar systems:	Hrs.
Solar energy incident on tilted plane. Types of active collectors. Steady state performance analysis of solar flat plate collector, Optical efficiency, Over all heat transfer coefficient, Collector heat removal factor, Collector efficiency, Transient analysis, Steady state performance analysis of concentrating collector programming using software,	7
Module 5 Conservation of energy in buildings and Wind Energy Conversion Systems:	Hrs.
Embodied energy of building material, Solar energy incident of building, Human comfort conditions and energy balance. Energy conservation opportunities in buildings. Wind speed and Weibull distribution function. Wind m/c coupled to pump. Constant speed and constant torque machines, Optimum blade theory. Numerical.	6
Module 6 Modeling and analysis	Hrs.
Constrained and unconstrained optimization of energy systems, Simulation wind station for annual energy output. Modeling for solar geometry using software, Modeling for solar FPC with storage. Simulation for estimating wind power. Economic comparison of investment in solar, biomass and wind energy based on Life cycle savings, internal rate of return and	7
payback period.	
Module wise Measurable Students Learning Outcomes : Student should be able to	
1. Summarize about energy sources, supply and demand.	
2. Explain of different co-generation	
3. Estimate performance of different solar devices	
4. Recognize of different wind m/c and its energy output	
5. Explain the Energy conservation opportunities	
2. Explain the Energy conservation opportunities	

l'itle o	f the Course: Aerospace Engineering, Course Code: 10E431	L		Т	Р	Cr
		3		0	0	3
Pre-Re	equisite Courses:			I	1	
Fextbo	ooks:					
	evellR.S., "Fundamentals of flights," Pearson education, 2004					
• •	oughton E. L. and Carruthers, N. B,"Aerodynamics for Engine	eering S	tud	ents," I	Edward	Arno
	her, 1989					
	ward D Curtis, "Fundamentals of Aircraft Structural Analysis," W	CB-McC	Grav	v Hill, 1	1997.	
	nce Books:					
• •	derson J.D., "Introduction to Flight," McGraw Hill, 1995	1002				
• •	Kinley J.L. and R.D. Bent, "Aircraft Power Plants," McGraw Hill,		N	• • • •	1 2000	`
(3) Geo	orge M. Siouris, "Missile Guidance and Control Systems," Springe	er-Verlag	g, N	ew Yoi	к, 2000).
Course	a Obiastivas					
COULS						
	e Objectives: provide concepts related to aircraft engine structure and flight dw	namics				
1. To	provide concepts related to aircraft engine, structure and flight dyn					
1. To 2. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle	es.	ent i	n Aeros	space Ir	ndustr
 To To To 	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma	es. anageme	ent i	n Aeros	space Ir	ndustr
 To To To 	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle	es. anageme	ent i	n Aeros	space Ir	ndustr
1. To 2. To 3. To 4. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma	es. anageme	ent i	n Aeros	space Ir	ndustr
1. To 2. To 3. To 4. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning	es. anageme			space Ir	ndustr
1. To 2. To 3. To 4. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes:	es. anageme Bloom's	s Co	ognitive		ndustr
1. To 2. To 3. To 4. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes:	es. anageme	s Co			ndustr
1. To 2. To 3. To 4. To	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes:	es. anageme Bloom's level	s Co	ognitive	Dr	ndustr
1. To 2. To 3. To 4. To Course	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to	es. anageme Bloom's	s Co	ognitive Descripto	Dr	ndustr
1. To 2. To 3. To 4. To Course	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to Tell basics of aircraft, rockets and missiles, their construction	es. anageme Bloom's level	s Co E R	ognitive Descripto	or ering	ndustr
1. To 2. To 3. To 4. To Course CO	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to Tell basics of aircraft, rockets and missiles, their construction and functions.	es. anageme Bloom's level	s Co E R	ognitive Descripto Rememb	or ering	ndustr
1. To 2. To 3. To 4. To Course CO	provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to Tell basics of aircraft, rockets and missiles, their construction and functions. Describe aerodynamics, flight dynamics, optimization of	es. anageme Bloom's level I	s Co E R	ognitive Descripto Rememb	or ering	ndustr
1. To 2. To 3. To 4. To Course CO	 provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance madevelop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to Tell basics of aircraft, rockets and missiles, their construction and functions. Describe aerodynamics, flight dynamics, optimization of performance of multi-stage rockets and separation dynamics of rockets and missiles. 	es. anageme Bloom's level I I II	s Co D R	ognitive Descripto Rememb	or ering	ndustr
1. To 2. To 3. To 4. To Course CO CO1 CO2	 provide concepts related to aircraft engine, structure and flight dyn deliver knowledge about design and manufacturing of aero vehicle make the students aware of Economics, flight and maintenance ma develop skills in the analysis of aero-vehicles for lifelong learning e Learning Outcomes: After the completion of the course the student should be able to Tell basics of aircraft, rockets and missiles, their construction and functions. Describe aerodynamics, flight dynamics, optimization of performance of multi-stage rockets and separation dynamics of 	es. anageme Bloom's level I	s Co D R	ognitive Descripto Rememb Understa	or ering	ndustr

CO-PO Mapping :

via	pping	•													
		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
(C O 1				Μ									Н	
(C O2			Η									L	М	Μ
(C O3			Μ					L						L

Assessment:

Two components of In Semester Evaluation (ISE), One Mid Semester Examination (MSE) and one End Semester Examination (ESE) having 20%, 30% and 50% weightage respectively.

Assessment	Marks
ISE 1	10
MSE	30
ISE 2	10
ESE	50

ISE 1 and ISE 2 are based on assignment, oral, seminar, test (surprise/declared/quiz), and group discussion.[One assessment tool per ISE. The assessment tool used for ISE 1 shall not be used for ISE 2]

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with70-80% weightage for course content (normally last three modules) covered after MSE.

Course Contents:

Module 1	Hrs.
Early flying vehicles, Components of an airplane and their functions, Aero-electronics, Aero thermodynamics, Aero fluid mechanics, Aero-manufacturing technologies	7
Module 2	Hrs.
Aircraft engine and instrumentation systems, Flight dynamics, Aircraft structures, Aerodynamics, Air breathing propulsion	6
Module 3	Hrs.
Vibrations and Elements of aero-elasticity, Automatic control systems, Spacecraft technology, Aero-foil theory, Wing theory, Aircraft lighting	7
Module 4	Hrs.
Theory of plates and shells, Fatigue and fracture mechanics, Aircraft materials, Selection of materials for aircraft and rockets	6
Module 5	Hrs.
Helicopter aerodynamics, Rocket and missile technology, Combustion engineering, Cryogenics, Communication and navigation systems	7
Module 6	Hrs.
Economics and Principles of management, Airframe maintenance and repair, Air transportation and Aircraft maintenance management, Modern aerospace Industry	6

Module wise Measurable Students Learning Outcomes :

Students should be able to

1. Explain the basic concepts of Aerospace mechanisms.

2. Summarize the basics of aircraft structures, systems and instruments.

3. Understand the design, performance and testing aspects.

- 4. Focus on design principles, performance, materials selection and testing of rockets and missiles.
- 5. Explain the combustion and propulsion systems in rocket.

6. Manage economics of aerospace Industries.

EVEN Semester

Credit System and Evaluation Scheme

Professional Core (Theory) Courses

11010 0	of the Course: Engineering Management, a	and Ethics 3IC 401	L	Т	Р	Cr
			4	0	0	4
Textbo	ooks:			I		l
1. 2. 3. 4. 5.	Management: Theory and Practice; A.I.T.B.S. Principles and Practice of Management - L.M. Principles of Management; Himalaya Publishir Modern micro economic theory – H.L. Ahuja, Engineering economics – Sullivan, Wicks, Koe	Prasad ng House - T. Ramasamy S.Chand.	Jain, Sa	akhsh	i	
Refere	ences:					
2. 3. 4. 5.	Principles of Management; P.C. Tripathi and Business Management; - J. C. Sinha, V. N. Mu Principles of Management - Koontz and O'Do Management: A Functional Approach - Joseph Stonier & Hague – A text book of economic th Industrial organization and engineering econom	ugata, S. Chand & Co., Ne nnell n M. Putti eory, Pearson			Company	Ltd.,
Cours	e Objectives :					
1.	To provide insight into management, economic	es and ethics.				
2.	To manage effectively business operations and	project management team	ns.			
3.	To meet the challenges for contemporary profe increasingly complex management problems fa	-	o adapt	and so	olve the	
Cours	e Learning Outcomes:					
CO	After the completion of the course the stu	dant should be ship to	Bloom's Cognitive			
CO	After the completion of the course the stud	ient should be able to	Lev	vel	Descrip	otor
CO1	Perceive and describe key management t economics terminologies and organizational / t		2	, 1	Understa	ndinį
CO2	Grasp the market scenario and apply the production and Human Resource management.	3		App	l y	
CO3	Examine various cost factors for different situations and make optimal economic decision	4		Analyz	ing	
000						
	O Mapping: Common to all branches.					
CO-PO	er Assessment : Two components of In Semester and one End Semester Examination (ESE) have					tion
CO-PO	er Assessment: Two components of In Semeste	ving 20%, 30% and 50% v				tion

30

10

50

MSE

ISE 2

ESE

ISE 1 and ISE 2 are based on assignment/declared test/quiz/seminar etc.

MSE: Assessment is based on 50% of course content (Normally first three modules)

ESE: Assessment is based on 100% course content with60-70% weightage for course content (normally last three modules) covered after MSE.

Course Contents:	
Module 1: Basics of Management	Hrs.
Management: Definition, objectives, Nature & importance of management, management approaches, principles of management, managerial roles & skills, Recent trends & challenges of management in Global scenario. Taylor's Scientific Management, Fayol's Principles of Management, Douglas Mc-Gregor's Theory, X and Theory Y, Mayo's Hawthorne Experiments, Hertzberg's Two Factor Theory of Motivation, Maslow's Hierarchy of Human Needs	7
Module 2: Principles of Management	Hrs.
 Planning: Meaning, Importance, Planning process; Types of Plans - Objectives, Strategy, Policy, Procedure, Method, Plan vs. Programme, Decision making, types of decision, Decision-Making steps Forecasting methods Organizing: Definition, Nature & purpose, Principles, Process, Types and structure of organization 	
Staffing: Nature & purpose, recruitment policies and selection procedure, Induction/orientation, carrier development, carrier stages & performance appraisal	
Directing and Co-ordination:	12
Directing: Concept and importance, creativity & innovation, Elements of Directing - Supervision, Motivation (Theories), Leadership (styles & theories), Communication (Barriers to effective communication)	12
Co-ordination: Concept and Importance, Limitations; Types- Internal and External; Co-ordination- the Essence of Management	
Controlling: Concept and importance, Limitations, process of controlling, Requirements of good control system, Types of control, Techniques of Control, Relationship between Planning and Controlling; Change Management	
Module 3: Introduction to Functional areas as Marketing Management	Hrs.
Financial Management: Scope, Sources of finance, capital types, financial statements, balance sheets, Profit & Loss A/C Production Management: Objectives, Site selection & factors affecting site selection, plant lawout (chiaetives, principles, marit & demarit of each type)	7
layout (objectives, principles, merit & demerit of each type) Human Resource Management: Introduction, Importance, Functions of H.R.M, Job	

evaluation & different types of evaluation methods, Recruitment Process- Selection, Training	
and Development- Methods, Performance Appraisal, Functions of Personnel Manager	
Module 4: Introduction to Engineering Economics	Hrs.
Introduction to Economics: Definition, Nature of economic problem, Scope, Difference between Microeconomics & Macroeconomics, Meaning of demand & supply, elasticity of demand, demand forecasting methods, market equilibrium, practical importance & applications of the concept of elasticity of demand, Economic evaluation of project by: (i) Present worth method (ii) Future worth method (iii) I.R.R. Method	
Theory of production: factors of production (meaning & characteristics of Land, Labour, Capital, Entrepreneur & organizations), law of variable proportion, return to scale, Internal and External economics and diseconomies of scale.	14
Cost - Meaning, short & long run cost, fixed cost, variable cost, direct and indirect costs, total cost, average cost, marginal cost, concept of cash flow & revenue, break-even analysis	
Theories of demand – Law of demand & supply, Cardinal Utility, indifference curve, Consumer equilibrium, consumer surplus, Revealed preference approach	
Module 5: Market Structure	Hrs.
Market : Definition, types of market their characteristics, (Perfect competition, Monopoly, Oligopoly, Monopolistic competition), Role of demand & supply in price determination imperfect competition National Income – Definition, concept of national income, Methods of calculation, Meaning of GNP, GDP, GNI, NNP, NDP, NNI, Green GDP, PCI, Types, Causes and effects of Inflation, measures to control.	6
Module 6: Ethics in Business/ Professional ethics	Hrs.
Business Ethics: Need, Concept and elements, importance, characteristics & principles of business ethics, advantages of managing ethics in workplace, Ethics in business, Role of ethics in organizational culture, Challenges of business ethics and corporate leadership, Ethical principles in business – Indian perspective	6

Professional Core (Lab) Courses

Title of the Course: Project II , Course Code : 3ME492												L	Т	Р	Cr			
														20	10			
Textboo	oks: - S	uitabl	e boo	oks b	ased	on t	he co	ontent	s of t	he p	roject	select	ed.					
Referen reputed										-		selec	ted ar	nd resea	rch pap	ers fi	rom	
Course (Objecti	ves :			v													
	elp stud									-		-		nts.				
U	ve tech					0		0			-			1				
3. To di					re an	d an	alyze	e the I	I pla	attor	ms to	effic	ient s	olutions	•			
Course I					fthe	0.0011	rco t	ha sti	Idon	t cha	uld b	0	Bloc	m's Co	mitive		٦	
	able to	r the completion of the course the stude to								t SII	Julu D	C			scripto	r	_	
													LUN		sempto	L		
CO1 I	Integrate project at each stage of the software											ц	, An	Analyzing				
C	development life cycle												IV	,	_			
CO2	Recommend project plans that address real-world challenges.													Ev	Evaluating			
	Develop successful software projects that support program's										V							
	strategie																_	
	Integrate project at each stage of the software VI Creatin									eating								
	-		life c	cycle														
CO-PO I	Mappir	-	2	3	4	5	6	7	8	9	10	11	10	PSO1	PSC	2		
	CO1	1 H	4	3	4	3	6	7	0	у Н	10	11	12 H	Р501 Н	rsu	12		
	CO1			Н						H		Н	11	M	L			
	CO3		Н						Н	11				101				
Lab Asse			onta	of lo	haaa	000	ant	ΤΛΊ	τλο	ТА	2 and	Loh E	CE					
There are MP: Lab		-						LAI,	LAZ	, LA	is and	Lau	SE.					
IVII . Luc		, a sep	uruce	neut	* 01 F	ubbli	15.											
Assess	ment	Based on					Co	nducte	ed by		Cond	Conduction and Marks Submission						
LA	1	Progress of the project			t	Со	ırse Fa	aculty	7	During Week 1 to Week 4 Submission at the end of Week 5						25		
		Progre				Submissi												
LA	2	riogn	55 UI	L	Course Eachity					During Week 5 to Week 8 Submission at the end of Week 9								
LA	3	Progre	ess of	the p	t	Course Faculty								25				
	5				² Submission								23					
Lab E	ESE	Progress of the project						rse fa	•	/		g Weel			25			
1							Examiner Submission							at the end of Week 18				

Project activities and performance shall include literature review. Problem statement, presentation / drawings / modelling / programming / simulation and other activities, suitable for the nature and the requirements of the project.

ISE are based on presentations, demos & seminar etc. ESE: Assessment is based on 100% implementation, execution & validation.

Course Contents

Project group should submit workable project at the end of second semester.

Project report should be prepared submitted along with soft copy (with code, PPT, PDF, Text report document & reference material).

Students should maintain a project log book containing weekly progress of the project.

itle of the Cours	e: Skil	l Ba	sed	Lea	arni	ng	Co	urse		Dae:	3ME4	493		L	Т	P	C	
														0	0	0	1	
extbooks: Not a	pplicat	ole.																
Reference books:	Not aj	pplic	cable	e.														
Course Objective	5:																	
n this course the s	tudent	perf	orm	anc	e in	co-(curri	icula	ar a	nd e	xtra-c	urricu	lar ac	tivities o	ver fo	our year	s will	
be considered.																		
The institute, state,															-			
Social, and Studen								-					-	-			-	
coordination skills																		
elp the students to								The	eva	alua	tion w	/1ll be	done	by the m	entor	who is		
nentoring the stud	ent dur	ng	grac	luat	10n	peri	od.											
Course Learning		mos	•															
	ourse Learning Outcomes:COAfter the completion of the course the student should								d be	able			Blo	om's	Cognitiv	e		
CO Alter the et	After the completion of the course the s						tuue	sent should be able								Descriptor		
CO1 Notice an i	mprove	provement in his understanding and presentation skills.									II		Understanding					
		d value the importance of working in a diversified team.										II		Understanding				
				<u> </u>					-							Demonstrating		
etc.	Demonstrate the soft skills like presentation skills, technical report writing etc.													•				
CO-PO Mapping	:																	
	PO	1	2	3	4	5	6	7	8	9	10	11	12	PSO-1	P	SO-2]	
	CO1								L					L	L	1		
	CO2									Μ					Ν	1		
	CO3							L						Μ				
		1 1			1	1											1	
Assessments :																		
Assessments :																		
Assessments : Event	D	etail	S					1 st	pri	ze	2 ^r	nd Priz	ze	3 rd Priz	ze –	Partic	cipati	
	D	etail	S					1 st	pri	ze	2 ¹	nd Priz	ze	3 rd Priz	ie.	Partio	cipati	
		etail atior						1 st	•		2 ^r		ze		æ	on	•	
Event	N							1 st	30)	2 ^r	25	ze	20	e.	on	15	
Event Technical events,	N St	atio	nal	ege				1 st	•) 5	2 ¹		ze			on 1	•	
Event Technical events, Sports, Cultural, Social,	N St In	ation tate iter c	nal colle	-	CP			1 st	30 25 10) 5)	2"	25 20	ze	20 15		on 1	15 10	
Event Technical events, Sports, Cultural,	N St In Pr	ation tate ter c	nal colle	Vie		rer		1 st	30 25) 5)	2 ¹	25 20	ze	20 15		on 1	15 10	
Event Technical events, Sports, Cultural, Social,	N St In Pr Pr	ation tate iter c	nal colle lent,	Vie		rer,		1 st	30 25 10) 5)	2 ^r	25 20	ze	20 15		on 1	15 10	

The proctor faculty will be mentoring a given student batch for the duration of four years. The students shall submit proof of their achievements in various extra and co-curricular activities from First year to Final year. The faculty will evaluate the students' performance at the end of 8th semester, based on the rubrics provided by department from time to time.