			(Government	ege of Engineeri Aided Autonomous Inst			
				AY 2021-22			
			Cou	urse Information			
Progr	amme		M. Tech. (M	echanical Heat and P	ower Engineering)		
	Semester		First Year M	I. Tech., Sem I			
	se Code		5HP501				
Cours	se Name			amics and combustior			
Desire	ed Requisi	tes:	Requisite Co	ourses: Basic Mathema	atics, Chemistry		
	Teaching	1		1	Scheme (Marks)		
Lectu		3 Hrs/week	T1	T2	ESE	Total	
Tutori		-	20	20	60	100	
Practi		-					
Intera	iction	-		Cr	edits: 3		
			~				
				ourse Objectives			
1		-	-		s governing energy	conversion i	
		• •		tion of chemical thern	ermodynamics with e	nnhasis on th	
2				•	phase multi-compone	•	
		tudent will be acquire the confidence in analyse the motion of combusting and no combusting					
3	fluids w	luids whilst accounting for variable specific heats, non-ideal gas properties, chemical no					
			-	e specific fleats, no	n-ideal gas propertie	s, chemical n	
	equilibriu	um and compre	ssibility		n-ideal gas propertie	s, chemical n	
A 4 41	· ·	· · · · · · · · · · · · · · · · · · ·	ssibility Cour	se Outcomes (CO)	n-ideal gas propertie	s, chemical n	
At the	end of the	course, the stud	ssibility Cour lents will be a	se Outcomes (CO) ble to,			
At the CO1	end of the	course, the stud	ssibility Cour lents will be a	se Outcomes (CO)		Understan	
CO1	end of the Understa	course, the stud	ssibility Cour lents will be a s of thermody	se Outcomes (CO) ble to, mamics and kinetics c		Understan d	
	end of the Understa Apply th	course, the stud	ssibility Cour lents will be a s of thermody	se Outcomes (CO) ble to, mamics and kinetics c	of combustion	Understan d	
CO1	end of the Understa Apply th conversio	course, the stud and the concept e concepts of on devices.	ssibility Cour lents will be a s of thermody Thermodynar	se Outcomes (CO) ble to, mamics and kinetics c	of combustion	Understan d	
CO1 CO2 CO3	end of the Understa Apply th conversio Analyse t	course, the stud and the concept e concepts of on devices.	ssibility Cour lents will be a s of thermody Thermodynar mechanisms o	se Outcomes (CO) ble to, mamics and kinetics of nics and combustion of various fuels.	of combustion	Understan d y Apply	
CO1 CO2 CO3	end of the Understa Apply th conversio Analyse t	course, the stud and the concept e concepts of on devices.	ssibility Cour lents will be a s of thermody Thermodynar mechanisms o	se Outcomes (CO) ble to, mamics and kinetics c nics and combustion	of combustion	Understan d y Apply	
CO1 CO2 CO3	end of the Understa Apply th conversio Analyse t Ile First	course, the stud and the concept e concepts of on devices. the combustion	ssibility Cour lents will be a s of thermody Thermodynar mechanisms Mo e postulates,	se Outcomes (CO) ble to, mamics and kinetics of nics and combustion of various fuels. dule Contents Second law and Er	of combustion	Understan d y Apply Analyse Hours	
CO1 CO2 CO3 Modu	end of the Understa Apply th conversio Analyse t Ile First Irreve	course, the stud and the concept e concepts of on devices. the combustion law and State ersibility, Transie eactive Ideal-G	ssibility Cour lents will be a s of thermody Thermodynar mechanisms o <u>Mo</u> e postulates, ent flow analys	se Outcomes (CO) ble to, mamics and kinetics of mics and combustion of various fuels. dule Contents Second law and Er sis	of combustion	Understan d y Apply Analyse Hours d 7	
CO1 CO2 CO3 Modu I	end of the Understa Apply th conversio Analyse t Ile First Irreve Nonre mixtu	course, the stud and the concept e concepts of on devices. the combustion law and State ersibility, Transie eactive Ideal-G	ssibility Cour lents will be a s of thermody Thermodynar mechanisms Mo e postulates, ent flow analys as Mixture, F	se Outcomes (CO) ble to, mamics and kinetics of mics and combustion of various fuels. dule Contents Second law and Er sis PVT Behaviour of Re	of combustion phenomena in energent ntropy, Availability an	Understan d y Apply Analyse Hours d 7	
CO1 CO2 CO3 Modu I II	end of the Understa Apply th conversio Analyse t Ile First Irreve Nonre mixtu Gene Comb	course, the stud and the concept e concepts of on devices. the combustion law and State ersibility, Transie eactive Ideal-G are ralized Thermoo pustion and The	ssibility Cour lents will be a s of thermody Thermodynar mechanisms o Mo e postulates, ent flow analys as Mixture, F dynamic Relat ermo-chemist	se Outcomes (CO) ble to, mamics and kinetics of mics and combustion of various fuels. dule Contents Second law and Er sis PVT Behaviour of Re- tionship	of combustion phenomena in energe ntropy, Availability an eal gases and Real Ga	Understan d y Apply Analyse Hours d 7 as 7 7	
CO1 CO2 CO3 Modu I II III	end of the Understa Apply th conversio Analyse t Ile First Irreve Nonro mixtu Gene Comb Availa	course, the stud and the concept e concepts of on devices. the combustion law and State ersibility, Transie eactive Ideal-G are ralized Thermoo pustion and The ability analysis c	ssibility Cour lents will be a s of thermody Thermodynar mechanisms Mo e postulates, ent flow analys as Mixture, F dynamic Relat ermo-chemist of reacting mix	se Outcomes (CO) ble to, mamics and kinetics of mics and combustion of various fuels. dule Contents Second law and Er sis PVT Behaviour of Re ionship rry, Second law analy cture, Chemical equili	of combustion phenomena in energe ntropy, Availability an eal gases and Real Ga	Understan d y Apply Analyse Hours d 7 as 7 as 7 e, 7	
CO1 CO2 CO3 Modu I II III IV	end of the Understa Apply th conversio Analyse t Ile First Irreve Nonro mixtu Gene Comb Availa Statis and E	course, the stud and the concept e concepts of on devices. the combustion law and State ersibility, Transie eactive Ideal-G are ralized Thermody oustion and The ability analysis of tical thermody intropy.	ssibility Cour lents will be a s of thermody Thermodynar mechanisms of Mo e postulates, ent flow analys as Mixture, F dynamic Relat ermo-chemist of reacting mix namics, statis	se Outcomes (CO) ble to, mamics and kinetics of mics and combustion of various fuels. dule Contents Second law and Er sis PVT Behaviour of Re ionship rry, Second law analy cture, Chemical equili	of combustion phenomena in energe ntropy, Availability an eal gases and Real Ga sis of reacting mixtur brium	Understan d y Apply Analyse Hours d 7 as 7 as 7 y 7 w	

1	An Introduction to Thermodynamics, Y.V.C. Rao, University Press (India) Private Limited, Revised Edition, 2004).						
2	Thermodynamics: an Engineering Approach, Y.A.Cengal and M.A.Boles, McGraw Hill (Fifth edition).						
3	Fundamentals of Classical Thermodynamics, G.VanWylen, R.Sonntag and C.Borgnakke , John Willey & Sons (Fourth edition).						
	References						
1	Cengel, "Thermodynamics", Tata McGraw Hill Co., New Delhi, 1980.						
2	Howell and Dedcius, "Fundamentals of Engineering Thermodynamics", McGraw Hill Inc., U.S.A						
3	Van Wylen& Sonntag, "Thermodynamics", John Wiley and Sons Inc., U.S.A						
4	Jones and Hawkings, "Engineering Thermodynamics", John Wiley and Sons Inc., U.S.A, 2004.						
5	Holman, "Thermodynamics", McGraw Hill Inc., New York, 2002.						
6	Faires V.M. and Simmang, "Thermodynamics", Macmillan Publishing Co. Inc., U.S.A.						
7	Rao Y.V.C., "Postulational and Statistical Thermodynamics", Allied Publishers Inc, 1994						
	Useful Links						
1	https://youtu.be/lvy8h-yWhRQ						
2	https://youtu.be/JIDK5iyatBk						
3	https://youtu.be/EYKeBg4DmHI						

CO-PO Mapping									
			Programme (Dutcomes (PO)					
	1	2	3	4	5	6			
CO1	1		2						
CO2		1			3				
CO3			2	3					
The stren	gth of mapping i	s to be written a	s 1,2,3; Where,	l:Low, 2:Mediu	m, 3:High	1			

Each CO of the course must map to at least one PO.

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level	T1	T2	ESE	Total		
1	Remember						
2	Understand	10	10	20	40		
3	Apply	10	10	20	40		
4	Analyze			20	20		
5	Evaluate						
6	Create						
	Total	20	20	60	100		

		Walc		ege of Engir	neering, Sangli	
			Government	Alded Autonomo AY 2021-22	us institute)	
			Co	urse Informatio	on	
Progra	amme		M. Tech. (M	lechanical Heat	and Power Engineering)	
Class,	Semester		First Year M	I. Tech., Sem I		
Cours	e Code		5HP502			
Course Name Advanced Fluid Dynamics						
Desire	ed Requisi	tes:	Fluid Mecha	nics		
	Teaching	1			nation Scheme (Marks)	
Lectu		3 Hrs/week	T1	T2	ESE	Total
Tutori		-	20	20	60	100
Practi		-			<u> </u>	
Intera	iction	-			Credits: 3	
			Co	ourse Objective	NC	
	To enab	le the students		0	a related problems by apply:	ing principles
1		ematics, scienc	-		i related problems by appry.	ing principies
2					iques and skills to fulfil inc	lustrial needs
2		o fluid dynami		,	1	
3	1		th effective	communicatio	on skill to demonstrate flu	uid dynamics
5	theories.					
4					stems with mathematical	modeling for
		ions of fluid dy			gn. learning in the fluid dynam	ios to include
5					sociated with engineering pr	
					i's Taxonomy Level	
At the	end of the	course, the stud	ents will be al	ble to,	· · · · ·	
	Underst	and and dafi	no the fluid	l flow proble	ms along with range of	Understand
CO1		ng parameters	lie uie fiuio	i now proble	and along with fange of	Understand
CO2		the experimen	ts in the field	l of fluid mech	anics.	Apply
CO2		<u> </u>			ween the flow regimes and	Analyze
CO3	its effect	ts.				
Modu				odule Contents		Hours
Basic equations of flowKinematics of flow, ControlIMomentum equation Linear morequation, Energy equation, Berno			ow, Control on Linear mo	omentum equa	tion and angular momentum	
II	Kelv		Stream funct	ion and Veloc	c Stability ity potential, Irrational flow Combined flows and supe	

	Reynolds Number, Stability of Elementary Flow fields, Rayleigh's Theorem, Flow in parallel channels, Stability of Boundary Layers, Numerical solution for Orr-Somerfield number.	
III	Flow over immersed bodies and boundary layer flow Boundary layer equations, flow over flat plate, Boundary layers with non-zero pressure gradient, Approximate methods for boundary layer equations, separation and vortex shedding.	7
IV	Turbulent flowCharacteristics of Turbulent flow, Laminar turbulent transition, Governing equations for turbulent flow, Turbulent boundary layer equations, measurement of turbulent quantities, shear stress models, universal velocity distribution and friction factor, fully developed turbulent flow, Dynamics of turbulence	7
V	Turbo machineryEquations of turbomachinery, Axial flow turbines, compressors, pumps and fans, Radial flow turbines, compressors, pumps and fans, Power absorbing vs. power producing devices, Performance characteristics of centrifugal pumps, Performance characteristics of hydraulic turbines	6
VI	Compressible Fluid FlowOne dimensional compressible fluid flow – flow through variable areapassage – nozzles and diffusers, effect of viscous friction and heat transfer,fundamentals of supersonics flow normal and oblique shock waves andcalculation of flow and fluid properties over solid bodies (like flat plate,wedge, diamond) using gas tables	6
	Text Books	
1	Muralidhar and Biswas, Advanced Engineering Fluid Mechanics, , Alph International, 2005	a Scier
2	Irwin Shames, Mechanics of Fluids, , McGraw Hill, 2003	
1	References Fox R.W., McDonald A.T , Introduction to Fluid Mechanics, John Wiley and 1985	l Sons I
2	Pijush K. Kundu, Ira M Kohen and David R. Dawaling, <i>Fluid Mechanics</i> , Fi Edition, 2005	fth
	Useful Links	
1	https://youtu.be/H38vI93exns	
2	https://youtu.be/DevReEKIYw8	
3	https://youtu.be/IaqRi9qcNJI	
4	https://youtu.be/lneVkFukEKk	

CO-PO Mapping								
			Programme O	utcomes (PO)				
	1	2	3	4	5	6		
CO1	2		2	2	2			
CO2		2				2		
CO3				1	2	1		
The streng	gth of mapping i	s to be written a	s 1,2,3; Where, 1	:Low, 2:Mediu	m, 3:High			
Each CO	of the course mu	ist map to at lea	st one PO.					

Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course								
E	Bloom's Taxonomy Level	T1	T2	ESE	Total				
1	Remember								
2	Understand	10	10	20	40				
3	Apply	10	10	20	40				
4	Analyze			20	20				
5	Evaluate								
6	Create								
	Total	20	20	60	100				

		Walc		ege of Engi Aided Autonom	neering, San	gli	
			X	AY 2021-22	,		
			Cou	irse Informati	ion		
Progra	amm	e	M.Tech. (M	echanical Heat	t and Power Engi	neering)	
Class,	Sem	ester	First Year M	. Tech., Sem I			
Cours	e Coo	de	5HP560				
Cours	e Nai	me	Research Me	ethodology			
Desire	d Re	quisites:					
			1				
	Teac	hing Scheme		Exam	ination Scheme	(Marks)	
Lectu		-	LA1	LA2	ESE	· /	
Tutori	ial		30	30	40	100	
		2 Hrs/week			Credits: 2		
			Co	urse Obiectiv	es		
1	Tot	prepare the students t		•		S	
2			~		^		tc
3		<u> </u>	<u> </u>		· ·		
		Course	Outcomes (C	O) with Bloor	n's Taxonomy L	evel	
At the	end c	of the course, student	s will be able t	0,			
CO1		<u>, </u>					Apply
CO2		• •					Analyze
CO3	Inte etc	rpret the research pa	apers, reports,	case studies, p	patent informatio	n and database,	Evaluate
Modu			M	adula Contant	6		Hours
Iviouu		Maaning of research				Characteristics	liours
		e e	· ·		•		
Ι		•			•	· •	5
		•	-	~ ~	-		
	ceture - LA1 LA2 ESE Total itorial - 30 30 40 100 actical - - - - - teraction 2 Hrs/week Credits: 2 - - Course Objectives -						
II				•			4
			· ·			•	_
		÷	velopment: te	chnological i	research, innova	tion, patenting,	5
		<u>A</u>	rio: Internati	onal coopera	tion on Intelle	ectual Property	
IV		Procedure for grants				Toporty.	4
v		Patent Rights: Scope	of Patent Righ	nts. Licensing a	and transfer of teo	chnology. Patent	4
		Information and data New Developments				w developments	
VI		in IPR; IPR of Biolo Case Studies, IPR an	gical Systems		•	•	4
							1
				T (D I			
				Text Books			

2	Deepak Chopra and NeenaSondhi, "Research Methodology: Concepts and cases", Vikas Publishing House, New Delhi, 1998
3	Stuart Melville and Wayne Goddard, "Research Methodology: An Introduction for Science & Engineering Students", Tata MacGraw Hill, 2000
	References
1	E. Philip and Derek Pugh, "How to get a Ph. D. – a handbook for students and their supervisors, open university press, 2001.
2	Kumar R., "Research Methodology- A step by step guide for beginners", SAGE, 3rd Edition, 2012.
3	G. Ramamurthy, "Research Methodology", Dream Tech Press, New Delhi, 2009
	Useful Links
1	https://youtu.be/fLmzf4GpfvM
2	https://youtu.be/LmMDIBENHhU
3	https://youtu.be/0YBZci0rCGc
4	https://nptel.ac.in/courses/127/105/127105008/

CO-PO Mapping								
			Programme C	Outcomes (PO)				
	1	2	3	4	5	6		
CO1	2		1					
CO2					2	2		
CO3				2				
The streng	gth of mapping i	s to be written a	s 1,2,3; Where, 1	:Low, 2:Mediu	m, 3:High			
Each CO	of the course mu	st map to at leas	st one PO.					

Assessment								
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.				
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark				
t				s				
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30				
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50				
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30				
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50				
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40				
Lao ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40				
Week 1 indic	ates the starting week	of a semester. The	e typical schedule of lab assessments is show	n,				
considering a	26-week semester. Th	e actual schedule	shall be as per academic calendar. Lab					
activities/Lab	performance shall inc	lude performing of	experiments, mini-project, presentations, drav	wings,				

programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	15	15	15	45		
Analyze	15	15	15	45		
Evaluate			10	10		
Create						
Total Marks	30	30	40	100		

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
	AY 2021-22				
	Course Information				
Programme M. Tech. (Mechanical Heat and Power Engineering)					
Class, Semester	First Year M. Tech., Sem I				
Course Code 5HP551					
Course Name	Activity Based Lab for Th course 1				
Desired Requisites: Thermodynamics and combustion					
	· · ·				

Teaching Scheme		Examination Scheme (Marks)						
Lecture	-	LA1 LA2 ESE Total						
Tutorial	-	30	30	40	100			
Practical	2 Hrs/Week							
Interaction	-	Credits: 1						

	Course Objectives						
1	To provide an opportunity to a student to do work independently on a topic/ problem experimentation selected by him/her and encourage him/her to think independently on own to bring out the conclusion under the given circumstances and limitations.	his/her					
2	To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.						
3	To enable students for technical report writing and effective presentations.						
	Course Outcomes (CO) with Bloom's Taxonomy Level						
At the	end of the course, students will be able to,						
CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply					
CO2	Design and develop suitable mechanical thermal systems	Create					
CO3	Prepare and present a detailed technical report based on the activity completed.	Evaluate					
	Course Content						
analys	on of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing is or simulation of a process/ experimental verification of principles in thrust areas of odynamics, combustion.	product/					
	Text Books						
1	Suitable books based on the contents of the activity selected.						
	References						
1	Suitable books based on the contents of the activity selected and research papers fr Reputed national and international journals and conferences.	rom					
	Reputed national and international journals and conferences.						
	Useful Links						

			CO-PO Mapp	oing		
			Programme C	utcomes (PO)		
	1	2	3	4	5	6
CO1	2	2				
CO2	3	2			3	
CO3		2				
The streng	gth of mapping i	s to be written	as 1,2,3; Where, 1	:Low, 2:Mediu	ım, 3:High	
Each CO	of the course mu	ist map to at le	ast one PO.			

Assessment							
	ee components of lab a						
	<u> </u>	· · · ·	A2 together is treated as In-Semester Evaluat	ion. Mark			
Assessmen	Based on Conducted by Typical Schedule (for 26-week Sem)						
t				S			
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			
	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40			

Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)							
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total			
Remember							
Understand							
Apply	15	15	15	45			
Analyze							
Evaluate	15	15	15	45			
Create			10	10			
Total Marks	30	30	40	100			

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)						
	AY 2021-22					
	Course Information					
Programme M. Tech. (Mechanical Heat and Power Engineering)						
Class, Semester	First Year M. Tech., Sem I					
Course Code 5HP552						
Course Name	Course Name Activity Based Lab for Th course 2					
Desired Requisites: Advanced Fluid Dynamics						

Teaching Scheme		Examination Scheme (Marks)					
Lecture	-	LA1	LA2	ESE	Total		
Tutorial	-	30	30	40	100		
Practical	2 Hrs./Week	· · · · · ·					
Interaction	-	Credits: 1					

	Course Objectives						
1	To provide an opportunity to a student to do work independently on a topic/ problem	1. /1					
1	experimentation selected by him/her and encourage him/her to think independently on	h1s/her					
	own to bring out the conclusion under the given circumstances and limitations.						
2	To encourage creative thinking processes to help students to get confidence by successfully						
	completing the activity , through observations, discussions and decision making proce	SS.					
3	To enable students for technical report writing and effective presentations.						
	Course Outcomes (CO)						
At the	end of the course, the students will be able to,						
CO1	Solve field problems by using different techniques in mechanical heat and power	Apply					
COI	engineering						
CO2	Design and develop suitable mechanical thermal systems	Create					
CO3	Prepare and present a detailed technical report based on the activity completed	Evaluate					
	Course Content						
٠	Creation of prototype/ apparatus/ small equipment/experimental set up/ innovation of	existing					
	product/ analysis or simulation of a process/ experimental verification of principles in	thrust areas					
	of Advanced fluid dynamics.						
	Text Books						
1	Suitable books based on the contents of the activity selected.						
	References						
1	Suitable books based on the contents of the activity selected and research papers fr	om					
1	reputed national and international journals and conferences.						
	Useful Links						
	Useful Links						

			CO-PO Map			
	1	2		Dutcomes (PO)	5	6
~~~		2	5	7	3	U
CO1		3	2	2		
CO2		2	1	2		
CO3		2				
The streng	th of mapping i	s to be written	as 1,2,3; Where,	1:Low, 2:Mediu	ım, 3:High	
Each CO o	of the course mu	st map to at le	ast one PO.			

Assessment							
There are thr	ee components of lab a	assessment, LA1,	LA2 and Lab ESE.				
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
Assessmen	Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) Mark						
t				s			
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			
	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lau ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40			
Lab ESE		5	Marks Submission at the end of Week 18				

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)				
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand				
Apply	15	15	15	45
Analyze				
Evaluate	15	15	15	45
Create			10	10
Total Marks	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
	AY 2021-22			
Course Information				
Programme         M. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester	First Year M. Tech., Sem I			
Course Code 5HP553				
Course Name Presentation and Technical Report Writing				
Desired Requisites:				

Teaching	Scheme	Examination Scheme (Marks)			
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	-		-	2	-
Interaction	1 Hr/Week	Credits: 1			

	Course Objectives				
1	To provide an opportunity to students to do work independently on a topic.				
2	To encourage creative thinking process in technical report writing				
3	To enable students for good technical report writing and effective presentations.				
	Course Outcomes (CO) with Bloom's Taxonomy Level				
At the	end of the course, students will be able to,				
CO1	Demonstrate the characteristics of technical and business writing.	Apply			
CO2	Produce documents related to technology and writing in the workplace and will	Create			
	have improved their ability to write clearly, concisely, and accurately.				
CO3	Use a variety of materials to produce appropriate visual presentation for documents,	Evaluate			
	such as instructions, descriptions, and research reports.				

#### **Course Content**

This course introduces students to the discipline of technical communication. Preparation of visuals to supplement text, workplace communication, descriptions of mechanisms, explanations of processes, and writing reports are the major topics included.

This course is designed for students enrolled in technical degree programs for making them industry ready.

Text Books			
Suitable books based on the contents of the topic.			
References			
Suitable books based on the contents of the selected topic and research papers from reputed			
national and international journals and conferences.			
Useful Links			
As per the need of the topic of report and presentation			

			CO-PO Map	ping		
			Programme (	<b>Dutcomes (PO)</b>		
	1	2	3	4	5	6
CO1		3	1			
CO2		3	1			
CO3		3	1			
The streng	gth of mapping i	s to be written	as 1,2,3; Where,	1:Low, 2:Mediu	ım, 3:High	
Each CO	of the course mu	st map to at le	ast one PO.			

	components of lab a				
IMP: Lab ESE i	I	ssessment, LA1, I	LA2 and Lab ESE.		
	is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluation	ion.	
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark	
t				s	
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30	
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50	
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30	
LA2 a	attendance, journal	Faculty	Marks Submission at the end of Week 12	50	
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	10	
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)				
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand				
Apply	15	15	15	45
Analyze				
Evaluate	15	15	15	45
Create			10	10
Total Marks	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
	AY 2021-22			
	Course Information			
Programme         M. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester First Year M. Tech., Sem I				
Course Code 5HP554				
Course Name Professional Skills 1				
<b>Desired Requisites:</b>				

Teaching	Scheme	Examination Scheme (Marks)			
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	-		-	2	2
Interaction	1 Hr/Week	Credits: 1			

Course Objectives				
1	To provide a hands on experience of software for 2D modelling			
2	2 To provide a hands on experience of MATLAB software			
	Course Outcomes (CO) with Bloom's Taxonomy Level			
At the	end of the course, students will be able to,			
CO1	Use of the software of 2D modelling effectively.	Apply		
CO2	Develop the solution for mechanical engineering problems using the software.	Create		
CO3	Use of the software of MATLAB effectively.	Evaluate		

#### **Course Content**

This course is based on computers as a tool to design and analyse the thermal system. In the modern day work environment, the thermal Engineer should be able to simulate and solve complex problems on computers. The thermal Engineer must be highly computer literate. The engineer with strong fundamentals in thermal Engineering and computer software proficiency is highly in demand from industry. Employability of the student can be enhanced by providing software training of 2D modelling softwares and MATLAB software in mechanical engineering.

	Text Books					
1	Suitable books based on the software selected.					
	References					
1	Suitable books based on the contents of software selected					
	Useful Links					
1	As per the need of the software training					

CO-PO Mapping							
	Programme Outcomes (PO)						
	1	2	3	4	5	6	

CO1						2
CO2						2
CO3						2
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High						
Each CO of the course must map to at least one PO.						

	Assessment							
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.				
Assessmen	smenBased onConducted byTypical Schedule (for 26-week Sem)							
t				S				
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30				
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30				
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30				
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30				
Lab ECE	Lab activities,	Lab Course	During Week 15 to Week 18	40				
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40				
Week 1 indic	Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,							

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	15	15	15	45		
Analyze						
Evaluate	15	15	15	45		
Create			10	10		
Total Marks	30	30	40	100		

		Walc		<b>ge of Engin</b> Aided Autonomo	<b>leering, Sangli</b> us Institute)	
			1	AY 2021-22		
			Cou	rse Informatio	n	
Progra	amme		M. Tech. (Me	echanical Heat	and Power Engineering)	
Class,	Seme	ster	First Year M	. Tech., Sem I		
Course Code 5HP511						
Cours	e Nam	ie	Computation	nal Methods in	fluid flow and heat transfer	
Desire	ed Req	uisites:	Fluid Mecha Numerical m		namics, Mathematics, Heat Tra	insfer,
	Teach	ing Scheme		Exami	nation Scheme (Marks)	
Lectur		3 Hrs/week	T1	T2	ESE	TOTAL
Tutori		-	20	20	60	100
Practi		-			~ ~	
Intera		-			Credits: 3	
			Coi	ırse Objective	\$	
	Enab	le the students to a			problems by applying principle	es of
1		ematics, science ar				
2					d skills to fulfill industrial needs	related to
2	comp	outational techniqu	es in fluid flow	and heat trans	ifer.	
3	Train	students with effe	ctive communio	cation skill to d	emonstrate computational the	ories.
4		•	• •	stems with ma	thematical modeling for applica	ations of
•		outers in research c	-			
5					n the numerical analysis to include the second s	ude the
	awar				ed with engineering practices.	
At the	end of	the course, the stud		· ·	's Taxonomy Level	
CO1	1	in prediction meth		· · ·	hods	Apply
$\frac{CO1}{CO2}$	· ·	•			d Thermal related problems.	Analyze
					d schemes used in fluid flow	Evaluate
CO3	1	neat transfer proble	-			
		· ·				
Modu	le		Мо	dule Contents		Hours
	С	omparison of expe	rimental, theo	retical and nui	merical approaches	
		• •			mathematical classification	-
		Parabolic, Elliptical and Hyperbolic equations. Computational economy,				
Ι		Numerical stability, Selection of numerical methods, validation of numerical				
				-	off error, accuracy of numerica	
			-		vergence, Rate of convergence	
		lgorithm.		m, remination	n of iteration: Tridiagonal Matrix	×
		-	ethod: Discret	tization – Con	verting Derivatives to discrete	
II					, polynomial fitting approach	
		iscretization error.	, ,,		, , , , , , , , , , , , , , , , , , ,	'   Ŭ

	Heat conduction Steady one-dimensional conduction in Cartesian and cylindrical	
III	co-ordinates, handling of boundary conditions: Two dimensional steady state conduction problems in Cartesian and cylindrical co-ordinates – point by point and line by line method of Solution: Dealing of Dirichlet, Neumann and Robbins type boundary conditions- Formation of discretized equations for regular boundaries, irregular boundaries and interfaces	7
IV	One dimensional, two dimensional and three dimensional transient heat conduction problems in Cartesian and cylindrical co-ordinates Explicit, Implicit, Crank Nicholson and ADI methods- stability of each system Conservation form and conservative property of partial differential equations and finite difference equations-Consistency, stability and convergence for marching problems Discrete perturbation stability analysis- Fourier or Von Neumann stability analysis.	7
V	<b>Finite volume method 1</b> Discretization of governing equations - Diffusion and convection-diffusion problems steady one-dimensional convection and diffusion, upwind, hybrid and power-law schemes:	6
VI	<b>Finite volume method 2</b> Discretization equation for two-dimensions: False diffusion, calculation for the Flow Field- Stream function- vortices approach, SIMPLE, SIMPLER, SIMPLEC and QUICK Algorithms. Numerical Marching Techniques. Two dimensional parabolic flows with heat; Grid generation methods, Adaptive grids.	7
	Text Books	
1	S.V. Patankar, "Numerical Fluid Flow & Heat transfer", Hemisphere Publishing Corp.,	
2	T. Sundernajan, K. Muralidhar, "Computational Fluid Flow and Heat Transfer", Na edition, Reprint 2011	arosa, 2nd
	References	
	H. K. Versteeg and W. Malalasekera, "An Introduction to Computational Fluid I	Dvnamics".
1	Longman Scientific and Technical, 1st edition, 1995.	,,
2	Hoffman Klaus, "Computational Fluid Dynamics", Vol-1 & 2, A Publication of E Education System, Wichita Kansas, USA, 2000	ngineering
	Useful Links	
1	https://nptel.ac.in/courses/112/104/112104302/	
2	https://nptel.ac.in/courses/112/108/112108091/	

	CO-PO Mapping								
		Programme Outcomes (PO)							
	1	2	3	4	5	6			
CO1	2	2			2				
CO2	2				2				
CO3	2			2		2			
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High									
Each CO	of the course mu	ist map to at leas	st one PO.						

# Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
E	Bloom's Taxonomy Level	T1	T2	ESE	Total		
1	Remember						
2	Understand						
3	Apply	10	10	20	40		
4	Analyze	10	10	20	40		
5	Evaluate			20	20		
6	Create						
	Total	20	20	60	100		

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)							
		1	AY 2021-22				
		Cou	rse Informati	on			
Programme		M. Tech. (Heat Power Engineering)					
Class, Semester First Year M. Tech., Sem I							
<b>Course Code</b>		5HP512					
<b>Course Name</b>		Nuclear Engi	neering				
Desired Requi	isites:	Heat and Ma	ss Transfer				
		1					
Teachin	g Scheme	Examination Scheme (Marks)					
Lecture	3 Hrs/week	T1	T2	ESE	Total		

Lecture	3 mrs/week	11	14	ESE	Total		
Tutorial	-	20	20	60	100		
Practical	-		•		-		
Interaction	-	Credits: 3					

	Course Objectives					
1	Demonstrate the basic concepts and processes taking place inside a nuclear reactor, su	ch as				
1	¹ nuclear fission, neutron production, scattering, diffusion, slowing down and absorption.					
2	The student will also be familiar with concepts of reactor criticality, the relationship					
3	The student will also be familiar with Time dependent (transient) behaviour of power reactor in					
3	nonsteady state operation and the means to control the reactor					
4	The student will also be familiar with concepts of heat removal from reactor core, reactor safety					
4	and radiation protection.					
	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, the students will be able to,					
CO1	Understanding the basic concepts and processes taking place inside a nuclear reactor	Apply				
CON	Analysing time dependent (transient) behaviour of power reactor in nonsteady state	Analyze				
CO2	operation and the means to control the reactor					
CO2	Demonstrating concepts of heat removal from reactor core, reactor safety and	Evaluate				
CO3	radiation protection.					

Module	Module Contents	Hours
Ι	<b>Basics of nuclear fission and power from fission</b> Radioactivity, nuclear reactions, cross sections, nuclear fission, power from fission, conversion and breeding	6
II	<b>Neutron transport and diffusion</b> Neutron transport equation, diffusion theory approximation, Fick's law, solutions to diffusion equation for point source, planar source, etc., energy loss in elastic collisions, neutron slowing down	6
III	<b>Multigrain, multiregional diffusion equation, concept of criticality</b> Solution of multigrain diffusion equations in one region and multiregional reactors, concept of criticality of thermal reactors	7
IV	Reactor kinetics and control	6

	Derivation of point kinetics equations, in hour equation, solutions for simple cases of reactivity additions, fission product poison, reactivity coefficients					
	Heat removal from reactor core					
V	Solution of heat transfer equation in reactor core, temperature distribution, critical heat flux	7				
	Reactor safety, radiation protection					
VI	Reactor safety philosophy, defence in depth, units of radioactivity exposure,	-				
	radiation protection standards	6				
	Text Books					
1	Introduction to Nuclear Engineering (3rd Edition) by John R. Lamarsh, Anthon	y J.Barrata,				
	Prentice Hall, (2001)					
	References					
1	Introduction to Nuclear Reactor Theory, by John R. Lamarsh, Addison-Wesley, 1966	)				
2	2 Nuclear Reactor Analysis, by James J. Duderstadt and Lewis J. Hamilton, John Wiley(1976)					
	Useful Links					
1	https://nptel.ac.in/courses/112/103/112103243/					
2	https://nptel.ac.in/courses/112/101/112101007/					

CO-PO Mapping								
	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1	1							
CO2		1	1					
CO3				1				

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

### **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total	20	20	60	100			

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)
	AY 2021-22
	Course Information
Programme	M. Tech. (Mechanical Heat and Power Engineering)
Class, Semester	First Year M. Tech., Sem I
Course Code	5HP513
Course Name	Design of Thermal Turbo Systems
Desired Requisites:	Fluid and turbo machinery

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	3 Hrs/week	T1	T2	ESE	Total	
Tutorial	-	20	20	60	100	
Practical	-		•		·	
Interaction	-	Credits: 3				

	Course Objectives							
1	Recognize typical designs of turbo machines and Explain the working principles of turb	omachines						
1	and apply it to various types of machines							
2	Determine the velocity triangles in turbomachinery stages operating at design and off-design							
	conditions.							
3	Perform the preliminary design of turbomachines (Fans compressors) on a 1-D basis							
	Use design parameters for characterizing turbomachinery stages and determine the off-design							
4	behavior of turbines and compressors and relate it to changes in the velocity triangles	<ul> <li>Explain</li> </ul>						
	and understand how the flow varies downstream of a turbomachinery blade row							
5	Recognize relations between choices made early in the turbomachinery design process	and the						
-	final components and operability							
6	6 Explain the limits of safe operation of compressors							
	Course Outcomes (CO) with Bloom's Taxonomy Level							
	end of the course, the students will be able to,							
CO1	Understand the basics of turbo systems, the energy transformation in them.	Apply						
CO2	Apply the knowledge on design of centrifugal and axial turbo systems.	Analyze						
CO3	Analyze the turbo systems at different operating conditions.	Evaluate						
Modu	le Module Contents	Hours						
	Introduction to Turbomachines:							
	Turbines Pumps and Compressors Fans and Blowers Compressible Flow							
Ι	Machines Incompressible Flow Machines Turbine, Compressor and Fan Stages	6						
1	Extended Turbomachines Axial Stages Radial Stages Mixed Flow Stages Impulse	0						
	Stages Reaction Stages Variable Reaction Stages Multistage Machines Stage							
	Velocity Triangles Design Conditions Off-design Conditions Applications							
_	Fluid Dynamic Principles:	_						
II	Equations of Motion (in Cartesian, Cylindrical and Natural Coordinate system)	7						
	Further notes on Energy Equation, Isentropic Flow through Blade passages, High							

	speed flows, Aerofoil Blades.	
III	<b>Dimensional Analysis and Performance Parameters</b> : Units and Dimensions, Buckingham's Pi theorem, Principle of similarity, Incompressible flow machines, Compressible flow machines, Performance of Compressors, Fans and Blowers.	7
IV	<b>Compressor:</b> Axial and Centrifugal compressor, Elements of centrifugal compressor stage, stage velocity triangles, Enthalpy – Entropy diagram, Stage losses and Efficiency, Performance characteristics	7
V	Axial Fans and Propellers: Fan Applications, Axial fans, Fan stage parameters, types of Axial fan stages, Propellers, Performance of Axial Fans.	6
VI	Centrifugal Fans and Blowers:Centrifugal Fan stage parameters, Design Parameters, Losses, Fan Drives,Bearings and Noise, Dust Erosion of Fans	6
	Text Books	
1	S M Yahya , "Turbines, Compressors and Fans, McGrawHill Publication	
2	Shepherd, D.G., "Principles of Turbomachinery", Macmillan, 1969.	
	References	
1	Bruneck, Fans, Pergamom Press, 1973	
2	Earl Logan, Jr., Handbook of Turbomachinery, Marcel Dekker Inc., 1992	
3	Dixon, S.I., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergar 1990.	non Pres
4	Gopalakrishnan .G and Prithvi Raj .D, "A Treatise on Turbomachines", Scifech P (India) Pvt. Ltd., 2002.	ublicatior
1	Useful Links	
1	https://nptel.ac.in/courses/112/105/112105206/           https://nptel.ac.in/courses/101/101/101101058/	
2		

CO-PO Mapping								
	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1	1		2			1		
CO2		1	2		3			
CO3			2	3				

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

## **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total	20	20	60	100			

		Wa		llege of Eng	gineering, Sangli		
			, oovernine	AY 2021-22	,		
			(	Course Informa	ntion		
Progr	amme		M. Tech. (M	echanical Heat	and Power Engineering)		
-	, Semeste	er		I. Tech., Sem I			
Cours	se Code		5HP514				
Cours	se Name		Design of I	Hydro Turbo n	nachines		
Desire	ed Requi	sites:	Turbo Mach	inery			
	Teaching	g Scheme		Exan	nination Scheme (Marks)		
Lectu		3 Hrs/week	T1	T2	ESE ESE	TOTAL	
Tutor		-	20	20	60	100	
Practi		-	-	-			
Intera		-			Credits: 3		
				Course Object	ives		
1	To ena	able the studen	its to analys	e and solve h	ydrodynamic machine re	ated problems by	
1	applyi	applying principles of mathematics, science and engineering.					
2	-	-		ous strategic is	sues related to hydrodynamics and the subscription of the subscrip	nic machines such	
		ines, pumps etc					
3					kills to demonstrate hydro	dynamic theories.	
		-		• •	machine component.	• 1• /	
4					g learning in the hydrody		
	practic		ess of socia	i and enviro		with ongingaring	
	practic	ec			innent issues associated	with engineering	
			se Outcomes			with engineering	
At the	end of the			(CO) with Blo	om's Taxonomy Level	with engineering	
At the CO1	1	<b>Cour</b> ne course, the stu	dents will be a	(CO) with Blo able to,	om's Taxonomy Level	with engineering	
CO1	Descri	<b>Cour</b> ne course, the stu be: different typ	dents will be a pes of hydroc	(CO) with Blo able to, lynamic mach		Remember	
	Descri Apply	<b>Cour</b> ne course, the stu be: different typ	dents will be a pes of hydroc mathematics	(CO) with Blo able to, lynamic mach	om's Taxonomy Level ines and its components.	Remember	
CO1	Descri Apply in hyd	Cour ne course, the stu be: different ty knowledge of	dents will be a pes of hydroo mathematics hine design.	(CO) with Bloa able to, dynamic mach s, science, and	om's Taxonomy Level ines and its components.		
CO1 CO2	Descri Apply in hyd Carry	Cour ne course, the stu be: different ty knowledge of rodynamic mac	dents will be a pes of hydroo mathematics hine design. d interpret res	(CO) with Bloa able to, dynamic mach s, science, and	om's Taxonomy Level ines and its components.	Remember S Apply	
CO1 CO2 CO3	Descri Apply in hyd Carry	Cour ne course, the stu be: different typ knowledge of rodynamic mac out analysis and	dents will be a pes of hydroo mathematics hine design. d interpret res Moc	(CO) with Blo able to, lynamic mach s, science, and sults. lule Contents	om's Taxonomy Level ines and its components.	Remember Apply Analysing	
CO1 CO2 CO3	Descri Apply in hyd Carry ule Int	Cour ne course, the stu be: different typ knowledge of rodynamic mac out analysis and roduction to H	dents will be a pes of hydrod mathematics hine design. d interpret res <b>Mod</b> lydrodynam	(CO) with Bloa able to, dynamic mach s, science, and sults. lule Contents ic Machines	om's Taxonomy Level ines and its components.	Remember Apply Analysing	
CO1 CO2 CO3	Descri Apply in hyd Carry ule Int Cla Imp	Cour ne course, the stu be: different ty knowledge of rodynamic mac out analysis and roduction to H ssification of pulse turbines;	dents will be a pes of hydroc mathematics hine design. d interpret res <b>Mod</b> <b>lydrodynam</b> turbines an general theo	(CO) with Bloa able to, dynamic mach s, science, and sults. lule Contents ic Machines d various fo ory of impulse	om's Taxonomy Level ines and its components. I engineering for the needs rms of turbine runners, e machines; performance	Remember Apply Analysing	
CO1 CO2 CO3 Modu	Descri Apply in hyd Carry ule Int Cla Imj cha	Cour ne course, the stu be: different typ knowledge of rodynamic mac out analysis and roduction to H ssification of pulse turbines; racteristics, Re	dents will be a pes of hydrod mathematics hine design. d interpret res <b>Mod</b> lydrodynam turbines an general theo action turbin	(CO) with Bloc able to, dynamic mach s, science, and sults. Iule Contents ic Machines id various fo ory of impulse es; general the	om's Taxonomy Level ines and its components. I engineering for the needs rms of turbine runners, e machines; performance cory of reaction machines;	Remember Apply Analysing	
CO1 CO2 CO3	Descrii Apply in hyd Carry ale Int Cla Imj cha per	Cour ne course, the stu be: different typ knowledge of rodynamic mac out analysis and roduction to H assification of pulse turbines; racteristics, Re formance char	dents will be a pes of hydroc mathematics hine design. d interpret res <b>Moc</b> <b>Iydrodynam</b> turbines an general theo action turbin racteristics,	(CO) with Bloc able to, dynamic mach s, science, and sults. Iule Contents ic Machines id various fo ory of impulse es; general the types; Franci	rms of turbine runners, e machines; performance sory of reaction machines; s and Kaplan turbines;	Remember Apply Analysing Hours	
CO1 CO2 CO3 Modu	Descri Apply in hyd Carry ule Int Cla Imj cha per the	Cour ne course, the stu be: different tyj knowledge of rodynamic mac out analysis and roduction to H assification of pulse turbines; racteristics, Re formance char ory of cavitatio	dents will be a pes of hydroc mathematics hine design. d interpret res <b>Mod</b> lydrodynam turbines an general theo action turbin racteristics, on flows in	(CO) with Bloa able to, dynamic mach s, science, and sults. Iule Contents ic Machines id various fo ory of impulse es; general the types; Franci hydrodynamic	om's Taxonomy Level ines and its components. l engineering for the needs rms of turbine runners, e machines; performance cory of reaction machines; s and Kaplan turbines; c runners. Hydrodynamic	Remember Apply Analysing Hours	
CO1 CO2 CO3 Modu	Descri Apply in hyd Carry ule Int Cla Imp cha per the pun	Cour ne course, the stu be: different typ knowledge of rodynamic mac out analysis and roduction to H ssification of pulse turbines; rracteristics, Re formance char ory of cavitation nps; classificat	dents will be a pes of hydrod mathematics hine design. d interpret res <b>Mod</b> <b>Iydrodynam</b> turbines an general theo action turbin racteristics, on flows in ion of pumps	(CO) with Bloadble to, dynamic mach dynamic mach s, science, and sults. Iule Contents ic Machines d various for ory of impulse es; general the types; Franci hydrodynamic s and various	rms of turbine runners, e machines; performance sory of reaction machines; s and Kaplan turbines; e runners. Hydrodynamic forms of pump impellers;	Remember Apply Analysing Hours	
CO1 CO2 CO3 Modu	Descrii Apply in hyd Carry ule Int Cla Imp cha per the pun ger	Cour ne course, the stu be: different tyj knowledge of rodynamic mac out analysis and roduction to H assification of pulse turbines; aracteristics, Re formance chan ory of cavitation nps; classificat ueral theory of c	dents will be a pes of hydrod mathematics hine design. d interpret res <b>Mod</b> lydrodynam turbines an general theo action turbin racteristics, on flows in ion of pumps centrifugal pu	(CO) with Bloc able to, lynamic mach s, science, and sults. Iule Contents ic Machines id various fo ory of impulse es; general the types; Franci hydrodynamic s and various imps; perform	om's Taxonomy Level ines and its components. l engineering for the needs rms of turbine runners, e machines; performance cory of reaction machines; s and Kaplan turbines; c runners. Hydrodynamic	Remember Apply Analysing Hours 7	

	exit blade angles, blade geometry, mixed flow pumps, elementary	
	pump, design of twisted blade, design of volute, vaned diffuser and return passage, suction spiral.	
III	Axial flow pumps, selection of speed, pump casing geometry hub diameter, number of blades and cascade solidity, selection of blade geometry on different flow surfaces, diffuser design.	6
IV	Introduction to hydraulic turbine design, Type series and diameter series, selection of type and diameter, Reaction turbine runner spaces, meridional velocity field, elementary turbines, Hydraulic design of Francis turbine, Choice of basic parameters, Inlet and Outlet edges of runner blade, blade profiles on flow surfaces, shape of blade duct-velocity diagrams on different flow surfaces, certain guide lines to finalize the runner design, Guide wheel, Vane geometry and torque on controlling mechanism, Discharge and circulation, spiral, speed ring, draft tube.	8
V	Hydraulic design of axial turbine runners, characteristics of some aerofoils, meridional flow field, blade geometry on each flow surface, procedure to finalize the runner design.	7
VI	Hydraulic design of pelton wheel, number of nozzles and their diameter, runner diameter, number of buckets, positioning of buckets, bucket geometry and size,- needle regulator, deflector.	7
	Text Books	
1	Nechleba M., "Hydraulic Turbine their Design and Equipments", Consta	ble & Co., 1957
2	Lazarkieniz & Troskolanrkis, "Impeller Pumps", Pergamon Press, 1st ed	
3	Robinson J.A., "Hydraulic Engineering", Jaico Publishing House, Bom 1998	
	D. f	
1	References           Andre Kovats, "Design and Performance of Centrifugal & Axial Compressors", Pergamon, 1st edition. 1964.	flow pumps a
2	Stapanoff, A.J., "Centrifugal & Axial Flow Pumps", John Wiely, Rev e	d, 1993.
3	Editor Brown, J.G., "Hydroelectric Engineering Practice", Vol-I & II, 1s	t, edition,1958.
	Useful Links	
1	https://nptel.ac.in/courses/112/105/112105206/	

CO-PO Mapping							
	Programme Outcomes (PO)						
	1	2	3	4	5	6	
CO1	1	1	1	1	2	1	
CO2		2	1	3	3	2	

CO3			2	3	2	2		
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High								
Each CO	of the course mu	ust map to at leas	st one PO.					

#### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember	10	10	20	40			
2	Understand							
3	Apply	10	10	20	40			
4	Analyze			20	20			
5	Evaluate							
6	Create							
	Total 20 20 60 100							

		Walc		ge of Engin	eering, Sangli us Institute)	
			(	Y 2021-22		
			Cou	rse Informatio	)n	
Progr	amme		M. Tech. (Me	echanical Heat	and Power Engineering)	
	Semester			Tech., Sem I		
Cours	se Code		5HP515			
Cours	se Name		Air-Condition	oning System	Design	
Desire	ed Requisi	tes:	Thermodyna	amics, Fluid	Mechanics, Heat Transfer, Re	frigeration
			and Air-Cor	nditioning.		
	Teaching	Scheme		Exami	nation Scheme (Marks)	
Lectu		3 Hrs/week	T1	T2		FOTAL
Tutor		-	20	20	60	100
Pract	ical	-				
Intera	action	-			Credits: 3	
			Cou	rse Objective	S	
1	To enabl	e the students	to analyze an	d solve air co	nditioning related problems by	applying
1	principle	es of mathemat	tics, science a	nd engineerin	lg.	
2				tools, techni	ques and skills to fulfil indus	trial needs
		o low temperat				
3			n effective co	ommunication	n skills to demonstrate air co	nditioning
4	theories.		analyzia of a	ir conditionir	a systems in research or desig	
					ng systems in research or desig earning in the air conditioning	
5					ssociated with engineering practice	
	une avrai				i's Taxonomy Level	
At the	end of the	course, the stud		,	·	
CO1	Apply k air-cond	-	mathematics,	science and	engineering for the needs in	Apply
CO2			Conditioning	systems and t	heir characteristics.	Analyze
					e report in the field of	Evaluate
CO3	Air-Con	ditioning.		•	-	
Modu	ıle		Мо	dule Contents		Hours
Ι	Mois proce and psych proce facto psych	esses, Air Was water vapour nometric table esses and their r. Air qualit nometric syste	her, Adiabatio mixtures and charts, analysis, SHI y required. em. Load Ar	c Saturation. Definitions, Enthalpy de G, effective su Analysis of aalysis: Insid	Chart, Various Psychometrics Fundamental properties of air equations and explanations, eviation curve, psychometric rface temperature and bypass combination of processes e design conditions, outside nt heat loads, heat gains from	7

	infiltration ventilation solar radiation from walls accurate and other	
	infiltration ventilation, solar radiation from walls, occupants and other sources. Heating load, Load estimation chart.	
	Summer and Winter Air Conditioning	
II	Air conditioning processes-RSHF, summer Air conditioning, Winter Air conditioning, Applications with specified ventilation air quantity- Use of ERSHF, Application with low latent heat loads and high latent heat loads, performance and selection.	6
III	Heating & Cooling Load Calculations Introduction, Health & comfort criteria, thermal comfort, air quality, estimating heat loss & heat gain, design conditions, thermal transmission, infiltration & ventilation loads, components of cooling load, internal loads, solar load through transparent surfaces, opaque surfaces, problems. Selection of components and system performance.	7
	Air Distribution	
IV	Flow through Ducts, Static & Dynamic Losses, Air outlets, Duct Design–Equal Friction Method, Duct Balancing, Indoor Air Quality, Thermal Insulation, Fans & Duct System Characteristics, Fan Arrangement	6
	Variable Air Volume systems, Air Handling Units and Fan Coil units.Air Handling Equipments	
V	Fans, air conditioning apparatus, unitary equipment, accessory equipment, Classification – all air- system, air water system, heat recovery system, radiation panel system, heat pump, air washers. noise control.	6
	Industrial Applications of A.C	
VI	Major uses of air conditioning of medium sized & large buildings, industrial air conditioning, residential air conditioning, air conditioning of vehicles, food storage & distribution, food processing, pharmaceutical, chemical & process industry, special applications of air conditioning.	7
	Text Books	
1	Manohar Prasad, "Refrigeration & Air Conditioning", New Age Publishers.	
2	Stoecker, "Refrigeration & Air Conditioning", McGraw Hill, 1992.	
3	Arora C.P., "Refrigeration & Air Conditioning", Tata McGraw Hill, 1985.	
4	"Refrigeration and air-conditioning", ARI, Prentice Hall, New Delhi, 1993.	
5	Stoecker, "Design of Thermal Systems", McGraw Hill, 1992.	
	References	
	"Handbook of air-conditioning system design", Carrier Incorporation, McC	iraw H
1	Book Co., U.S.A, 1965.	
2	ASHRAE Handbook.: HVAC Systems and Equipment, 1996.	
3	Hainer R.W., "Control Systems for Heating, Ventilation and Air-Conditioni Nostrand	ng", Va
4	Norman C. Harris, "Modern Air Conditioning", New York, McGraw-Hill, 197	4.

5	Jones W.P., "Air Conditioning Engineering", Edward Arnold Publishers Ltd., London,1984.								
	Useful Links								
1	https://youtu.be/e2IryaMQQ6A								
2	https://youtu.be/YUgN5D-bmpg								
3	3 https://youtu.be/Dj8ATzgrxyA								
4	https://youtu.be/nvUhiXD63Eg								

CO-PO Mapping									
		Programme Outcomes (PO)							
	1	2	3	4	5	6			
CO1	1	2	3	4	5	6			
CO2			3						
CO3			2	2					
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High								

Each CO of the course must map to at least one PO.

### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course								
E	Bloom's Taxonomy Level	T1	T2	ESE	Total				
1	Remember								
2	Understand								
3	Apply	10	10	20	40				
4	Analyze	10	10	20	40				
5	Evaluate			20	20				
6	Create								
	Total 20 20 60 100								

			Walcl			neering, Sangli	
	(Government Aided Autonomous Institute) AY 2021-22						
					rse Information	o <b>n</b>	
Progra	amn	ne		1		and Power Engineering)	
Class,				,	Tech., Sem I	6_6/	
Cours				5HP516			
Cours	e Na	me		Gas Turbine	es		
Desire	d R	equisit	es:	Thermodyna	amics,Fluid N	Aechanics	
	Too	hing	Scheme		Evami	nation Scheme (Marks)	
Lectur			3 Hrs/week	T1	T2	ESE	TOTAL
Tutori			J 1115/ WCCK	20	20	60 ESE	101AL 100
Practi			-	20	20	00	100
Intera		n	-			Credits: 3	
Intera							
				Cou	ırse Objective	2S	
	То	enab	le the students		Ū	as turbine related problem	s by applying
1			es of mathemat	•	U	1	s of opping
2						ques and skills to fulfill in	dustrial needs
			o gas turbine s				
3						kills to demonstrate gas tur	
4						stems in research or design	
5					-	learning in the gas turbine	
	aw	arenes				viated with engineering practive processing of the process of the	suces.
At the	end	of the	course, the stud				
						engineering for designing	gas Apply
CO1			ystems.	,	,		
CO2	<u> </u>		different gas t				Analyze
CO3	<u> </u>	aluate	the performan				Evaluate
Modu	le				dule Contents	S	Hours
			<b>Furbine Plant</b>				.
				•	•	f practical gas turbine cycl	
		The turboprop engine. The compressor, combustor, turbine and exhaust nozzle characteristics. Performance characteristics of the stationary and					
Ι						engine components. Speci	
		-				ht performance at the des	
				-	-	pulse and reaction machin	-
		-		-		and pressure rise. Design	
			ifugal compres				
II		Axial	l Flow Compr	essor:			6

	Principle of operation, velocity triangles. Design procedure for single and				
	multistage compressors. Three dimensional effect compressor performance.				
	Description and problems of transonic and supersonic compressors.				
	Combustion in Gas Turbine:				
	Problem to be faced in the design of gas turbine combustion systems. Fuel				
IV	injection system. Combustion chamber designs. Pressure loss. Temperature	7			
	distribution, Reaction time, Flame stabilization.				
	Turbine Characteristics:				
V	Off design performance of gas turbine plant, matching of the engine	7			
•	components, equilibrium running diagram. Specific thrust and specific fuel				
	consumption in such cases for stationary turbojet and turboprop units.				
VI	Materials used in Gas Turbine system, Environmental Considerations and				
	Applications, Failure analysis.	5			
	Text Books				
1	V. Ganesan "Gas Turbine" Tata McGraw-Hill Education, 2ndedi. ,2003				
	References				
1	Cohan, Rogers "Gas Turbine" Person, 5th edition. ,2001				
2	Dr.Meherwan P. Boyce, P.E "Gas Turbine Engineering" Handboo edition, 2011.	ok, 3rd			
3	Earl Logan "Handbook of Turbomachinery" CRC press, 2003.				
	Useful Links				
1	https://nptel.ac.in/courses/112/103/112103262/				

CO-PO Mapping							
Programme Outcomes (PO)							
1	2	3	4	5	6		
2				2			
2			2	2			
2					2		
	1 2 2 2 2	1         2           2					

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level	T1	Т2	ESE	Total			
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total	20	20	60	100			

		V			<b>Engineering, Sangli</b> utonomous Institute)	
				AY 20	· · ·	
				Course In	formation	
Progra	amm	ie	M. Tech. (	Mechanical	Heat and Power Engineerin	g)
Class, Semester     First Year M. Tech., Sem I						
Cours	e Co	de	5IC501			
Cours	e Na	me	Value Edu	cation		
Desire	d Re	equisites:				
		ning Scheme		1	Examination Scheme (Mark	
Lectu		2 Hrs./week	T1	T2	ESE	Total
Tutori		-	20	20	60	100
Practi Intera		-			Credits: 0	
intera	cuor	1 -			Creans: 0	
				Course O	biectives	
1	То	impart knowledge	on value of		nd self- development.	
2		imbibe good value				
3		highlight importa				
				. ,	h Bloom's Taxonomy Level	
	1	of the course, the stu			-	
CO1		plain the value of				Understanding
CO2 Modu		mmarize importan		odule Conte	d Behavior development.	Understanding Hours
WIUUU		1 Values and selt			alues and individual attitud	
		Work ethics,			and marviadar attitud	105.
Ι		Indian vision of h	6			
		2. Moral and non-				
		3. Value judgment				
		1. Importance of c				
		2. Sense of duty. Truthfulness,	Devotion,	Sell-reliance	e. Confidence, Concentrati	on.
II		Cleanliness.				6
		3. Honesty, Huma	nity. Power	of faith, Nat	ional Unity.	
		4. Patriotism. Lov	•		5	
		1. Personality and	Behavior I	Development	t - Soul and Scientific attitu	de.
		Positive				
		Thinking. Integrit	• •			
		<ol> <li>Punctuality, Lo</li> <li>Avoid fault Thi</li> </ol>		ness.		
III		4. Free from ange	-	labour.		7
		5. Universal broth			erance.	
		6. True friendship		C		
		7. Happiness Vs s				
		8. Aware of self-d	estructive ha	abits.		

	9. Association and Cooperation.					
	10. Doing best for saving nature					
	1. Character and Competence –Holy books vs Blind faith.					
IV	2. Self-management and Good health.					
	3. Science of reincarnation.					
	4. Equality, Nonviolence, Humility, Role of Women.	7				
	5. All religions and same message.					
	6. Mind your Mind, Self-control.					
	7. Honesty, Studying effectively					
	Text Books					
1	Chakroborty, S.K. "Values and Ethics for organizations Theory and	l practice", Oxf	ord			
1	University Press, New Delhi					
	References					
1	https://www.tripurauniv.ac.in/Content/pdf/StudyMaterialsDetail/MA%20H	Education%203rd	1%			
1	20Semester/EDCN-901C-Value%20Education.pdf					
2	https://www.dypiemr.ac.in/images/value-added-courses/vac/Content-for-V	alue-Education.p	odf			
	Useful Links	-				
1	https://www.youtube.com/watch?v=JK59OcZv8H4					
2	https://www.youtube.com/watch?v=XqQCI ZhtxA					

CO-PO Mapping					
Programme Outcomes (PO)					
1	2	3	4	5	6
	1	1 2			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

### **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course					
Bloom's Taxonomy Level		T1	T2	ESE	Total	
1	Remember					
2	Understand	20	20	60	100	
3	Apply					
4	Analyze					
5	Evaluate					
6	Create					
	Total	20	20	60	100	

		Walc		t Aided Autono	/	
				AY 2021-22	2	
			Co	ourse Informa	ition	
Progr	amme		M. Tech. (N	Iechanical He	at and Power Engineering)	
Class,	, Semester		First Year M	I. Tech., Sem	II	
Cours	se Code		5HP521			
Course Name		Advanced Heat Transfer				
Desire	ed Requisi	tes:	Basic heat t	ransfer		
	Teaching S	1	754		nination Scheme (Marks)	
Lectu		3 Hrs/week	T1	T2	ESE	Total
Tutor		-	20	20	60	100
Pract		-				
Intera	action	-	Credits: 3			
			С	ourse Object	ives	
1	-	To provide the student with general techniques to formulate, model and mathematicall solve advanced heat transfer problems;				mathematically
2	advance enginee	provide the student with a detailed, but not exhaustive, presentation of selected anced topics in convective heat transfer that are representative of "real world" ineering problems;				
3	To introduce basic numerical methods and software tools for solving heat transfer problems.					
4	To use appropriate analytical and computational tools to investigate heat and mast transport Phenomena.					
		Course	Outcomes (	CO) with Blo	om's Taxonomy Level	
At the	end of the	course, the stu	dents will be	able to		
CO1	to mak	te the appro	priate choi	ce between	heat transfer and an ability exact and approximate er in complex systems.	
CO2	Identify	the analogy and identify	of flow and	momentum	diffusion to heat and mass aracter of real-life thermal	Remember

CO2	transfer and identify the interdisciplinary character of real-life thermal	Remember
	engineering.	
CO3	Analyse heat transfer in complex internal flow systems and in boundary layers and external flow configurations	Analyzing
Modu	Module Module Contents	
Ι	Conduction- One and Two Dimensions.	7
II	II Fins, conduction with heat source, unsteady state heat transfer.	
III	Natural and forced convection, integral equation, analysis and analogies.	6

IV	Transpiration cooling, ablation heat transfer, boiling, condensation and two phase flow mass transfer, cooling, fluidized bed combustion.	6			
V	Heat pipes, Radiation, shape factor, analogy, shields.				
VI	Radiation of gases, vapors and flames, Network method of analysis for Radiation Problem.	7			
	Text Books				
1	S. P. Sukhatme, " A TextBook on Heat Transfer", Universitie Edition,2006.	es Press, 4th			
2	Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata Mcc Edition, 2006.	Graw Hill, 3rd			
3	Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publications, 2nd Edition, 2007.				
4	P. K Nag, "Heat and Mass transfer", Tata McGraw Hill, 2nd Edition.				
	References				
1	Eckert and Drabe, "Analysis of Heat and Mass Transfer", McGraw Hill Higher Education, 2003.				
2	H. Schlichting, K. Gersten, "Boundary Layer Theory" Springer, 8th ed	lition, 2000.			
3	J. P. Holman, "Heat Transfer", McGraw Hill Book Company, New Yor	k, 1990.			
4	Frank Kreith,"Principles of Heat Transfer", Harper and Row Publishe 1973.	rs, New York,			
5	Donald Q. Kern, "Process Heat Transfer", Tata McGraw Hill Publishing Company Ltd., New Delhi, 1975.				
6	R. C. Sachdeva, "Fundamentals of Engineering Heat and Mass Tra Eastern Ltd., India.	nsfer", Wiley			
7	Latif M. Jiji, "Heat Conduction", Springer, 3rd edition, 2009.				
	Useful Links				
1	https://nptel.ac.in/courses/112/101/112101001/				
2	https://nptel.ac.in/courses/112/105/112105271/				

CO-PO Mapping								
	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1	1		1					
CO2		2		2				
CO3		1						
The streng	gth of mapping i	s to be written a	s 1,2,3; Where,	1:Low, 2:Mediu	ım. 3:High			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

#### Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on

modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
B	Bloom's Taxonomy Level T1 T2 ESE Total						
1	Remember	5	5	10	20		
2	Understand	10	10	20	40		
3	Apply						
4	Analyze	5	5	30	40		
5	Evaluate						
6	Create						
	Total 20 20 60 100						

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)			
	AY 2021-22			
	Course Information			
ProgrammeM. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester First Year M. Tech., Sem II				
Course Code 5HP522				
Course Name Steam Engineering				
Desired Requisites: Basic heat transfer				

Teaching Scheme		Examination Scheme (Marks)				
Lecture	3 Hrs/week	T1	T2	ESE	Total	
Tutorial	-	20	20	60	100	
Practical	-					
Interaction -				Credits: 3		

	Course Objectives				
1	To analyze different types of steam cycles and estimate efficiencies in a steam plant.				
2	To design pipe insulation through proper selection of materials with the hel transfer theory.	p of basic heat			
3	To access boiler performance for different loading conditions.				
4	To develop a professional approach for lifelong learning in steam enginee the awareness of social and environmental issues associated with engineerin				
	Course Outcomes (CO) with Bloom's Taxonomy Level				
At the	end of the course, the students will be able to				
CO1	Explain working of different boilers and significance of mountings and accessories. and to use techniques, skills, and modern engineering tools necessary for boiler performance assessment				
CO2	Design a steam piping system, its components for a process and also design economical and effective insulation. And to analyse a thermal system for sources of waste heat design a systems for waste heat recovery	Applying			
CO3	Design and develop controls and instrumentation for effective monitoring of the process	Analyzing			
Modu	le Module Contents	Hours			
Ι	Module 1IntroductionFundamentals of steam generation, Quality of steam, Use of steam tableMollier Chart Boilers, Types, Mountings and Accessories, Combustionboilers, Determination of adiabatic flame temperature, quantity of flagases, Feed Water and its quality, Blow down; IBR, Boiler standards.	in 7			
Π	Module 2 Piping & InsulationWater Line, Steam line design and insulation; Insulation-types and application, Economic thickness of insulation, Heat savings and application criteria, Refractory-types, selection and application refractory, Heat loss.	nd 8			

III	<b>Module 3</b> Steam Systems Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Steam Engineering Practices; Steam Based Equipment's Systems.	8
IV	Module 4 Boiler Performance Assessment Performance Test codes and procedure, Boiler Efficiency, Analysis of losses; performance evaluation of accessories; factors affecting boiler performance.	8
V	Module 5 Energy Conservation and Waste MinimizationEnergy conservation options in Boiler; waste minimization,methodology; economic viability of waste minimization.	5
VI	Module 6 Instrumentation & ControlProcess instrumentation; control and monitoring. Flow, pressure and temperature measuring and controlling instruments, its selection.	6
	Text Books	
1	T. D. Estop, A. McConkey, Applied Thermodynamics, Parson Publication.	
2	Domkundwar; A Course in Power Plant Engineering; Dhanapat Rai and Sor	18.
3	Yunus A. Cengel and Boles, "Engineering Thermodynamics ", Tata Mo Publishing Co. Ltd.	
	References	
1	Energy Performance Assessment for Equipment & Utility Systems; Bureau Efficiency.	ı of Energy
2	P. Chatopadhyay; Boiler Operation Engineering: Questions and Ans McGrawHill Education Pvt Ltd, N Delhi	swes; Tata
3	Edited by J. B. Kitto& S C Stultz; Steam: Its Generation and Use; The Ba Wilcox Company.	bcock and
	Useful Links	
1	https://nptel.ac.in/courses/112/107/112107216/	

CO-PO Mapping									
		Programme Outcomes (PO)							
	1 2 3 4 5 6								
CO1	1	1	2	1	2	1			
CO2	1	1	1	3	2	2			
CO3	1	1	2	3	3	2			
The stren	oth of manning i	s to be written a	s 1 2 3. Where	I.I. ow 2. Medium	n 3.High	1			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

## Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
B	Bloom's Taxonomy Level T1 T2 ESE Total						
1	Remember	5	5	10	20		
2	Understand						
3	Apply	10	10	20	40		
4	Analyze	5	5	30	40		
5	Evaluate						
6	Create						
	Total 20 20 60 100						

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)			
	AY 2021-22			
	Course Information			
Programme         M. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester First Year M. Tech., Sem II				
Course Code 5HP571				
Course Name Activity Based Lab for Th course 3				
Desired Requisites: Advanced Heat Transfer				

Teaching	Scheme	Examination Scheme (Marks)			
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	2 Hrs/Week		-	2	2
Interaction -				Credits: 1	

	Course Objectives					
1	To provide an opportunity to a student to do work independently on a topic/ problem experimentation selected by him/her and encourage him/her to think independently on	his/her				
	own to bring out the conclusion under the given circumstances and limitations.					
2	To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.					
3	To enable students for technical report writing and effective presentations.					
_	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, students will be able to,					
CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply				
CO2	Design and develop suitable mechanical thermal systems	Create				
<b>CO3</b>	Prepare and present a detailed technical report based on the activity completed	Evaluate				
	Course Content					
	on of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing is or simulation of a process/ experimental verification of principles in thrust areas of a ansfer.					
	Text Books					
1	Suitable books based on the contents of the activity selected.					
	References					
1	Suitable books based on the contents of the activity selected and research papers fr reputed national and international journals and conferences.	om				
	Useful Links					
1	As per the need of the activity.					

			CO-PO Mappi	ng		
			Programme O	utcomes (PO)		
	1	2	3	4	5	6
CO1	3					
CO2			3			
CO3		3				
The streng	gth of mapping i	s to be written	as 1,2,3; Where,	1:Low, 2:Mediu	m, 3:High	
Each CO o	of the course mu	st map to at lea	ast one PO.			

Assessment					
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.					
Assessmen	Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) Mark				
t				s	
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30	
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30	
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50	
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40	
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	

Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)					
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total	
Remember					
Understand					
Apply	15	15	15	45	
Analyze					
Evaluate	15	15	15	45	
Create			10	10	
Total Marks	30	30	40	100	

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
AY 2021-22				
	Course Information			
Programme	Programme         M. Tech. (Mechanical Heat and Power Engineering)			
Class, Semester	Class, Semester First Year M. Tech., Sem II			
Course Code	5HP572			
Course Name	Course Name Activity Based Lab for Theory course 4			
Desired Requisites: Steam Engineering				

Teaching Scheme			Examin	ation Scheme (Marks)		
Lecture	-	LA1	LA1 LA2 ESE Total			
Tutorial	-	30	30	40	100	
Practical	2 Hrs/Week		-	2	2	
Interaction	-	Credits: 1				

Course Objectives         1       To provide an opportunity to a student to do work independently on a topic/ problem experimentation selected by him/her and encourage him/her to think independently on his/her own to bring out the conclusion under the given circumstances and limitations.         2       To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.         3       To enable students for technical report writing and effective presentations.         Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to, engineering       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         Course Content						
1       experimentation selected by him/her and encourage him/her to think independently on his/her own to bring out the conclusion under the given circumstances and limitations.         2       To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.         3       To enable students for technical report writing and effective presentations.         Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to,         Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to,         Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to,         Course Course Course Content         CO1       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         Course Content         Create         Text Books         autistic protype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ exp		Course Objectives				
2       completing the activity, through observations, discussions and decision making process.         3       To enable students for technical report writing and effective presentations.         Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to,       Apply         CO1       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         CO2       Design and develop suitable mechanical thermal systems       Create         CO3       Prepare and present a detailed technical report based on the activity completed       Evaluate         Text Books         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.       Implete selected and research papers from reputed national and international journals and conferences.	1	experimentation selected by him/her and encourage him/her to think independently on his/her				
Course Outcomes (CO) with Bloom's Taxonomy Level         At the end of the course, students will be able to,       Apply         C01       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         C02       Design and develop suitable mechanical thermal systems       Create         C03       Prepare and present a detailed technical report based on the activity completed       Evaluate         Course Content         Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.         Ital Books         1       Suitable books based on the contents of the activity selected.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links	2					
At the end of the course, students will be able to,       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         C02       Design and develop suitable mechanical thermal systems       Create         C03       Prepare and present a detailed technical report based on the activity completed       Evaluate         Course Content         Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.	3	To enable students for technical report writing and effective presentations.				
CO1       Solve field problems by using different techniques in mechanical heat and power engineering       Apply         CO2       Design and develop suitable mechanical thermal systems       Create         CO3       Prepare and present a detailed technical report based on the activity completed       Evaluate         Course Content         Course Content         Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.         Text Books         1       Suitable books based on the contents of the activity selected.         Impleted Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.		· · ·				
CO1       engineering       Intervent of the sector of the sector of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.       Intervent of the sector of the secto	At the					
CO3       Prepare and present a detailed technical report based on the activity completed       Evaluate         Course Content         Course Content         Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.         Text Books         1       Suitable books based on the contents of the activity selected.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links	CO1		Apply			
Course Content         Course Content         Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.         Text Books         1       Suitable books based on the contents of the activity selected.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links	CO2	Design and develop suitable mechanical thermal systems	Create			
Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.           Text Books           1         Suitable books based on the contents of the activity selected.           References           1         Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.	CO3	Prepare and present a detailed technical report based on the activity completed	Evaluate			
Creation of prototype/ apparatus/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of steam engineering.           Text Books           1         Suitable books based on the contents of the activity selected.           References           1         Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.						
experimental verification of principles in thrust areas of steam engineering.          Text Books         1       Suitable books based on the contents of the activity selected.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links		Course Content				
1       Suitable books based on the contents of the activity selected.         References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links			ocess/			
References         1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links		Text Books				
1       Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.         Useful Links	1	Suitable books based on the contents of the activity selected.				
reputed national and international journals and conferences. Useful Links		References				
1 As per the need of the activity.		Useful Links				
	1	As per the need of the activity.				

			CO-PO Mappi	ng		
			Programme O	utcomes (PO)		
	1	2	3	4	5	6
CO1	2	2				
CO2	3	2			3	
CO3		2				
The stren	gth of mapping i	s to be written	as 1,2,3; Where, 1	L:Low, 2:Mediu	ım, 3:High	
Each CO c	of the course mu	st map to at le	ast one PO.			

Assessment					
There are three	ee components of lab a	assessment, LA1,	LA2 and Lab ESE.		
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.	
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark	
t				s	
т а 1	Lab activities,	Lab Course	During Week 1 to Week 6	20	
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30	
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20	
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30	
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40	
attendance, journal Faculty Marks Submission at the end of Week 18					
Week 1 indic	Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,				

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)				
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand				
Apply	15	15	15	45
Analyze				
Evaluate	15	15	15	45
Create			10	10
Total Marks	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)			
	AY 2021-22		
	Course Information		
Programme	M. Tech. (Mechanical Heat and Power Engineering)		
Class, Semester	First Year M. Tech., Sem II		
Course Code	5HP573		
Course Name Industrial Project			
<b>Desired Requisites:</b>	Desired Requisites: Domain knowledge of mechanical engineering		

Teaching Scheme			<b>Examination Sche</b>	eme (Marks)		
Lecture	-	LA1	LA1 LA2 ESE Total			
Tutorial	-	30	30	40	100	
Practical	-					
Interaction	2 hr/week	Credits: 2				

	Course Objectives				
1	To Review and increase students' understanding of the specific topics				
2	To induce Learning management of values				
3	To teach how research papers are written and read such papers critically and efficiently and to summarize and review them to gain an understanding of a new field, in the absence of a textbook				
4	To teach how to judge the value of different contributions and identify promising new directions in specified area				
	Course Outcomes (CO) with Bloom's Taxonomy Level				

At the end of the course, students will be able to,

_			
(	C <b>O</b> 1	Apply the existing knowledge on real life problems	Apply
	C <b>O2</b>	Investigate the selected topic/ system	Analyze
	C <b>O3</b>	Verify the outcomes of the work have solved the specified problems	Evaluate

#### **Course Content**

The industrial project work will start in semester II and should be an industrial problem with research potential and should involve scientific research review, design, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Students should undergo industrial projects in a registered company/organization after consulting with the faculty guide assigned by the department. Industrial projects should be based preferably in the area in which the candidate is interested to undertake the dissertation work. The student has to be in regular contact with the guide and the topic of the industrial project must be mutually decided. The examination shall consist of the preparation of a report consisting literature review, detailed problem statement, methodology, etc, according to the type of work carried out. The work has to be presented in front of the examiners panel formed by DPGC for evaluation.

#### **Text Books**

1

As per topic Selected and Journal papers, Conference papers, Handbooks

#### References

1	1 As per topic Selected and Journal papers, Conference papers, Handbook					
	Useful Links					
1	1 https://www.entrepreneurindia.co/complete-project-list					
2	https://medium.com/@ThePensters/how-to-write-an-industrial-visit-report-4be6fdbbd1f7					

CO-PO Mapping							
			Programme C	Outcomes (PO)			
	1	2	3	4	5	6	
CO1	2	2	1				
CO2	3				1		
CO3		3			2		
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High							
Each CO of	the course mus	t map to at lea	st one PO.				

Assessment There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation. Assessmen **Based** on Conducted by Typical Schedule (for 26-week Sem) Mark t S Lab activities, Lab Course During Week 1 to Week 6 LA1 30 attendance, journal Faculty Marks Submission at the end of Week 6 Lab activities, Lab Course During Week 7 to Week 12 LA2 30 attendance, journal Faculty Marks Submission at the end of Week 12 Lab activities, Lab Course During Week 15 to Week 18 Lab ESE 40 attendance, journal Faculty Marks Submission at the end of Week 18 Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab

activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	15	15	15	45		
Analyze	15	15	15	45		
Evaluate			10	10		
Create						
Total Marks	30	30	40	100		

V	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
	AY 2021-22					
	Course Information					
Programme	M. Tech. (Mechanical Heat and Power Engineering)					
Class, Semester	First Year M. Tech., Sem II					
Course Code	5HP574					
Course Name	Professional Skills 2					
Desired Requisites:						

Teaching Scheme		Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical -					2	
Interaction	1 Hr/Week		Credit	s: 1		

	Course Objectives					
1	1 To provide a hands on experience of software for 3D modelling					
2	To enhance the employability of mechanical heat and power engineering students.					
	Course Outcomes (CO) with Bloom's Taxonomy Level					

At the end of the course, students will be able to,

<b>CO1</b>	CO1 Use of the software related to 3D modelling effectively.	
CO2	Develop the solution for mechanical engineering problems using the software.	Create

#### **Course Content**

This course is based on computers as a tool to design and analyse the thermal system. In the modern day work environment, the thermal Engineer should be able to simulate and solve complex problems on computers. The thermal Engineer must be highly computer literate. The engineer with strong fundamentals in thermal Engineering and computer software proficiency is highly in demand from industry. Employability of the student can be enhanced by providing software training of 3D modelling softwares in mechanical engineering.

	Text Books							
1	Suitable books based on the software selected.							
	References							
1	Suitable books based on the contents of software selected							
	Useful Links							
1	As per the need of the software training							

			CO-PO Map	ping		
	Programme Outcomes (PO)					
	1 2 3 4 5 6					6
CO1						2

CO2						2
The streng	gth of mapping i	is to be written a	s 1,2,3; Where,	l:Low, 2:Mediur	n, 3:High	
Each CO	of the course mi	ust map to at leas	st one PO.			

Assessment							
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.							
Assessmen	Typical Schedule (for 26-week Sem)	Mark					
t				s			
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6				
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	Mark s			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30			
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lau ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40			
Week 1 indic	Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,						

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)							
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total			
Remember							
Understand							
Apply	15	15	20	50			
Analyze							
Evaluate							
Create	15	15	20	50			
Total Marks	30	30	40	100			

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
AY 2021-22					
Course Information					
Programme         M. Tech. (Mechanical Heat and Power Engineering)					
Class, Semester First Year M. Tech., Sem II					
Course Code	5HP523				
Course Name	Course Name Internal Combustion Engine Design				
Desired Requisites: Thermodynamics, Heat Transfer					

Teaching	g Scheme		Examinatio	n Scheme (Marks)	
Lecture	2 Hrs/week	T1	T2	ESE	Total
Tutorial	-	20	20	60	100
Practical	-				
Interaction	-	Credits: 2			

	Course Objectives					
1	To enable the students to analyze and solve I.C.Engine related problems by applying principles of mathematics, science and engineering.					
2	To prepare students to use modern tools, techniques and skills to fulfill industrial needs related I.C.Engine systems.					
3	To train students with effective communication skill to demonstrate I.C.Engine theories.					
4	To develop skills in the analysis of I.C.Engine systems in research or design.					
5	To develop a professional approach to lifelong learning in the I.C.Engine t awareness of social and environment issues associated with engineering pract					
	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, the students will be able to					
CO1	Apply the knowledge of mathematics, science, and engineering for the needs in I.C. Engine.					
CO2						
CO3	Evaluate performance of I.C. Engines under different conditions and Evalu interpret the reports.					
Modu		Hours				
Ι	Introduction to Engine Design: Engine selection, basic data for design like power torque, speed, mean effective pressure, air consumption, fuel consumption, stroke to bore ratio, heat distribution, exhaust temperature, power to weight ratio,	5				
II	<b>Design Considerations:</b> Combustion chamber design considerations for S.I. and C.I. engines. Thermal and Mechanical design of cylinder, piston, piston rings, cylinder head, valves, Mechanical design of connecting rod, crankshaft and crank case.	5				
III	Simulation of LC Engine Processes					

	1							
	combustion process mod	model, gas ex lel	change proces	ss model and	heat transfer			
IV	<ul> <li>Carburetion and Injection:</li> <li>Carburetion Mixture characteristics ,distribution, Carburetor systems, Carburetor and stratified charge engines, S.I. Engine fuel injection system and type, Modern Carburetor designs and air Pollution control, altitude compensation.</li> <li>Injection Systems: Design, Bosch distribution pump, Cummins- P-T injection system, Spray characteristics ,quantity of fuel per cycle, types of nozzles, injection timing, fuel line hydraulics,</li> </ul>							
V	Cooling System: Design, Heat transfer in I.C. engines, piston and cylinder temperatures, heat rejected to coolant, comparison of air and water cooling, temperature distribution for air and water cooled engine across the cylinder wall, Ignition System: Requirements, battery ignition, magneto ignition and electronic ignition systems, centrifugal and vacuum advance; spark plug4							
VI	types and selection, firing order and its importance.Other Engine DesignsWankel Engine: Working principle, engine geometry, engine scaling, lubrication, cooling, induction, ignition systems, combustion in rotary engine, performance, advantages and applications3							
1	I D Haumaa	d I C Engina I	Text Books		Lill Dub 1st ad	ition 1008		
2		'Internal Com			Hill Pub.1st ed Graw Hill Boo			
	<b>1 1</b>		References					
1		nternal Combu st edition 1973.		s and Air Pol	lution", In-text	t Educational		
2	Colin Fergu Publication.	sson, Allan	Kirkpatrick,	"Internal Co	mbustion Eng	ines" Wiley		
3	P. M. Heldt, "	High Speed Co	ombustion Eng	ines", Chilton	company 4th ec	lition 1956.		
			Useful Links	5				
	https://pptal.ag.in	/courses/107/10	6/107106000/					
1	nups.//npiei.ac.m	/courses/10//10						
1	nttps://nptei.ac.m	/courses/10//10	CO-PO Map					
1			<b>CO-PO Mapj</b> Programme (	Dutcomes (PO)				
	1	2	CO-PO Map		5	6		
CO1		2	<b>CO-PO Mapj</b> Programme (	Dutcomes (PO) 4	5 2	6		
CO1 CO2	1		CO-PO Mapj Programme ( 3	Dutcomes (PO)				
CO1 CO2 CO3	<b>1</b>	<b>2</b> 2	CO-PO Mapp Programme ( 3 2	Dutcomes (PO) 4 3	2	<b>6</b> 2		
CO1 CO2 CO3 The streng	1	2 2 to be written as	CO-PO Mapp Programme ( 3 2 1,2,3; Where, 1	Dutcomes (PO) 4 3	2			

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
]	Bloom's Taxonomy Level T1 T2 ESE Total							
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total	20	20	60	100			

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
	AY 2021-22				
Course Information					
Programme         M. Tech. (Mechanical Heat and Power Engineering)					
Class, Semester First Year M. Tech., Sem II					
Course Code	5HP524				
Course Name	Design of Heat Exchangers				
<b>Desired Requisites:</b> Fundamentals of heat transfer and fluid mechanics					

Teaching Scheme		Examination Scheme (Marks)				
Lecture	2 Hrs/week	T1 T2 ESE Total				
Tutorial	-	20	20	60	100	
Practical	-		•			
Interaction	-	Credits: 2				

	Course Objectives					
1	Enable the students to analyze and solve heat exchanger problems by applying of mathematics, science and engineering.	g principles				
2	Prepare students to use modern tools, techniques and skills to fulfill indus related to design of heat exchanger.	strial needs				
3	rain students with effective communication skills to demonstrate heat exchanger neories.					
4	Develop skills in the analysis of heat exchanger with mathematical me applications in research or design.	odeling for				
5	Dayalan a professional approach to lifelong learning in the best evaluations to include the					
	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, the students will be able to					
CO1	Apply fundamental knowledge of mathematics, science, and engineering for the needs in heat exchanger designing.					
CO2	Thermal and Hydraulic design of different types of heat exchangers	Analyzin g				
CO3	Mechanical Design of Heat Exchangers	Evaluatin g				
Modu	le Module Contents	Hours				
Ι	Types of heat exchanger Hrs.Heat Exchangers – Classification according to transfer process, numberof fluids, surface compactness, and construction features. Tubular heatexchanger, plate type heat exchangers, extended surface heat exchangers,heat pipe, Regenerators. Classification according to flow arrangement:counter flow, parallel flow, cross flow exchanger.	4				
II	Heat exchanger design methodology Hrs.Assumption for heat transfer analysis, problem formulation, e-NTUmethod, P-NTU method, Mean temperature difference method, fouling of	4				

	heat exchanger, effects of fouling, categories of fouling, fundamental processes of fouling.	
III	<b>Compact</b> and <b>Double Pipe Heat Exchangers Hrs.</b> Thermal and Hydraulic design of compact heat exchanger. Thermal and Hydraulic design of inner tube, Thermal and hydraulic analysis of Annulus, Total pressure drop.	5
IV	<b>Direct-contact heat exchanger, cooling towers Hrs.</b> Relation between the wet-bulb and dew point temperatures - The Lewis number –Classification of cooling towers cooling-tower internals and the role of fill – Heat exchange heat transfer by simultaneous diffusion and convection - Analysis of cooling towers measurements - Design of cooling towers - Determination of the number of diffusion units -	4
V	Shell and Tube heat exchangers Hrs. Tinker's, kern's, and Bell Delaware's methods, for thermal and hydraulic design of Shell and Tube heat exchangers	5
VI	Mechanical Design of Heat Exchangers Hrs. Design standards and codes, key terms in heat exchanger design, material selection, and thickness calculation for major components such as tube sheet, shell, tubes, flanges and nozzles.	4
	Text Books	
1	Ramesh K. Shah and Dusan P. Sekulic, "Fundamentals of Heat Exchang John Wiley and sons Inc., 2003.	er Design
	References	
1	D.C. Kern, "Process Heat Transfer", McGraw Hill, 1950.	
2	SadikKakac and Hongton Liu, "Heat Exchangers: Selection, Rating and Design" CRC Press, 1998.	d Therma
3	A .P. Frass and M.N. Ozisik, "Heat Exchanger Design", McGraw Hill, 1984	1
4	Afgan N. and Schlinder E.V. "Heat Exchanger Design and Theory Source B	Book".
5	T. Kuppan, "Hand Book of Heat Exchanger Design".	
6	"T.E.M.A. Standard", New York, 1999.	
7	G. Walkers, "Industrial Heat Exchangers-A Basic Guide", McGraw Hill, 19	82.
	Useful Links	
1	https://nptel.ac.in/courses/112/105/112105248/	

	CO-PO Mapping							
	Programme Outcomes (PO)							
	1 2 3 4 5 6							
CO1	3							
CO2	3	2				2		
CO3	3		2	2				

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

#### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level T1 T2 ESE Total							
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total	20	20	60	100			

W	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)				
	AY 2021-22 Course Information				
	Course information				
ProgrammeM. Tech. (Mechanical Heat and Power Engineering)					
Class, Semester First Year M. Tech., Sem II					
Course Code 5HP525					
Course Name Industrial Refrigeration					
Desired Requisites: Thermodynamics, Heat Transfer					

Teaching	g Scheme	Examination Scheme (Marks)					
Lecture	2 Hrs/week	T1 T2 ESE Total					
Tutorial	-	20	20	60	100		
Practical	-						
Interaction	-	Credits: 2					

	Course Objectives							
1	To enable the students to analyse and solve refrigeration related problems b principles of mathematics, science and engineering.	To enable the students to analyse and solve refrigeration related problems by applying principles of mathematics, science and engineering.						
2	To prepare students to use modern tools, techniques and skills to fulfill industrial needs related to refrigeration systems.							
3	To train students with effective communication skill to demonstrate re theories.	frigeration/						
4	To develop skills in the analysis of refrigeration systems in research or design.							
5	To develop a professional approach to lifelong learning in the refrigeration/ to awareness of social and environment issues associated with engineering practice							
	Course Outcomes (CO) with Bloom's Taxonomy Level							
At the	end of the course, the students will be able to							
CO1	Apply knowledge of mathematics, science, and engineering for the needs in Applying Refrigeration							
CO2	Analyse different Refrigeration systems and their characteristics							
CO3	Evaluate the performance of different refrigeration systems	Evaluatin g						
Modu	le Module Contents	Hours						
Ι	Industrial refrigeration as distinguished from comfort air-conditioning, What is industrial refrigeration, Refrigerated storage of unfrozen food, Frozen food, Refrigeration in food processing, freeze drying	4						
II	Carnot cycle, conditions for high cop of Carnot cycle, Steady flow							
III	Reciprocating, scroll and screw compressor: Multistage industrial applications, cylinder arrangement, cooling methods - oil injection	4						

IV	Types of Evaporators, Liquid circulation: Mechanical pumping and gas pumping - advantage and disadvantage of liquid re-circulation - circulation ratio - top feed and bottom feed refrigerant - Net Positive Suction Head (NPSH) - two pumping vessel system - suction risers – design - piping loses. Different Industrial Condensers arrangement	5				
V	Vessels in industrial refrigeration: High pressure receiver - flash tank - liquid and vapor separator - separation enhancers - low pressure receivers - surge drum	4				
VI	Conservation and design considerations - source of losses - critical thickness – insulation cost and energy cost - vapor barriers – construction methods of refrigerated spaces.	5				
	Text Books	Education				
1	C. P. Arora ,"Refrigeration and Air conditioning", Tata Mcgraw Hill Private Limited , third edition,2008.	Education				
2	Wilbert F. Stoecker, Industrial refrigeration handbook, Mcgraw-hill Professional					
	References					
1	Roy J. Dossat "Principals of Refrigeration", Pearson, 4th edition, 2007					
2	ASHRAE Hand Book: Refrigeration, 1998.					
3	ASHRAE Hand Book: HVAC Systems and Equipment, 1996. Journ conditioning and refrigeration- ISHRAE, ASHRAE.	nal of Air				
	Useful Links					
1	https://nptel.ac.in/courses/112/105/112105129/					

CO-PO Mapping										
		Programme Outcomes (PO)								
	1	2	3	4	5	6				
CO1	1			1						
CO2	2		2	2						
CO3			1	2						
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High									

Each CO of the course must map to at least one PO.

#### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
E	Bloom's Taxonomy Level T1 T2 ESE Total							
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			
5	Evaluate			20	20			
6	Create							
	Total 20 20 60 100							

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)			
	AY 2021-22			
	Course Information			
ProgrammeM. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester First Year M. Tech., Sem II				
Course Code 5HP526				
Course Name Cryogenics				
Desired Requisites: Refrigeration and Air Conditioning				

Teaching	s Scheme	Examination Scheme (Marks)					
Lecture	2 Hrs/week	T1 T2 ESE Total					
Tutorial	-	20	20	60	100		
Practical	-						
Interaction	-	Credits: 2					

	Course Objectives				
1	To enable the students to analyze and solve cryogenics related problems by applying principles of mathematics, science and engineering.				
2	To prepare students to use modern tools, techniques and skills to fulfill ind related to low temperature systems	ustrial needs			
3	To train students with effective communication skills to demonstrate cryogen	cs theories.			
4	To develop skills in the analysis of cryogenics systems in research or design.				
5	To develop a professional approach to lifelong learning in the ref conditioning/cryogenics to include the awareness of social and environ associated with engineering practices	-			
	Course Outcomes (CO) with Bloom's Taxonomy Level				
At the	end of the course, the students will be able to				
CO1	Apply knowledge of mathematics, science, and engineering for the needs in Cryogenic.	Applying			
CO2	Analyze different Cryogenic systems.	Analyzing			
CO3	Evaluate and interpret the analysis reports in the field of Cryogenic	Evaluating			
Modu		Hours			
Ι	Cryogenic fluids and applications Introduction, properties of cryogenic fluids, properties of materials used in cryogenics at lower temperature, superconductive materials, applications of cryogenics	4			
Π	Gas LiquefactionGas liquefaction & refrigeration systems, Basics of refrigeration &liquefaction, ideal thermodynamic cycle, Joule Thomson effect, adiabaticexpansion, various liquefaction cycles, Liquefaction systems for air,Neon, Hydrogen & Helium gas	5			
III	<b>Gas Separation and Purification</b> Gas separation and purification – principles, Gas separation systems for air, hydrogen	5			

IV	Cryocoolers Cryogenic refrigeration systems, Ideal and practical systems, Joule-Thompson cryocoolers, Stirling Cycle Refrigerators,	4				
V	Cryogenic fluid storage and transfer systems Cryogenic Dewar, Cryogenic Transfer Lines, Two phase flow in cryogenic transfer system	4				
VI	Instrumentation and safety Instrumentation in cryogenics to measure Flow, Level and Temperature					
	Text Books					
1	Barron. R.F. Cryogenic Systems, McGraw-Hill, 2nd edition 1985.					
	References					
1	Thomas M. Flynn, "Cryogenic Engineering", Marcel Dekker. Inc New Yor edition 1997.	k illustrate				
2	Marshall Sittig, D. Van Nostrand Co. "Cryogenics - Research and Ap Princeton N.J, Van Nostrand . 1963Scott, R. B, Cryogenic Engineering, D'Van-Nostrand, 1962.	-				
3	Vance P. W. Applied Cryogonia Engineering John Wiley and song 1st editic					
4	M. Sitting, "Cryogenic", D' Van-Nostrand company, 1st edition 1963.					
	Useful Links					
1	https://nptel.ac.in/courses/112/101/112101004/					

	CO-PO Mapping Programme Outcomes (PO)								
	1	2	3	4	5	6			
CO1					1				
CO2	2	2	2	2					
CO3	2					1			
The strengt	h of mapping i	s to be written a	s 1,2,3; Where, 1	l:Low, 2:Mediu	m, 3:High				
Each CO of	the course mu	ist map to at leas	st one PO.						

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level T1 T2 ESE Total							
1	Remember							
2	Understand							
3	Apply	10	10	20	40			
4	Analyze	10	10	20	40			

5	Evaluate			20	20
6	Create				
	Total	20	20	60	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
	AY 2021-22				
	Course Information				
Programme	M. Tech. (Mechanical Heat and Power Engineering)				
Class, Semester	First Year M. Tech., Sem II				
Course Code 5HP527					
Course Name Modelling of Internal Combustion Engines					
Desired Requisites: Mathematics, Thermodynamics, Heat Transfer					

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	2 Hrs/week	T1	T2	ESE	Total	
Tutorial	-	20	20	60	100	
Practical	-				·	
Interaction	-	Credits: 2				

	Course Objectives	
1	Students will demonstrate a basic understanding of several types of engine will	models that
1	include zero dimensional thermodynamic model, one dimensional and multic single zone, two zone etc models.	limensional,
2	Students will develop models and simulate them for diesel engine petrol engine.	engine, gas
3	Students will demonstrate the performance evaluation and emission standards modelled engines	s for such
	Course Outcomes (CO) with Bloom's Taxonomy Level	
At the	end of the course, the students will be able to	
CO1	Apply knowledge of basic I C Engine to model SI and CI Engine	Applying
CO2	Analyze the different Engine processes	Analyzing
CO3	Evaluate the Engine cycle parameters for different conditions	Evaluate
Modu	Iodule         Module Contents	
	Fundamentals: Governing equations, Equilibrium charts of combustion	
I	chemistry, chemical reaction rates, and approaches of modeling, model	5
	building and integration methods	
II	II Thermodynamic Combustion Models of CI Engines: Single zone models, premixed and diffusive combustion models, combustion heat release using wiebe function, wall heat transfer correlations, ignition delay	
III	Fuel snray behavior: Fuel injection snray structure fuel atomization	
IV	Modeling of charging system: Constant pressure and pulse turbo	
V	Mathematical models of SI Engines: Simulation of Otto cycle at full throttle, part throttle and supercharged conditions. Progressive combustion, Auto ignition modeling, single zone models, mass burning rate estimation, SI Engine with stratified charge. Friction in pumping,	6

	piston assembly, bearings and valve train etc. friction estimation for warm and warm up engines.						
	Text Books						
1	J.B.Heywood, 'Internal Combustion Engine Fundamentals', McGraw Hill Book Co, 1988						
2	V. Ganesan, 'Internal Combustion Engines', Tata McGraw Hill Book Co, Eighth Reprint, 2005.						
	References						
1	Heywood, "I.C. Engines", McGraw Hill.						
2	Ramos J (1989), "Internal Combustion Engine Modeling", Hemisphere Publishing Company						
3	C. D. Rakopoulos and E. G. Giakoumis, "Diesel Engine Transient Operation".						
4	Operation Principles of Operation and Simulation Analysis", Springer, 2009.						
5	V. Ganeshan, "Internal Combustion Engines", Tata McGraw Hill, New Delhi, 1996.						
6	P.A. Lakshminarayanan and Y. V. Aghav, "Modelling Diesel Combustion" Springer, 2010						
7	Bernard Challen and RodicaBaranescu, "Diesel Engine Reference Book" Butterworth- Heinemann, 1999.						
	Useful Links						
1	https://nptel.ac.in/courses/112/104/112104272/						

	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1	1				3			
CO2		2		3				
CO3		1			2	2		
The streng	gth of mapping is	s to be written	as 1,2,3; Where, 1	:Low, 2:Mediu	m, 3:High			
Each CO	of the course mu	st map to at lea	ast one PO.					

#### **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
Bloom's Taxonomy Level T1 T2 E					Total		
1	Remember						
2	Understand						
3	Apply	10	10	20	40		
4	Analyze	10	10	20	40		
5	Evaluate			20	20		

6	Create				
	Total	20	20	60	100

Course Code5HP528Course NameIndustrial Air-ConditioningDesired Requisites:Refrigeration and Air-Conditioning.				

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	2 Hrs/week	T1	T2	ESE	Total	
Tutorial	-	20	20	60	100	
Practical	-		-			
Interaction	-	Credits: 2				

	Course Objectives					
1	To enable the students to analyse and solve air conditioning related problems by applying principles of mathematics, science and engineering.					
2	To prepare students to use modern tools, techniques and skills to fulfil ind related to air conditioning.	ustrial needs				
3	To train students with effective communication skills to demonstrate air theories.	conditioning				
4	To develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in research or develop skills in the analysis of air conditioning systems in the analysis of air conditioning system	sign.				
5	To develop a professional approach to lifelong learning in the air conditioning	ng to include				
5	the awareness of social and environment issues associated with engineering p	ractices				
	Course Outcomes (CO) with Bloom's Taxonomy Level					
At the	end of the course, the students will be able to					
CO1	Apply knowledge of mathematics, science and engineering for the needs in air-conditioning.	Applying				
CO2	Analyse different Air-Conditioning systems and their characteristics. Analyzing					
CO3	Evaluate the performance and interpret the report in the field of Air-Conditioning.	Evaluating				
Modu	le Module Contents	Hours				
Ι	Psychrometry: moist air properties; mass transfer and evaporation of water into moist air; theory of psychrometer; correlation of w.b.t. with temperature of adiabatic saturation; Lewis number; construction of psychrometric chart.	5				
II	Heat and Mass Transfer: Direct contact transfer equipment; simple air washer and indirect evaporative cooling contact mixture principle; enthalpy potential; basic equation for direct contact transfer equipment; graphical and analytical methods for heat and mass transfer analysis of air washers with heated and chilled water sprays	4				
III	Ventilation: Necessity; ventilation standards; natural and mechanical ventilation; forces for natural ventilation; general ventilation rules; determining ventilation requirement; use of decay equation.	4				

IV	Air Cleaning: Physical and chemical vitiation of air; permissible concentration of air contaminants; mechanical and electronic air cleaners; dry and wet filters; radiators and convectors. Design of a year-round air conditioning system.	4				
V	Air handling Equipment: Fans & Duct System Characteristics, Fan Arrangement Variable Air Volume systems, Air Handling Units and Fan Coil units. air conditioning apparatus, unitary equipment, accessory equipment, Noise control. Piping and Ducts: Pressure drops in piping and fittings; design of water and refrigerant piping; Air conditioning duct design methods.	5				
VI	Industrial Applications: Major uses of air conditioning for medium sized & large industrial buildings. Application of air conditioning in Pharmaceutical, textile industry.	4				
	Text Books					
1						
2	Stoecker, "Refrigeration & Air Conditioning", McGraw Hill, 1992.					
3	Arora C.P., "Refrigeration & Air Conditioning", Tata McGraw Hill, 1985.					
4	"Refrigeration and air-conditioning", ARI, Prentice Hall, New Delhi, 1993.					
	References					
1	ASHRAE Handbook.: HVAC Systems and Equipment, 1996.					
2	2 Hainer R.W., "Control Systems for Heating, Ventilation and Air-Conditioning", Van Nostrand					
3	Norman C. Harris, "Modern Air Conditioning", New York, McGraw-Hill,	1974.				
4	Jones WP "Air Conditioning Engineering" Edward Arnold Publishers Itd					
5	Carrier Hand Book.					
6	Roy J Dossat " Principles of Refrigeration.					
	Useful Links					
1	https://nptel.ac.in/courses/112/105/112105129/					

CO-PO Mapping									
	Programme Outcomes (PO)								
	1 2 3 4 5 6								
CO1	1			3					
CO2	2		2	2					
CO3			1	1					

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

#### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course								
E	Bloom's Taxonomy Level	T1	T2	ESE	Total				
1	Remember								
2	Understand								
3	Apply	10	10	20	40				
4	Analyze	10	10	20	40				
5	Evaluate			20	20				
6	Create								
	Total 20 20 60 100								

# Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

#### AY 2021-22

Course Information							
Programme	M.Tech. (Mechanical Heat and Power Engineering)						
Class, Semester	First Year M. Tech., Sem II						
Course Code	5HP575						
Course Name	Activity Based Elective Lab 1:Internal Combustion Engine Design						
Desired Requisites:							

Teaching	g Scheme	Examination Scheme (Marks)					
Lecture	-	LA1	LA2	ESE	Total		
Tutorial	-	30	30	40	100		
Practical	2 Hrs/week-						
Interaction	-	Credits: 1					

## **Course Objectives**

1	1 To provide an opportunity to a student to do work independently on a topic/ problem experimentation selected by him/her and encourage him/her to think independently on his/her own to bring out the conclusion under the given circumstances and limitations.						
2	2 To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.						
3	To enable students for technical report writing and effective presentations.						
	Course Outcomes (CO) with Bloom's Taxonomy Level						
At the	end of the course, students will be able to,						
CO1	CO1 Solve field problems by using different techniques in mechanical heat and power Apply engineering						
CO2	Design and develop suitable mechanical thermal systems   Evaluate						
CO3	Prepare and present a detailed technical report based on the activity completed	Create					

	Course content							
analysis c	Creation of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of Internal Combustion Engine Design							
The stude	nts will select the thrust area depending upon his/her professional elective 3							
	Text Books							
1	Suitable books based on the contents of the activity selected.							
	References							
1	Suitable books based on the contents of the activity selected and research papers from reputed national and international journals and conferences.							
	Useful Links							
1	As per the need of the activity.							

			СО-РО Марј	oing					
	Programme Outcomes (PO)								
	1	2	3	4	5	6			
CO1		3				1			
CO2		2	2			1			
CO3			1			1			
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.									

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark		
t				s		
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	20		
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30		
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20		
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30		
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40		
Lao ese	attendance, journal	Faculty	Marks Submission at the end of Week 18	40		
Week 1 indic	ates starting week of a	semester. The typ	bical schedule of lab assessments is shown,	<u> </u>		
considering a	a 26-week semester. Th	e actual schedule	shall be as per academic calendar. Lab			

activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)								
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total				
Remember								
Understand								
Apply	15	15	15	45				
Analyze								
Evaluate	15	15	15	45				
Create			10	10				
Total Marks	30	30	40	100				

# Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2021-22							
Course Information							
Programme	M.Tech. (Mechanical Heat and Power Engineering)						
Class, Semester	First Year M. Tech., Sem II						
Course Code	5HP576						
Course Name	Activity Based Elective Lab 1:Design of Heat Exchangers						
Desired Requisites:							

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/week-		1	11		
Interaction	-			Credits: 1		

#### **Course Objectives**

- 2 To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.
- **3** To enable students for technical report writing and effective presentations.

## Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, students will be able to,

CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply
CO2	Design and develop suitable mechanical thermal systems	

CO3	Prepare and present a detailed technical report based on the activity completed Create									
	Course content									
analysi	on of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing produc s or simulation of a process/ experimental verification of principles in thrust areas of Design of changers									
The stu	idents will select the thrust area depending upon his/her professional elective 3									
Text Books										
1	Suitable books based on the contents of the activity selected.									
References										
1	Suitable books based on the contents of the activity selected and research papers from									
_	reputed national and international journals and conferences.									
Useful Links										
1	As per the need of the activity.									

	CO-PO Mapping Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1		3				1		
CO2		2	2			1		
CO3			1			1		
	gth of mapping i			L:Low, 2:Mediun	n, 3:High			

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark
t				s
т а 1	Lab activities,	Lab Course	During Week 1 to Week 6	20
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30
	Lab activities,	Lab Course	During Week 15 to Week 18	10
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	15	15	15	45		
Analyze						
Evaluate	15	15	15	45		
Create			10	10		
Total Marks	30	30	40	100		

(Government Aided Autonomous Institute)

AY 2021-22 Course Information						
Class, Semester	First Year M. Tech., Sem II					
Course Code	5HP577					
Course Name	Activity Based Elective Lab 1:Industrial Refrigeration					
Desired Requisites:						

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/week-			· · · · ·		
Interaction	-			Credits: 1		

#### **Course Objectives**

- 2 To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.
- **3** To enable students for technical report writing and effective presentations.

### Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, students will be able to,

CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply
CO2	Design and develop suitable mechanical thermal systems	Evaluate

CO3	Prepare and present a detailed technical report based on the activity completed	Create						
	· · · · · · · · · · · · · · · · · · ·							
	Course content							
Creation of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing product/ analysis or simulation of a process/ experimental verification of principles in thrust areas of Industrial refrigeration								
The st	idents will select the thrust area depending upon his/her professional elective 3							
	Text Books							
1	Suitable books based on the contents of the activity selected.							
	References							
1	Suitable books based on the contents of the activity selected and research papers from							
	reputed national and international journals and conferences.							
	Useful Links							
1	As per the need of the activity.							

	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1		3				1		
CO2		2	2			1		
CO3			1			1		
The streng	gth of mapping i	s to be written a	us 1,2,3; Where, 1	Low, 2:Mediur	n, 3:High			

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark
t				s
т а 1	Lab activities,	Lab Course	During Week 1 to Week 6	20
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30
	Lab activities,	Lab Course	During Week 15 to Week 18	10
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	15	15	15	45		
Analyze						
Evaluate	15	15	15	45		
Create			10	10		
Total Marks	30	30	40	100		

(Government Aided Autonomous Institute)

AY 2021-22 Course Information						
Class, Semester	First Year M. Tech., Sem II					
Course Code	5HP578					
Course Name	Activity Based Elective Lab 1:Cryogenics					
Desired Requisites:						

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2 Hrs/week-			· · · · · ·		
Interaction	-			Credits: 1		

#### **Course Objectives**

	To provide an opportunity to a student to do work independently on a topic/ problem
4	
1	experimentation selected by him/her and encourage him/her to think independently on his/her own
	to bring out the conclusion under the given circumstances and limitations.
	To encourse encotions thinking and encourse to hole students to get and idente by successfully

- 2 To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.
- **3** To enable students for technical report writing and effective presentations.

### Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, students will be able to,

CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply
CO2	Design and develop suitable mechanical thermal systems	Evaluate

CO3	Prepare and present a detailed technical report based on the activity completed	Create
		·
	Course content	
	on of prototype/ apparatus/ small equipment/experimental set up/ innovation of exis is or simulation of a process/ experimental verification of principles in thrust areas of C	
The stu	udents will select the thrust area depending upon his/her professional elective 4	
	Text Books	
1	Suitable books based on the contents of the activity selected.	
	References	
1	Suitable books based on the contents of the activity selected and research papers f	rom
1	reputed national and international journals and conferences.	
	Useful Links	
1	As per the need of the activity.	

CO-PO Mapping								
		Programme Outcomes (PO)						
	1	2	3	4	5	6		
CO1		3				1		
CO2		2	2			1		
CO3			1			1		
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.								
		*						

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark
t				s
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	20
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40
Lao ese	attendance, journal	Faculty	Marks Submission at the end of Week 18	40
Week 1 indic	ates starting week of a	semester. The typ	bical schedule of lab assessments is shown,	<u> </u>
considering a	a 26-week semester. Th	e actual schedule	shall be as per academic calendar. Lab	

activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)				
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand				
Apply	15	15	15	45
Analyze				
Evaluate	15	15	15	45
Create			10	10
Total Marks	30	30	40	100

(Government Aided Autonomous Institute)

### AY 2021-22

Course Information				
Programme	M.Tech. (Mechanical Heat and Power Engineering)			
Class, Semester	First Year M. Tech., Sem II			
Course Code	5HP579			
Course Name	Activity Based Elective Lab 1:Modelling of Internal Combustion Engines			
Desired Requisites:				

Teaching	g Scheme	Examination Scheme (Marks)			
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	2 Hrs/week-		1	· · ·	
Interaction	-			Credits: 1	

## **Course Objectives**

	v						
1	To provide an opportunity to a student to do work independently on a topic experimentation selected by him/her and encourage him/her to think independently on h to bring out the conclusion under the given circumstances and limitations.	-					
2	To encourage creative thinking processes to help students to get confidence by s completing the activity, through observations, discussions and decision making process.	-					
3	To enable students for technical report writing and effective presentations.						
	Course Outcomes (CO) with Bloom's Taxonomy Level						
At the	At the end of the course, students will be able to,						
CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply					
CO2	Design and develop suitable mechanical thermal systems	Evaluate					

CO3	Prepare and present a detailed technical report based on the activity completed	Create
	Course content	
analysi	on of prototype/ apparatus/ small equipment/experimental set up/ innovation of exist is or simulation of a process/ experimental verification of principles in thrust areas of l l Combustion Engines	
The stu	idents will select the thrust area depending upon his/her professional elective 4	
	Text Books	
1	Suitable books based on the contents of the activity selected.	
	References	
1	Suitable books based on the contents of the activity selected and research papers fr	om
	reputed national and international journals and conferences.	
	Useful Links	
1	As per the need of the activity.	

1         2         3         4         5           CO1         3         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	6
CO2 2 2	1
	1
CO3 1	1
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High	

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark
t				s
τ. λ. 1	Lab activities,	Lab Course	During Week 1 to Week 6	20
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30
	Lab activities,	Lab Course	During Week 15 to Week 18	10
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)					
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total	
Remember					
Understand					
Apply	15	15	15	45	
Analyze					
Evaluate	15	15	15	45	
Create			10	10	
Total Marks	30	30	40	100	

(Government Aided Autonomous Institute)

	AY 2021-22
	Course Information
Programme	M.Tech. (Mechanical Heat and Power Engineering)
Class, Semester	First Year M. Tech., Sem II
Course Code	5HP580
Course Name	Activity Based Elective Lab 1:Industrial Air-Conditioning
Desired Requisites:	

Teaching	g Scheme		Exami	nation Scheme (	(Marks)
Lecture	-	LA1	LA2	ESE	Total
Tutorial	-	30	30	40	100
Practical	2 Hrs/week-		<u>.</u>	·	
Interaction	-			Credits: 1	

#### **Course Objectives**

1	To provide an opportunity to a student to do work independently on a topic/ problem experimentation selected by him/her and encourage him/her to think independently on his/her own to bring out the conclusion under the given circumstances and limitations.

- 2 To encourage creative thinking processes to help students to get confidence by successfully completing the activity, through observations, discussions and decision making process.
- **3** To enable students for technical report writing and effective presentations.

### Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, students will be able to,

CO1	Solve field problems by using different techniques in mechanical heat and power engineering	Apply
CO2	Design and develop suitable mechanical thermal systems	Evaluate

CO3	Prepare and present a detailed technical report based on the activity completed Create
	Course content
analys	n of prototype/ apparatus/ small equipment/experimental set up/ innovation of existing product/ s or simulation of a process/ experimental verification of principles in thrust areas of Industrial nditioning
The stu	dents will select the thrust area depending upon his/her professional elective 4
	Text Books
1	Suitable books based on the contents of the activity selected.
	References
1	Suitable books based on the contents of the activity selected and research papers from
	reputed national and international journals and conferences.
	Useful Links
1	As per the need of the activity.

			Programme (	Dutcomes (PO)		
	1	2	3	4	5	6
CO1		3				1
CO2		2	2			1
CO3			1			1
	gth of mapping i			1:Low, 2:Medium	n, 3:High	

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark	
t				s	
τ. λ. 1	Lab activities,	Lab Course	During Week 1 to Week 6	20	
LA1	attendance, journal	Faculty	Marks Submission at the end of Week 6	30	
1.4.2	Lab activities,	Lab Course	During Week 7 to Week 12	20	
LA2	attendance, journal	Faculty	Marks Submission at the end of Week 12	30	
	Lab activities,	Lab Course	During Week 15 to Week 18	10	
Lab ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)					
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total	
Remember					
Understand					
Apply	15	15	15	45	
Analyze					
Evaluate	15	15	15	45	
Create			10	10	
Total Marks	30	30	40	100	

v	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)
	AY 2021-22
	Course Information
Programme	M. Tech. (Mechanical Heat and Power Engineering)
Class, Semester	First Year M. Tech., Sem II
Course Code	50E104
Course Name	Waste to energy
Desired Requisites:	

Teaching Scheme			Examination Scheme (Marks)			
Lecture	2 Hrs/week	T1	T2	ESE	Total	
Tutorial	-	20	20	60	100	
Practical	-		•		2	
Interaction	-			Credits: 2		

	<b>Course Objectives</b>			
1	Understand the grave problem of urban solid waste disposal and methods to tackle this	s problem.		
2	Understand and apply various energy conversion methods using biomass.			
3	Apply knowledge of landfill biogas systems and energy conversion equipment.			
4	Apply and analyze methane generation systems and other biomass systems.			
5	Study and analysis of different types of biomass systems and ocean biomass systems.			
6	Study and analyze the biogas energy conversion process.			
	Course Outcomes (CO)			
At the	end of the course, the students will be able to,			
CO1	Describe various methods of conversion of waste to energy.	Understan		
001		d		
CO2	Examine various methods of energy generation using waste	Apply		
CO3	Analyse the combustion mechanisms of various fuels.	Analyse		
Modu	e Module Contents	Hours		
I	Introduction - urban solid waste, Waste to energy by incineration process,	4		
1	Incineration plant furnaces & boilers. 6			
П	Electrical scheme of urban waste to energy plant environmental consideration,	5		
II	Wood & wood waste in primary energy sources, Incineration co-generation plant	5		
	Wood & wood waste in primary energy sources, Incineration co-generation plantUrban waste to energy from landfill Biogas projects and pyrolysis plants,			
II	Wood & wood waste in primary energy sources, Incineration co-generation plantUrban waste to energy from landfill Biogas projects and pyrolysis plants,Application of landfill gas composition, Collection systems, Energy conversion	5		
	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants,</li> <li>Application of landfill gas composition, Collection systems, Energy conversion</li> <li>equipment,</li> </ul>			
	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants,</li> <li>Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification,</li> </ul>			
III	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants, Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification, Wood to oil processes, FBCB for burning solid biomass.</li> </ul>	5		
III IV	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants, Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification, Wood to oil processes, FBCB for burning solid biomass.</li> <li>Biogas plants for urban and Rural, Introduction to waste to energy, Biogas</li> </ul>	5		
III	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants, Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification, Wood to oil processes, FBCB for burning solid biomass.</li> <li>Biogas plants for urban and Rural, Introduction to waste to energy, Biogas plants- small, medium and large plants, Single stage and two stage plants, Dome</li> </ul>	5		
III IV	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants, Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification, Wood to oil processes, FBCB for burning solid biomass.</li> <li>Biogas plants for urban and Rural, Introduction to waste to energy, Biogas plants- small, medium and large plants, Single stage and two stage plants, Dome type and dome less plants</li> </ul>	5		
III IV	<ul> <li>Wood &amp; wood waste in primary energy sources, Incineration co-generation plant</li> <li>Urban waste to energy from landfill Biogas projects and pyrolysis plants, Application of landfill gas composition, Collection systems, Energy conversion equipment,</li> <li>Pyrolysis of urban waste to obtain methane, Pyrolysis of wood to gasification, Wood to oil processes, FBCB for burning solid biomass.</li> <li>Biogas plants for urban and Rural, Introduction to waste to energy, Biogas plants- small, medium and large plants, Single stage and two stage plants, Dome</li> </ul>	5		

	Text Books					
1	S. P. Sukhatme, "Solar Energy", McGraw Hill Education, 3rd Edition, 2015					
2	Energy Technology- S. Rao and B. B. Parulekar, Khanna Publication					
3	NIR Board 2004, Handbook on Biogas and its applications, NIIR, New Delhi.					
	References					
1	Annual Report 2006, Ministry of new and renewable energy, Government of India, New					
1	Delhi.					
2	Energy Handbook, R. L. Loftness Van NOstrand Reinhold.					
3	H. Shah et al., Integrated renewable energy for rural development, 1990, Tata Mc Graw Hill.					
4	LL. Anderson et al, Fuels from waste academic press, New york, 1977.					
	Useful Links					
1	https://nptel.ac.in/courses/103/103/103103206/					

CO-PO Mapping									
		Programme Outcomes (PO)							
	1 2 3 4 5 6								
CO1	1		2						
CO2		1			3				
CO3			2	3					
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High									
Each CO	Each CO of the course must map to at least one PO.								

#### **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
E	Bloom's Taxonomy Level T1 T2 ESE Total						
1	Remember						
2	Understand	10	10	20	40		
3	Apply	10	10	20	40		
4	Analyze			20	20		
5	Evaluate						
6	Create						
	Total 20 20 60 100						

		Walc		ege of Engineer Aided Autonomous Ins			
			(Governmenn	AY 2021-22			
			Co	urse Information			
Progr	amme		M.Tech. (Me	echanical Heat and P	ower Engineering)		
	Semester		First Year M	I. Tech., Sem II	<u> </u>		
Cours	se Code		5IC502				
Cours	se Name		Constitution	of India			
Desire	ed Requisi	tes:					
			1				
	Teaching	Scheme		Examinatio	n Scheme (Marks)		
Lectu	re	2 Hrs/week	T1	T2	ESE	Total	
Tutor	ial	-	20	20	60	100	
Practi	ical	-					
Intera	ction	-		Cr	edits: - 0		
		1	1				
			Co	ourse Objectives			
1	To review	v and create awa		•	e constitution of India.		
	1			CO) with Bloom's Ta			
At the	end of the	course, student	s will be able t	to,	-		
CO1	· ·	xplain the premises informing the twin themes of liberty and freedom from a civil understand ghts perspective.					ınd
CO2	constituti	ddress the growth of Indian opinion regarding modern Indian intellectuals und onstitutional role and entitlement to civil and economic rights as well as the nergence of nationhood in the early years of Indian nationalism					ind
CO3					cement of the Bolshev the Indian Constitution		nd
				U		I	
Modu	ıle		Mo	odule Contents		Hour	'S
Ι		ry of Making o orking	f the Indian C	Constitution Drafting	Committee, (Composi	tion 4	
II	Philo	sophy of the In		ution :		4	
III	Image: Preamble, Salient Feature         Contours of Constitutional Rights:         Fundamental Rights; Right to Equality; Right to Freedom; Right against         III       Exploitation; Right to Freedom of Religion; Cultural and Educational Rights;         Right to Constitutional Remedies; Directive Principles of State Policy;         Fundamental Duties.					hts; 5	
IV	Organs of Governance: Parliament Composition Qualifications and Disgualifications Powers and						
V	Loca Distri Muni CEO	Administration of the second structure of the second s	on: tion head: Ro duction, Mayo orporation.	le and Importance, r and role of Elected		4	

	Elected officials and their roles, CEO Zila Panchayat: Position and role.	
	Block level: Organizational Hierarchy (Different departments),	
	Village level: Role of Elected and Appointed officials,	
	Election Commission:	
	Election Commission: Role and Functioning.	
VI	Chief Election Commissioner and Election Commissioners.	4
	State Election Commission: Role and Functioning.	
	Text Books	
1	Dr. S. N. Busi, Dr. B. R. Ambedkar framing of Indian Constitution, 1st Edition, 2015	5.
2	M. P. Jain, Indian Constitution Law, 7th Edn., Lexis Nexis, 2014	
3	D.D. Basu, Introduction to the Constitution of India, Lexis Nexis, 2015	
	References	
1	The Constitution of India, 1950 (Bare Act), Government Publicatio	
	Useful Links	
1	https://en.wikipedia.org/wiki/Constituent_Assembly_of_India	
2	https://nptel.ac.in/courses/129/106/129106003/	
3	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-lw02/	
4		

4	https://eci.gov.in/about/about-eci/the-functions-electoral-system-of-india-r2/

CO-PO Mapping								
		Programme Outcomes (PO)						
	1	2	3	4	5	6		
CO1	1	1	1	1				
CO2								
CO3								
The streng	gth of mapping is	to be written as	1,2,3; Where, 1	:Low, 2:Mediu	n, 3:High			
Each CO o	of the course mus	st map to at least	one PO.					

#### **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
B	Bloom's Taxonomy Level T1 T2 ESE Total						
1	Remember						
2	Understand	20	20	60	100		
3	Apply						
4	Analyze						

Course Contents for M Tech (Heat Power) Programme, Department of Mechanical Engineering, AY 2021-22

5	Evaluate				
6	Create				
	Total	20	20	60	100