Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)											
			A	Y 2021-22							
			Cours	se Information							
Progra	amme		B. Tech. (Electror	nics Engineering)							
Class.	Seme	ster	Final Year B. Tec	h., Sem. VII							
Cours	e Cod	e		,							
Cours	e Nan	ne	Power Electronics	and Drives							
Desire	ed Rec	uisites:	Basic Electrical E	ngineering, Circuit T	heory						
		<u> </u>		6 6,							
Te	achin	g Scheme		Examination Scheme (Marks)							
Lectu	re	3 Hrs/week	T1	T2	ESE	Total					
Tutor	ial	-	20	20	60	100					
Practi	cal	-		I I	I						
Intera	action	-		Credi	ts: 3						
<u> </u>		<u> </u>	1								
			Cour	se Objectives							
1	Expl	ain the working	g of modern powers	semiconductor devic	es and their application	ons.					
	Expl	ain the working	g of power conver	ter circuits like con	trolled rectifier, inve	rter, AC voltage					
2	cont	roller and chopp	per and provide the k	nowledge of perform	nance parameters of	converters in the					
	analy	sis of their per	tormance.		1	···· ···· · · · · · · · · · · · · · ·					
3	Expl	and the use of occurrent to (control the speed of	DC motors and Inc	buction motors	rs, inverters and					
	Illustrate to choose an appropriate power electronic circuit and a power semiconductor device										
4	while	e designing an e	electrical power con	trol system.	1						
		Cour	se Outcomes (CO) with Bloom's Tax	conomy Level						
At the	end of	the course, the	students will be abl	e to,							
CO1	Expl	ain the working	g of power semicor	iductor devices such	i as SCR, GTO, Pov	er Understand					
		VZE the perform	nance of controlled	rectifiers DC to DC	Converters Inverte	rs Analyze					
CO2	AC t	o AC converter									
<u> </u>	Eval	uate the perfor	mance parameters of	of controlled rectifie	r, DC to DC conver	er, Evaluate					
	DC t	o AC converter	and AC to AC con	verter.							
<u>CO4</u>	Ana	lyze the speed of	control techniques/	methods for AC and	DC motors.	Analyze					
Madu			Madu	la Contonta		Houng					
Modu	le D	owar Samicon	Modu ductor Dovigos	le Contents		Hours					
		CR (Silicon Co	untrolled Rectifier).	two transistor mod	lel protection circu	ts					
I		eries and paralle	l operation of SCR,	triggering and com	nutation circuits; GT	$\left \begin{array}{c} 0, \\ 0, \end{array} \right $					
	T	RIAC, DIAC, I	Power Diode, Powe	r BJT, Power MOS	FET, IGBT.	·					
	P	hase Controll	ed Rectifiers								
	S	ingle phase hal	f and full wave cor	trolled rectifier with	n R and RL load, Sin	gle					
П		hree phase half	f wave controlled r	ectifier with resistiv	e load three phase h	alf Q					
		ontrolled and fu	ally controlled bridg	e rectifier with R a	nd RL load: Calculat	on 2					
	0	f performance	parameters of line	commutated conve	rters: Fourier analys	is;					
	e	ffect of source	impedance on the p	erformance of cont	rolled rectifiers.						
		nverters and A	AC voltage Contro	llers		т					
	l D	ingle phase ha	ur and rull bridge	inverter using tran	sistor/MOSFE1/IGE	1,					
		hase bridge inve	erter- 120° and 180°	^o conduction mode:	PWM inverters: Ser	ies					
		nd Parallel reso	nant inverter.	· · · · · · · · · · · · · · · · · · ·	,,,	8					
	A	C voltage cont	rollers: single phas	e and three phase A	AC voltage controlle	rs;					
		ycloconverters	: single phase to sing	gle phase, three phas	e to single phase, th	ee					
		nase to three pl	ase cycloconverter	•							
I IV		hoppers: princi	ples of operation of	ontrol strategies · TR	C. current limit contr	ol: 4					
	ty	pes of chopper	, step up chopper,	multiphase chopper;	SMPS.	- ,					

v	D.C. Motor Control Equivalent circuit, speed torque characteristics (separately excited and series motor), operating modes, single phase and three phase controlled rectifier fed drives; four quadrant drive-single phase and three phase dual converter; Chopper-fed DC drive.	6				
VI	A.C. Motor Control Equivalent circuit, speed torque characteristics, speed control methods-stator voltage control, rotor voltage control, frequency control, stator voltage and frequency control (V/F); Vector Control.	6				
	Text Books					
1	M. D. Singh & K. B. Khanchandani, " <i>Power Electronics</i> ", Second Edition, Tata Publishing Company Ltd., New Delhi, 2007.	McGraw-Hill				
2	2 M.H. Rashid, "Power Electronics: Circuits, Devices & Applications", Third Edition, PHI, New Delhi, 2008.					
3	P. S. Bimbhra, "Power Electronics", Third Edition, Khanna Publishers, 2004.					
4						
	·					
	References					
1	P. C. Sen, "Power Electronics", First Edition, Tata McGraw Hill Publishing Compar	ny Ltd, 2008.				
2	V. R. Moorthi, "Power Electronics-Devices, Circuits and Industrial Application University Press, 2010.	ons", Oxford				
3	 Ned Mohan, T. M. Undeland, W. P. Robbins, "Power electronics-Converters, Applications and Design", Third Edition, John Wiley and Sons Inc., 2003. 					
	Useful Links					
1	https://nptel.ac.in/courses/108/105/108105066/#					
2	https://nptel.ac.in/courses/108/108/108108077/					
3	https://nptel.ac.in/courses/108/102/108102145/					

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2	3	1											2
CO3	2	3												
CO4		2	2											2
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Fach CO of the course must map to at least one PO.													

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

Assessment Plan based on Bloom's Taxonomy Level										
Bloom's Taxonomy Level	T1	T2	ESE	Total						
Remember										
Understand	10		5	15						
Apply										
Analyze	10	10	30	50						
Evaluate		10	25	35						
Create										
Total	20	20	60	100						

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)								
			AY 20	21-22				
			Course In	formation				
Progr	amme		B.Tech. (Electronic	cs Engineering)				
Class.	Semester	r	Final Year B. Tech	Sem VII				
Cours	se Code			,				
Cours	se Name		Real Time Operatir	ng System				
Desir	ed Requis	ites:	Courses with C pro	gramming, Microco	ntroller, Periphe	erals and		
	•		interfacing, Embed	ded system design				
Teach	ing Scher	ne (Hrs/Week)		Examination Sche	me (Marks)			
Lectu	re	2Hrs/week	T1	T2	ESE	Total		
Tutor	ial	-	20	20	60	100		
Practi	cal	-		1				
Intera	action	-		Credits:	2			
			Course O	bjectives				
1	To expla	in/illustrate/dem	onstrate need of RT	OS and services prov	vided by it.			
2	To expla	in/illustrate/dem	onstrate services pro	ovided by RTOS				
3	To expla	in/illustrate/dem	onstrate case studies	of applications with	task manageme	ent		
4	To expla	in/illustrate/dem	onstrate case studies	s of applications simp	ble inter-task co	mmunication		
At the	and of the	Course the stur	Jutcomes (CO) with dents will be able to	n Bloom's Taxonon	ny Level			
Annly the knowledge of RTOS to decide whether a given system is suitable for Annly								
CO1	RTOS b	ased implementation	ation.	whether a given sy				
CO2	Apply th	e theory and im	plementation of task	, time event manage	ment.	Apply		
CO3	Analyze	the given probl	em/situation related	to task, time manage	ement	Analyze		
<u>CO4</u>	Analyze	the given prog	ram/situation related	to inter-task commu	inication.	Analyze		
				.				
Modu	le Mad	-l. 1. Dl.4	Module C	Contents		Hours		
I	Foreg	ground/Backgro	und Systems, Multit	asking, Kernels,		6		
II	Modu uCOS	ule 2: Task ma SII initialization,	nagement in uCOS creating and deletin	S-II g a task		4		
	Mad	ulo 2. Timo mo	nagement in					
III	Cloci	k tick, delaying	a task, resuming the	delayed task, getting	g system time	4		
IV	Modu Case	ule 4: Case stu study of applica	dy of Task and Tim ation based on task a	ne Management and time managemen	t	4		
	Mod	ule 5. Interteel	k Communication	in uCOS-II				
v	Need	of Intertask co	mmunication, Semap	phore, Mailbox, Que	ues in RTOS	4		
VI	Modu Case	ule 6: Case stu study of applica	dy of inter-task Co ation based on inter-t	ommunication task communication		4		
	((1.5)		Text H	Books	(D 1 - 1 - 1 ''	4		
1	"Mic ISBN	eroC OS II: The I: 978-1578201	Real Time Kernel" . 037	Jean J. Labrosse, Cl	VIP books publi	cation		
2	ISBN	u-11me Concept I: 978-15782012	s jor Embedded Syst 242	ems, Qing Li, Caro	iine rao Elseviei	ſ		

3	"Simple Real-time Operating System: A Kernel", Chowdary Venkateswara Amazon, ISBN: 978-1425117825								
4									
References									
1	www.micrium.com for uCOS-II related documents, tutorials, downloads.								
2	www.nxp.com for processor specific documents.								
3	www.wikipedia.org for general OS related basic literature.								
4	www.NPTEL.org for OS and RTOS related video courses.								
	Useful Links								
1	www.micrium.com for uCOS-II related documents, tutorials, downloads.								
2	www.nxp.com for processor specific documents.								
3	www.wikipedia.org for general OS related basic literature.								
4	www.NPTEL.org for OS and RTOS related video courses.								

	CO-PO Mapping													
		Programme Outcomes (PO)										PS	50	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													2
CO2	2	2 2												
CO3		1												1
CO4			1											1
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	of the	course	must n	nap to a	at least	one PC).							

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course									
B	loom's Taxonomy Level	T1	T2	ESE	Total					
1	Remember									
2	Understand	10		20	30					
3	Apply	10	10	20	40					
4	Analyze		10	20	30					
5	Evaluate									
6	Create									
	Total	20	20	60	100					

Walchand College of Engineering, Sangli											
AY 2021-22											
	Course Information										
Progra	amme	B. Tech. (Electron	nics Engineering)								
Class.	Semester	Final Year B. Tec	h., Sem. VII								
Cours	e Code		· 7 · - · · ·								
Cours	e Name	Power Electronics	s and Drives Lab								
Desire	ed Remisites:	Basic Electrical E	ngineering Circuit 7	Theory							
			ingineering, en euw i								
Te	eaching Scheme		Examination So	heme (Marks)							
Lectu	re -	LA1	LA2	ESE	Total						
Tutori	al -	30	30	40	100						
Practi	cal 2 Hrs/Wee	ek									
Intera	ction -		Cred	its: 1							
		Cour	se Objectives								
1	Explain the V-I of	characteristics of power	r semiconductor dev	ices and their use as	s a switch.						
-	Demonstrate th	e operating and handling	ng procedure (i.e. s	afety measures) or	f power electronic						
	experimental set	ups.	01		r						
	Explain the need	of isolating power circ	uit ground and cont	rol circuit ground (use of Powerscope						
3	or isolation trans	former) during observat	tion of waveforms a	and measurement o	of input and output						
	voltage of a pow	er electronic circuit i.e.	controlled rectifier	, inverter and chop	pper.						
4	design of power	electronic circuits /sys	tems	AILAD, PSPICE) I	in the analysis and						
	design of power electronic circuits /systems.										
At the	end of the course,	the students will be able	e to,	<u> </u>							
CO1	Experiment with	h power semiconducto	r devices and plot it	s V-I characteristic	cs. Understand						
CO2	Build and test po	ower electronic circuits	(controlled rectifier	rs, inverters, chopp	pers) Apply						
CO3	Analyze the perf	ormance power electro	nic circuits (control	led rectifiers, inver	ters, Analyze						
	choppers)	mana anod controlto	aleniarras / matheadad	For AC and DC ma	tong Anglung						
04	Examine and col	mpare speed control ted	chinques/ methods i	for AC and DC mo	tors. Analyze						
		List of Expani	monte / Lob Activi	tion							
The pr	imary objective of	this laboratory is to im	nerit the practical kn	owledge of power	electronic circuits						
for the	conversion and co	ontrol of electrical energy	y. This laboratory c	ourse develops a ba	electronic circuits asic foundation for						
analysi	is, design, test, and	d control of power elec	tronics converters l	by experimentation	and simulation.						
		*		•							
List of	f Experiments: (N	linimum 8 experiment	ts)								
1.	Study of power s	semiconductor devices:	SCR, Power MOSF	ET, IGBT.							
2.	SCR triggering c	ircuits: R, RC, and UJT									
3.	Single phase half	controlled bridge rectil	fier.								
4.	Single phase fully	y controlled bridge rect	ifier.								
5.	Single phase tran	isistorized inverter.									
$\begin{bmatrix} 6.\\7 \end{bmatrix}$	Single phase to S	Single phase Cycloconv	erter.	OCEET has ad aires	:4						
/.	Single/Three ph	ementation of a Type-A	End DC drive	USFET dased) circ	uit.						
9 0.	Chopper fed DC	drive	eu DC urive.								
10	. Three phase indu	iction motor drive.									
11	. Four quadrant D	C drive (Dual converter	·).								
12	. Speed control of	brushless DC motor.	,								
13	. Simulation of Co	ontrolled Rectifier and T	Three Phase Inverter	Circuit using MAT	LAB/ PSIM.						
				_							
			_								
	MII D - 1'1 40		ext Books								
1	NI.H. Kashid, " <i>P</i> Delhi, 2008.	ower Electronics: Circ	ruits, Devices & Ap	pucations", Third	Eattion, PHI, New						

2	M. D. Singh & K. B. Khanchandani, " <i>Power Electronics</i> ", Second Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.													
2	V. R.	Moorth	ni, <i>"Po</i>	wer E	lectron	nics: 1	Device	s, Circ	uits a	nd Inc	lustrial	Applica	tions", (Oxford
5	Univer	sity Pre	ss, 201	10.										
4														
	References													
1	D. R.	Grafhar	n, J. C	. Hey,	"SCR	Manue	al", Fi	fth Edit	tion, G	eneral	Electri	c, New Y	ork, 19	72.
2	https://	/www.p	powers	imtech	n.com/	wp-co	ontent/u	uploads	s/2021,	/01/PS	IM-Us	er-Manua	al.pdf	
3														
4														
	Useful Links													
1	1 https://powersimtech.com/products/psim/capabilities-applications/													
2	https://	/in.math	works	.com/s	olutior	ns/pow	er-elec	tronics	s-conti	ol/pov	ver-ele	ctronics-s	simulatic	n.html
3	https://	/www.p	olexim.	com/p	roduct	s/plecs	s							
4														
						со-	PO M	apping						
				l	Progra	mme	Outco	mes (l	PO)				PS	Ο
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1			3										
CO2				3	3									2
CO3		1		3	3									2
CO4	1			3	2									
The st	rength o	f mappi	ng is to	be wr	itten a	s 1,2,3	; When	e, 1:Lo	w, 2:N	/Iedium	n, 3:Hig	h		
Each C	CO of th	e course	e must	map to	at leas	st one l	PO.	-	,		· · ·			

Assessment										
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.										
Assessment	ssment Based on Conducted by Typical Schedule									
T A 1	Lab activities,	Lab Course	During Week 1 to Week 6	30						
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30						
1.42	Lab activities,	Lab Course	During Week 7 to Week 12	20						
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30						
Lob ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40						
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40						
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.										

Assessment Plan based on Bloom's Taxonomy Level										
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total						
Remember										
Understand	15			15						
Apply	15	15	15	45						
Analyze		15	25	40						
Evaluate										
Create										
Total	30	30	40	100						

Walchand College of Engineering, Sangli											
			Government Alded	2 Autonomous instit	ute)						
			AI Z	2021-22							
Duogu	ommo		D Tash (Electro)	nios Engineering)							
Progra			B. I ech. (Electro)	ale Com VII							
Class,	, Semester		Final Year B. Te	ch., Sem VII							
Cours	se Code			· · · · · · · · · · · · · · · · · · ·							
Cours	e Name		Real Time Opera	ting System Lab	·	11 D 1 1					
Desire	ed Requisi	ites:	Theory/Lab Cour	rses with C program	mming, Microconti	roller Peripherals					
			and Interfacing,	Embedded System	Design.						
	T1	S - 1		E	-h (Mh)						
Lectu	reaching	Scheme	T A 1	Examination S	Lob ESE	Tatal					
Tectu	re	-		LA2	Lab ESE	10tal					
Tutor		-		30	40	100					
Practi		2 Hrs/ Week			•						
Intera	action	-		Cred	its: 1						
			0								
- 1		1	Course	Objectives	1 1	11 %					
1	To facilit	ate students to	gain practical expe	rience of RTOS an	d services provided	d by it.					
2	To neip s	do ovposuro to i	elate the RIOS the	ory with the RIOS	s implementation.	ne using PTOS					
<u> </u>	To help s	students to accur	lite skills of using r	nodern tools to dev	velop and test RTO	S based project					
-	10 norp c	Course (Dutcomes (CO) w	ith Bloom's Taxo	nomy Level	b bused project.					
At the end of the course, the students will be able to,											
Apply the theoretical knowledge and demonstrate the basics of RTOS and the Apply											
CO1	CO1 acquired skills of managing uCOS-II based project. (Practical Experience, Modern Tools)										
CO2	Prove/V demonst using a s	erify the RTOS trate usage of imulator. (Prog	S fundamentals, pr task, time and even gramming skill, Mo	actically, through ent management, l dern Tools)	illustrative program Intertask commun	ns and Apply ication					
CO3	Analyze (Problem	given RTOS ba	ased problem by aj ern Tools)	pplying the theoret	ical knowledge acc	quired. Analyze					
CO4	Implement and dem work, M	ent a given logic onstrate using odern Tools)	c as an RTOS base simulation tools.	d application. Crea (Programming skil	te document of the ll, Independent and	e same Create d team					
.			List of Experime	ents / Lab Activit	ies						
1. 2. 3. 4. 5. 6. 7. 8. 9. 10	Demonst Writing of Proving t Semapho Assignin RTOS ba Semapho Using ma Using qu Avoiding D. Building writing ra as a part	tration of RTOS of RTOS based that uCOS-II is ore for managin g Mini-project p ased systems. ore for event system ail box facility in g dead-lock in F a small embedde elevant program of Lab ESE)	S based application application for cre a pre-emptive RTC g shared resource a problems. Demons nchronization in RTOS RTOS RTOS ded application usin n, Simulation, docu	for creating desire ating given signals OS and task synchroniz tration of Clock tic ng an RTOS (Mini- umentation, Demor	d signals on digital on digital I/O. zation k and its effect of Project) (Solving s	I/O. event timing in given problem by around 3 weeks					
			Text	t Books							

L

1	-	" <i>Micro</i> ISBN:	<i>C OS I</i> 978-15	<i>I: The</i> 78201	<i>Real 1</i> 037	Time K	ernel"	Jean J	. Labro	osse, C	MP bo	oks pu	blicati	on	
2		RTOS I	Lab Ma	inual											
3															
4															
References															
1 <u>www.micrium.com</u> for uCOS-II related documents, tutorials, downloads.															
2		www.nxp.com for processor specific documents.													
3		https://www.freertos.org/Documentation/RTOS_book.html													
4		Everything You Need to Know about RTOS (pdf book) by Silabs													
Useful Links															
1 <u>www.highintegritysystems.com/rtos</u> for RTOS tutorials															
2		https://v	www.y	outube	e.com/	watch	v = EC	EvUEk	<u>SSLg</u> 1	for vide	eos by	Renesa	is Inc.		
3		Univers	ity of V	Waterlo	oo lectu	ire ma	terial o	n RTC	<u>S</u>						
4		Micriur	<u>n μC/C</u>	<mark>S-II</mark> D	ocume	entation	<u>ı</u> (Doc	umenta	ation o	f RTOS	S comp	pany)			
						CO-P	O Maj	pping							
				P	rogran	nme C	Outcon	nes (P	0)				PS	50	1
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	1
CO1	3												2		
CO2		3												3	1
CO3		3											3		
C04		5	2		2								5	2	
				<u> </u>	<u> </u>	1.0		1			2.11	. 1		3	
I he st	trengt	n of ma	pping is	s to be	writter	1 as 1,2	2,5; Wf	iere, I:	LOW, 2		m, 3:H	ign			
Each (CO of	the cou	urse mu	ıst map	o to at l	east on	e PO.								

		Asses	sment								
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.											
Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks							
T A 1	Lab activities,	Lab Course	During Week 1 to Week 6	20							
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50							
T A 2	Lab activities,	Lab Course	During Week 7 to Week 12	20							
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50							
Lob ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40							
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40							
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,								
considering a	26-week semester. T	he actual schedule	shall be as per academic calendar. Lab activi	ities/Lab							
performance	shall include perform	ng experiments, n	nmi-project, presentations, drawings, program	mming							
and other sum	table activities, as per	the nature and req	urrement of the lab course. The experimenta	l lab							
shall have typ	pically 8-10 experimen	its and related action	ivities if any.								

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)												
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total								
Remember												
Understand												
Apply	10			10								
Analyze	20	10		30								
Evaluate		20	10	30								
Create			20	20								
Total Marks	30	30	40	100								

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)												
			AY 202	21-22								
			Course Inf	formation								
Progra	amme		B.Tech. (Electronics Er	ngineering)								
Class.	Seme	ster	Final Year B. Tech. ser	n VII								
Cours	e Cod	e										
Cours	e Nam	ie	Project 1 and Seminar									
Desire	ed Reg	uisites:										
Te	eachin	g Scheme	Examination Scheme (Marks)									
Lectu	Lab ESE	Total										
Tutor	torial - 30 30 40											
Practi	cal	6 Hrs/Week										
Intera	action	-		Credits: 3								
			Course O	bjectives								
1	To pi	rovide students	hands on experience on, t	roubleshooting, main	tenance, fabrication,	a a transment - f						
	techr	ation, record Ke	eeping, documentation etc	c thereby enhancing th	ne skill and competer	ncy part of						
2	Toc	eate an Industri	al environment and cultur	re within the institutio	n.							
3	To in	culcate innovati	we thinking and thereby	preparing students for	main project.							
4	To se	et up self-mainte	enance cell within departm	nents to ensure optim	al usage of infrastruc	eture						
	facili	ties.	··· O	DI	T1							
At the	and of	the course, the	students will be able to	I BIOOM'S TAXONOM	y Level							
CO1	Choc	se. Initiate and	manage a minor project.			Apply						
	Propose research problem and present them in a clear and distinct manner through Evaluate											
	diffe	rent oral, writte	n and design techniques.									
CO3	Cons	truct, Commen	nt and Evaluate Mini	Projects' undertaker	/ implemented by	Create						
<u> </u>	Stude	ents.	on project work complet	ed		Analyze						
	Denv	er the seminary	on project work complet	cu		7 undry 20						
			List of Experiment	s / Lab Activities								
Projec	t Desc	ription:	F									
A proj	ect gro	oup shall consist	of not more than 3 stude	nts per group. The mi	ni project will involv	e the						
design	, const	ruction, and del	bugging of an electronic s	ystem approved by th	e department. Each s	student						
should	l conce	eive, design deve	elop and realize an electro	onic product. The elec	tronic part of the pro	oduct						
and P(⁷ B des	application of the do	The analog α digital system one using any of the stand	lard schematic captur	e & PCB design soft	ware						
The re	alizatio	on of the produc	t should include design a	nd fabrication of PCB		ware						
		×	C									
Each s	student	must keep a pro	pject notebook/logbook.	The project notebooks	will be checked peri	odically						
throug	ghout the	the semester, as p	part of in-semester-evaluation of in-semester-evaluation of in-semester-evaluation of the second sec	ation. The student should be	uld submit a soft bou demonstrated at the	ind report						
exami	nation.	the semester. If	ne final product as a resul	a of project should be	demonstrated at the							
The Pi	rojects	may be from th	e following areas/domain	s, but not limited to:								
	· Em	bedded Systems	S									
	· Elec	ctronic Control	Systems									
	· Eleo	erronic Communedical Flectro	nication Systems									
		ver Electronics	110.5									
	· Roł	potics and Mech	atronic Systems									
	· Elec	ctric Vehicles	-									
	$\cdot \operatorname{Art}$	ificial Intelligen	ce and Machine Learning	,								
	· Apj SSMF1	NT	cironics to Agriculture									
A dem	onstra	tion and oral exa	amination on the mini pro	piect shall be conduct	ed at the end of the se	emester.						

The ex	The examination will consist of demonstration and viva voce on the project.									
Text Books										
1	Electronics Projects For Dummies, by by Earl Boysen and Nancy Muir, Published by Wiley									
1	Publishing, Inc., 2006									
2	Make: Electronics, by Charles Platt, Published by Maker Media, 2015									
	References									
1	A. E. Ward, J.A.S. Angus, "Electronic Product Design", Stanley Thrones (Publishers) Limited,									
1	1996									
2	Paul Horowitz, Winfield Hill, "The Art of Electronics", Cambridge University Press, 1989									
	Useful Links									
1										
2										

	CO-PO Mapping													
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3											2	2
CO2			3											2
CO3			3											2
CO4						3								2
The stren	gth of	mappir	ng is to	be wr	itten as	1,2,3	; Wher	e, 1:Lo	w, 2:N	ledium	, 3:Hig	,h		
Each CO	of the	course	must	map to	at leas	t one F	° O.							

		Asses	sment							
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.										
Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks						
та1	Lab activities,	Lab Course	During Week 1 to Week 6	20						
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50						
L A 2	Lab activities,	Lab Course	During Week 7 to Week 12	20						
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50						
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40						
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40						
Week 1 indic	ates starting week of a	semester. The ty	pical schedule of lab assessments is shown,							
considering a	26-week semester. T	he actual schedule	shall be as per academic calendar. Lab activity	ities/Lab						
performance	shall include performi	ng experiments, n	nini-project, presentations, drawings, program	mming						
and other sui	table activities, as per	the nature and req	uirement of the lab course. The experimenta	l lab						
shall have typ	pically 8-10 experiment	its and related act	ivities if any.							

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)												
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total								
Remember												
Understand												
Apply	20			20								
Analyze	10	10		20								
Evaluate		20	20	40								
Create			20	20								
Total Marks	30	30	40	100								

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)											
			AY	2021-22								
			Course	Information								
Progr	amme	e	B.Tech. (Electronics	Engineering)								
Class,	, Sem	ester	Final Year B. Tech.,	Sem VII								
Cours	e Coo	le										
Cours	e Nar	ne	Professional Elective 5 : Microwave Engineering									
Desire	ed Re	quisites:	Communication Engineering									
Те	achin	ig Scheme		Examination Scl	neme (Marks)							
Lectu	re	3 Hrs/week	<u> </u>	T2	ESE	Total						
Tutor	ial	-	20	20	60	100						
Practi	cal	-		~ ~ ~								
Intera	nteraction - Credits: 3											
Course Objectives												
	Tou	inderstand the th	neoretical principles un	iderlying microway	ve devices and networ	ks						
2	101 Toi	ntroduce the vai	on the properties of w	sion lines and to dis	scuss the losses assoc	lated						
		leal with the mic	on the properties of va	d microwave meas	urement techniques							
	100		se Outcomes (CO) y	with Bloom's Tax	onomy Level							
At the	end o	f the course, the	e students will be able t	0,								
C01	Clas	sify the microw	vave frequencies and t	he waveguides that	t are used application	Understand						
CO2	Cate	gories the prop	agation of signals thro	ugh antenna		Analyze						
CO3	Exan Mic	nine the activ	e & passive microv nication systems	wave devices &	components used	n Apply						
CO4	Ana	lyse the operat	ion and working of	the various tube	s or sources for th	e Analyse						
	tran	smission of the	microwave frequencie	es								
Mada	1.		Madula	Contonta		TT						
Niodu	.ie				.	Hours						
I	r e	Aicrowave run Aicrowave regionicrowaves, Intelectric, magneti	ons and band designation eraction between electric c and electromagnetic	ons, microwave de rons and fields, elec field, electromagne	vices, applications of etron motion in etic plane waves	5						
П	I I I I I I I J	Microwave Way Rectangular and power losses in v Microwave pass irculators, atten Scattering Matriz unction, S-matr	veguide and Compon circular waveguide, T waveguide, excitation r ive components—Tee uators, phase shifters, x Parameters of micro ix for H-plane Tee junc	ents E and TM modes, p modes in waveguid junctions, magic te bends, twists, corn wave networks, S- ctions, S-matrix for	power transmission ar e, microwave cavities e, couplers, ers, irises, windows. matrix for E-plane Te r directional coupler.	d , 7 e						

III	 Microwave Tubes Limitations of conventional tubes, O and M type classification of microwave tubes, reentrant cavity, velocity modulation. O type tubes Two cavity Klystron: Construction and principle of operation, velocity modulation and bunching process Applegate diagram. Reflex Klystron: Construction and principle of operation, velocity modulation and bunching process, Applegate diagram, Oscillating modes, o/p characteristics, efficiency, electronic & mechanical tuning. M-type tubes Magnetron: Construction and Principle of operation of 8 cavity cylindrical travelling wave magnetron, hull cutoff condition, modes of resonance, PI mode operation, o/p characteristics, Applications. Slow wave devices Advantages of slow wave devices, Helix TWT: Construction and principle of operation, Applications. 	8
IV	Microwave Solid State Devices Tunnel diode, PIN diode, Gunn diode, LSA diode, Read diode, IMPATT diode, TRAPATT diode, BARITT DIODE, Varactor Diode, solid state ruby laser, semiconductor laser.	8
v	Microwave MeasurementsMeasurement devices: Slotted line, Tunable detector, VSWR meter, PowerMeter, S-parameter measurement, frequency measurements, Powermeasurement, Attenuation measurement, Phase shift measurement, VSWRmeasurement, Impedance measurement, Q of cavity resonator measurement	6
VI	Microwave Strip Lines and AntennaMicro-strip line, Slot line, Parallel strip line, advantages, Horn antenna, DishAntenna, Micro-strip antenna	5
	"Microwave Devices and Circuits". Samuel Y. Liao, PHL	
1		
2		
3		
4		
	References	
1	Microwave Engineering", D. M. Pozar, John Wiley.	
2		
3		
4		
	Iseful Links	
1	http://nptel.ac.in/downloads/117105077	
2	http://www.nptelvideos.in/2012/12/digital-communication.html	
3	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-prindigital-communications-i-fall-2006/video-lectures/	nciples-of-
4	-	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2		3												2
CO3			3											2
CO4							3							

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	loom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand	10	5	20	35			
3	Apply	10	10	20	40			
4	Analyze		5	20	25			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

AY 2021-22 Course Information Programme Class, Semester Final Year B. Tech., Sem VII Course Code Course Name Professional Elective 5-Adaptive Signal processing. Linear algebra. Course Name Professional Elective 5-Adaptive Signal processing. Linear algebra. Teaching Scheme Total		Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
Course Information Programme B.Tech. (Electronics Engineering) Class, Semester Final Year B. Tech., Sem VII Course Code Professional Elective 5-Adaptive Signal processing Desired Requisites: Professional Elective 5-Adaptive Signal processing. Linear algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week TI T2 ESE Total Tutorial - 20 60 100 Practical - Credits: 3 - - Interaction - Credits: 3 - - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - - 3 - - Course Objectives - - 4 Course Outcomes (CO) with Bloon's Taxonomy Level - - - 4 Course Outcomes (CO) with Bloon's Taxonomy Level - At the end of the course, the students with be able to. - - C01 Demonstrate key theory and applications of adaptive signal processing Understand - -				A	Y 2021-22						
Programme B. Tech. (Electronics Engineering) Class, Semester Final Year B. Tech., Sem VII Course Code Professional Elective 5-Adaptive Signal processing Desired Requisites: Professional Elective 5-Adaptive Signal processing. Linear algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/weck TI T2 ESE Total Tutorial - 20 20 60 100 Practical - Credits: 3 - Interaction - Credits: 3 - To develop a mathematical theory of linear adaptive filters - - To provide a comprehensive treatment of mathematical signal processing algorithms - - A - Course Objectives - I To develop a mathematical theory of linear adaptive filters - - A - - Course Outcomes (CO) with Bloom's Taxonomy Level - A the end of the course, the students will be able to. CO1 Demonstrate key theory and applications of adaptive signal processing Understand Otal<				Cours	se Information						
Class, Semester Final Year B. Tech., Sen VII Course Code Course Code Course Name Professional Elective 5-Adaptive Signal processing Desired Requisites: Probability theory, Digital Signal Processing. Linear algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week TI T2 ESE Total Thetraction - 20 20 60 100 Practical - 20 20 60 100 Practical - Credits: 3 - - Interaction Course Objectives -	Progra	amme		B.Tech. (Electroni	cs Engineering)						
Course Code International Processing Course Name Professional Elective 5-Adaptive Signal processing. Lincar algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Brs/week Tl T2 ESE Total Tutorial - 20 20 60 100 Practical - Credits: 3 - - Interaction - Credits: 3 - - 1 To develop a mathematical theory of linear adaptive filters - - - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - - - 3 4 - - - - - - CO1 Demostrate key theory and applications of adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse CO3 Demostrate key theory and applications or adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse CO4 Explai adaptive modelling - Apply Apply - -	Class.	Seme	ster	Final Year B. Tecl	h Sem VII						
Course Name Professional Elective 5-Adaptive Signal processing Desired Requisites: Probability theory. Digital Signal Processing, Linear algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Hirs/week Tl T2 ESE Total Tutorial - 20 20 60 100 Practical - Interaction - Course Objectives Interaction - Course Objectives - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - 3 - - - - - 4 Course Outcomes (CO) with Bloom's Taxonomy Level A the end of the course, the students will be able to, - - CO1 Demonstrate key theory and applications of adaptive signal processing Understand CO3 Apply adaptive modeling Apply Apply CO4 Explain Adaptive Control Systems Evaluate I Medule formance surface, saplications – properties, examples - adaptive linear combiner - mput signal and weight vectors , Desired response and error-performance function-gradient adap	Cours	e Cod	e		.,						
Desired Requisites: Probability theory, Digital Signal Processing, Linear algebra. Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week TI T2 ESE Total Intorial - 20 20 60 100 Practical - - Course Objectives - Interaction - Course Objectives - - I To develop a mathematical theory of linear adaptive filters - - - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - - - 3 - - - - - - 4 Course Outcomes (CO) with Bloom's Taxonomy Level - - - - At the end of the course, the students will be able to. COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications – properties, examples - adaptive Analyse Maine - - 1 Definitions and characteristis - applications – pr	Cours	e Nan	ne	Professional Electi	rofessional Elective 5-Adaptive Signal processing						
Teaching Scheme Examination Scheme (Marks) Lecture 3 Hrs/week TI T2 ESE Total Interial - 20 20 60 100 Practical - - 00 20 60 100 Practical - - Course Objectives - - 1 To develop a mathematical theory of linear adaptive filters - - - - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - - - 3 - - - - - - - 4 - <td< th=""><th>Desire</th><th>ed Red</th><th>nuisites:</th><th>Probability theory</th><th>Digital Signal Pr</th><th>ocessing. Linear algebra.</th><th></th></td<>	Desire	ed Red	nuisites:	Probability theory	Digital Signal Pr	ocessing. Linear algebra.					
Teaching SchemeExamination Scheme (Marks)Lecture3 Hrs/weckTIT2ESETotalTutorial-202060100Practical-Interaction-IotalInteraction-Credits: 3-To develop a mathematical theory of linear adaptive filters2To provide a comprehensive treatment of mathematical signal processing algorithms-34Course Outcomes (CO) with Bloom's Taxonomy LevelAt the end of the course, the students will be able to,-COIDemonstrate key theory and applications of adaptive signal processingUnderstandCOIDemonstrate key theory and applications of adaptive signal processingUnderstandCOIApply adaptive modellingApplyCO3Apply adaptive Control SystemsEvaluateStatistic S - applications – properties, examples - adaptive1Infinitions and characteristics - applications – properties, examples - adaptive1Infinitions and characteristics - applications – properties, examples - adaptive1Infinitions and characteristics - applications – performance function-gradient and minimum mean square error. Normal form of the input co-relation matrix, eigenvalues and eigenvectors of the input co-relation matrix1Infinition of the LMS algorithm.6Adaptive Model fing and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR<			1		,88						
Lecture 3 Hrs/wock Ti T2 FSE Total Tutorial - 20 20 60 100 Practical - - - - - Interaction - Credits: 3 - - - 1 To develop a mathematical theory of linear adaptive filters - - - - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - - - - 4 -	Те	achin	g Scheme		Examination	Scheme (Marks)					
Tutorial - 20 20 60 100 Practical - Interaction - 0 100 Interaction - Credits: 3 - - - Interaction - Credits: 3 -	Lectu	re	3 Hrs/week	T1	T2	ESE	Total				
Practical - Credits: 3 Interaction - Course Objectives Interaction To provide a comprehensive treatment of mathematical signal processing algorithms - A Course Outcomes (CO) with Bloom's Taxonomy Level - At the end of the course, the students will be able to, - - CO1 Demonstrate key theory and applications of adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse Analyse CO3 Apply adaptive modelling Apply Apply CO4 Explain Adaptive Control Systems Evaluate Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner-input signal and weight vectors, Desired response and error-performance function-gradient amd minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 Searching performance surface-stability and rate of convergence:	Tutori	ial	-	20	20	60	100				
Interaction - Credits: 3 Interaction - Course Objectives 1 To develop a mathematical theory of linear adaptive filters - 2 To provide a comprehensive treatment of mathematical signal processing algorithms - 3 - - - 4 - - - COI Demonstrate key theory and applications of adaptive signal processing Understand CO1 Demonstrate key theory and applications of adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse Analyse CO3 Apply adaptive modelling Apply Apply CO4 Explain Adaptive Control Systems Evaluate Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co-relation matrix, eigenvalues and eigenvectors of the input co-relation matrix, eigenvalues and eigenvectors of the input co-relation matrix, eigenvalues and eigenvectors of the input co-relation matrix, eigenvalues and sclator, theore, Normal form of the input co-relation matrix.	Practi	cal									
Course Objectives I To develop a mathematical theory of linear adaptive filters I To provide a comprehensive treatment of mathematical signal processing algorithms 3 Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Image: Course Outcomes (CO) with Bloom's Taxonomy Level Adaptive Endotion Module Module Contents Hours Adaptive control Systems: Definitions and characteristics - applications – properties, examples - adaptive incore function gradient ada	Intera	ction	-		Cre	edits: 3					
Course Objectives 1 To develop a mathematical theory of linear adaptive filters 2 To provide a comprehensive treatment of mathematical signal processing algorithms 3			I	1							
Image: Instance of the end of the course, the students will be able to, COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications of adaptive signal processing Understand COI Demonstrate key theory and applications of adaptive signal processing Understand CO3 Apply adaptive modelling Apply CO4 Explain Adaptive Control Systems Evaluate Module Module Contents Hours Medule Module Contents Hours Methods, A simple gradient acarch algorithm and its solution, stability and rate of convergence: 8 Or correlation matrix, eigenvalues and eigenvectors of the input correlation matrix, eigenvalues and eigenvectors solution, Gradient search by the method of Steepest Descent Algorithm 6 II Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Roise in Weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Mi				Сош	se Obiectives						
2 To provide a comprehensive treatment of mathematical signal processing algorithms 3 4 4 Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Understand C01 Demonstrate key theory and applications of adaptive signal processing Understand C02 Analyse LMS algorithm Analyse C03 Apply adaptive modelling Apply C04 Explain Adaptive Control Systems Evaluate Nodule Module Contents Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner - input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 Searching performance surface-stability and rate of convergence: Methods of searching the performance surface. Basic ideas of Gradient search detection gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III Methods of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Mi	1	Tod	evelop a mather	matical theory of line	ear adaptive filters	5					
3 Image: Control of the control of	2	Тор	rovide a compr	ehensive treatment of	of mathematical si	gnal processing algorithm	5				
4 Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to. Understand C01 Demonstrate key theory and applications of adaptive signal processing Understand C02 Analyse LMS algorithm Analyse C03 Apply adaptive modelling Apply C04 Explain Adaptive Control Systems Evaluate Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner - input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix. 8 II Searching performance surface-stability and rate of convergence: Methods, A simple gradient search lagorithm and its solution, stability and rate of convergence, The learning curve, Gradient search Moled, Gradient search by the method of Steepest Descent Algorithm 6 III Derivation of the LMS algorithm, Convergence of the weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IV Adaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 7 V General	3		1								
Course Outcomes (CO) with Bloom's Taxonomy LevelAt the end of the course, the students will be able to,COIDemonstrate key theory and applications of adaptive signal processingUnderstandCO2Analyse LMS algorithmAnalyseCO3Apply adaptive modellingApplyCO4Exclain Adaptive Control SystemsEvaluateCO5Module ContentsHoursModuleAdaptive Systems:EvaluateDefinitions and characteristics - applications – properties, examples - adaptive inear combiner- input signal and weight vectors , Desired response and error- performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix8IISearching performance surface-stability and rate of convergence: Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VGeneral description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Model Control, Adaptive Inverse Control, Example of Adaptive filter synthesis7	4										
At the end of the course, the students will be able to, Understand CO1 Demonstrate key theory and applications of adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse CO3 Apply adaptive modelling Apply CO4 Explain Adaptive Control Systems Evaluate Wodule Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 Searching performance surface-stability and rate of convergence: Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III Methods, A simple gradient search algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IIII Adaptive Modelling and System identification: 6 6 General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophy			Cour	se Outcomes (CO) with Bloom's 7	Faxonomy Level					
CO1 Demonstrate key theory and applications of adaptive signal processing Understand CO2 Analyse LMS algorithm Analyse CO3 Apply adaptive modelling Apply CO4 Explain Adaptive control Systems Evaluate Wodule Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 Searching performance surface-stability and rate of convergence: Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IV Adaptive Modelling and System identification: 6 General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 7 V General description of Inverse modelling, Some theoreti	At the	end of	the course, the	e students will be able	$\frac{e \text{ to,}}{1 + \frac{1}{2}}$	1 .					
CO3 Analyse algorithm Analyse CO3 Apply adaptive modelling Apply CO4 Explain Adaptive Control Systems Evaluate Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 Searching performance surface-stability and rate of convergence: Methods, a simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IV Adaptive Modelling and System identification: 6 V General description, Adaptive modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7		Demonstrate key theory and applications of adaptive signal processing									
COSApplyApplyCO4Explain Adaptive indectingNoduleModuleModule ContentsHoursModuleAdaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error- performance function-gradient and minimum mean square error , Normal form 	C02	CO2 Analyse Livis algorithm									
Module Module Contents Hours Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors, Desired response and error-performance function-gradient and minimum mean square error, Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 II Searching performance surface-stability and rate of convergence: Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III Methods, A simple gradient, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IV Adaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 6 V Inverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital 7 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7	CO4 Explain Adaptive Control Systems						Evaluate				
ModuleModule ContentsHoursAdaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error- performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix8IISearching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVGeneral description, Adaptive modelling of multipath communication channel, 											
Image: Adaptive Systems: Definitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error-performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix 8 II Searching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm 6 III The LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm 6 IV Adaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 6 V General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital 7 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7 7	Modu	le		Modu	le Contents		Hours				
IDefinitions and characteristics - applications – properties, examples - adaptive linear combiner- input signal and weight vectors , Desired response and error- performance function-gradient and minimum mean square error , Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix8IISearching performance surface-stability and rate of convergence: Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, 		A	daptive System	ms:							
Ilinear combiner- input signal and weight vectors, Desired response and error- performance function-gradient and minimum mean square error, Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrix8IISearching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive fully apprese Control, Example of Adaptive for adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive for adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for adaptive for adaptive Inverse Control, Example of Adaptive for adaptive for adaptive Inverse Control, Example of Adaptive for adaptive for adaptive Inverse Control, Example of Adaptive for a			efinitions and o	characteristics - app	plications – prope	erties, examples - adaptive					
Performance function-gradient and minimum mean square error, Normal form of the input co relation matrix, eigenvalues and eigenvectors of the input correlation matrixIISearching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive7	I	li	near combiner-	input signal and w	eight vectors, De	esired response and error-	8				
of the input correlation matrix, eigenvalues and eigenvectors of the input correlation matrixSearching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent AlgorithmIIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive To Control Systems:7	_	p	performance function-gradient and minimum mean square error, Normal form								
Contraction matrixSearching performance surface-stability and rate of convergence: Methods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive for Adaptive Inverse Control, Example of Adaptive			r the input co	b relation matrix, e							
IIIMethods of searching the performance surface, Basic ideas of Gradient search Methods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive filter Synthesis7			earching nerf	ormance surface-s	tability and rate	of convergence:	+				
IIMethods, A simple gradient search algorithm and its solution, stability and rate of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent Algorithm6IIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Model Control, Adaptive Inverse Control, Example of Adaptive r r7			lethods of sear	ching the performa	nce surface, Basic	c ideas of Gradient search					
of convergence, The learning curve, Gradient search by Newton's method, Gradient search by the method of Steepest Descent AlgorithmIIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive To the body of the control, Adaptive Inverse Control, Example of Adaptive To the performance Control, Example of Adaptive	II	N	Methods, A simple gradient search algorithm and its solution, stability and rate								
Gradient search by the method of Steepest Descent AlgorithmIIIThe LMS algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive Total Control, Adaptive Inverse Control, Example of Adaptive Total Control Systems:7		0	f convergence,	, The learning curv	e, Gradient searc	ch by Newton's method					
IIIInterLivis algorithm Derivation of the LMS algorithm, Convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 77		<u>(</u>	radient search	by the method of S	teepest Descent A	Algorithm					
IIIDerivation of the Livis algorithm, convergence of the weight vector, An example of Convergence, Learning Curve, Noise in Weight vector solution, Misadjustment, The performance advantage of LMS algorithm6IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 77			ne LIVIS algoritherity of the	he IMS algorithm	Convergence o	f the weight vector Ar					
IN Online of Control general, Dearning Control, Problem in Hoght Vector Solution, Misadjustment, The performance advantage of LMS algorithm IN IV Adaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 6 V Inverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7 7	Ш	e e	xample of Cor	vergence Learning	Curve Noise ir	n Weight vector solution	6				
IV Adaptive Modelling and System identification: 6 IV General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis 6 V Inverse Adaptive Modelling: 6 V General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis 7 VI Adaptive Control Systems: 7		N	lisadjustment,	The performance ad	lvantage of LMS	algorithm	U U				
IVAdaptive Modelling and System identification: General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis6VInverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis7VIAdaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive T7			5	1	C	C					
IV General description, Adaptive modelling of multipath communication channel, Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR 6 V Inverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7 7		A	daptive Mode	lling and System i	dentification:						
Adaptive modelling in Geophysical Exploration, Adaptive Modelling in FIR Synthesis V General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7	IV	IV General description, Adaptive modelling of multipath communication chann					6				
V Inverse Adaptive Modelling: General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital filter synthesis VI Adaptive Control Systems: VI Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7			daptive model	ling in Geophysica	Exploration, Ad	daptive Modelling in FIR					
V General description of Inverse modelling, Some theoretical Examples, Adaptive equalization of Telephone Channels, Adaptive Poles and zeros for IIR Digital 7 VI Adaptive Control Systems: Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7			ynnnesis nverse Adaptiv	ve Modelling.							
V Scheral description of Inferse Inferences Inference			international description	ion of Inverse mode	lling. Some theor	etical Examples Adaptive					
filter synthesis Adaptive Control Systems: VI Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7		e	qualization of 7	Felephone Channels	, Adaptive Poles	and zeros for IIR Digita	7				
VI Adaptive Control Systems: VI Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7		fi	lter synthesis	r	,						
VI Adaptive Model Control, Adaptive Inverse Control, Example of Adaptive 7		A	daptive Contr	ol Systems:							
terrouge L'embred	VI		daptive Model	Control, Adaptive	e Inverse Contro	ol, Example of Adaptive	7				

	Text Books						
1	Bernard Widrow and Samuel D. Stearns, —Adaptive Signal Processing, Person Education, 1985						
2							
3							
4							
	References						
1	Simon Haykin Adaptive Filter Theory Deerson Education 2002						

1	Simon Haykin, —Adaptive Filter Theory, Pearson Education, 2003.
n	John R. Treichler, C. Richard Johnson, Michael G. Larimore, -Theory and Design of Adaptive
	Filters ^I , Prentice-Hall of India, 2002.
3	
4	
	Useful Links
1	
2	
3	
4	

		Programme Outcomes (PO)								PS	50			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1												1
CO2	1													1
CO3	1													2
CO4		2												1

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course						
B	loom's Taxonomy Level	T1	T2	ESE	Total		
1	Remember						
2	Understand	10	5	20	35		
3	Apply	10	10	20	40		
4	Analyze		5	15	20		
5	Evaluate			5	5		
6	Create						
	Total	20	20	60	100		

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)										
AY 2021-22											
	Course Information										
Progr	amme		B. Tech. (Electron	nics Engineering)							
Class.	Seme	ster	Final Year B. Tec	Final Year B. Tech., Sem. VII							
Cours	Course Code										
Course Name Professional Elective 5- Analog CMOS IC Design											
Desired Requisites: Digital Electronics, Digital CMOS IC Design											
		•									
Teaching Scheme Examination Scheme (Marks)											
Lectu	re	3 Hrs/week	T1	T2	ESE	Г	otal				
Tutor	ial	-	20	20	60		100				
Practi	cal	-		11							
Intera	action	-		Cred	its: 3						
		1	1								
			Cou	rse Objectives							
1	To e	xplain the ana	log circuit concep	ts based on MOS of	devices in such a	way to	develop in				
1	stude	ents the insight	and intuition toward	ds MOS circuits.		-	•				
2	То о	rganize guest le	ectures and practica	l sessions with the he	elp of industry perso	ons.					
3	To d	eliver the tips (or thumb rules) rela	ted with design of a	nalog circuits throu	ighout tl	ne course.				
4	10 n	notivate the stu	idents to develop life	long/ self-learning a	ttitude.						
At the	end of	f the course the	students will be abl	e to	Conomy Level						
	Ana	vze MOS de	vice circuits to d	erive the depender	nce of various ele	ectrical	Analyze				
CO1	para	meters analytica	ally and graphically.	(M1)							
	Dev	elop large sig	nal and small sign	nal models for sin	gle stage amplifie	rs and	Apply				
CO2	diffe	rential amplifier	s using MOS trans	sistors and derive th	e gain relationships	s. (M2,					
						Design					
CO3	spec	gn common ifications Furt	source, common	gale, common d	rain ampimer for various typical situ	given	Design				
	(M2)	M3)	her recognize their	application under	various typical situ	ations.					
<u>CO4</u>	Ana	lyze large signal	l and small signal be	ehaviour of different	ial amplifiers and co	ompute	Analyze				
04	the d	lifferential gain,	common mode gai	n and CMRR. (M3)							
CO5	Ana	lyze active cur	rent mirrors and ex	plain the properties	of differential pairs	s using	Analyze				
	such	circuits as load	$\frac{ds. (M5)}{\Delta m}$::::::::::::::::::::::::::::::::::::::	41		Desien				
	Desi	gn 2-stage Op	Amp for given spect	amplifiers using time	the poles and zeros	(M6)	Design				
	Incqu	tene y response	of the single stage	ampiners using tim	e-constant method						
Modu	le		Mod	ule Contents			Hours				
	N	IOS Device Ph	ivsics				nouis				
I	N	IOS IV Charact	teristics, Second Or	der Effects, MOS de	vice models (MOS	device	8				
	c	apacitance, MC	OS small signal mod	el) MOS model para	ameters						
	S	ingle Stage Aı	mplifier		_						
		art I CS stage v	with resistance load	, diode connected lo	bad, current source	load, ,	6				
		S stage with so	nurce, degeneration,	,							
Ш		art II source fol	llower. common-ga	te stage. Cascode sta	ge, folded cascade.	choice	6				
	0	f device models	s.		6-,,						
	Ľ)ifferential An	nplifiers								
IV IV	B	asic difference	e pair, differential	mode response, c	ommon mode res	ponse,	6				
	<u>1</u> ת	Differential pair	with MOS loads								
V	ר ר א	assive and Ac	uve current mirro	urs ors_active current	mirrors		7				
		requency Resi					/				
VI VI		S stage, Source	e follower, Commor	n gate stage, Cascode	stage and Differen	ce pair.	_				
		Design of 2-stag	e operational amplif	Tier		•	/				

	Text Books							
1	Behzad Razavi, "Design of Analog CMOS Integrated Circuits", Second Edition, Tata McGraw- Hill Publishing Company Limited, New Delhi, 2017.							
2								
3								
4								
	References							
1	R. Jacob Baker, "CMOS: Circuit Design, Layout and Simulation", Wiley-Inter- science, (2008)							
2	Allen, P.E. and Holberg, D.R., "CMOS Analog Circuit Design", Oxford University Press (2002)							
3								
4								
	Useful Links							
1	www.vlsi-expert.com,							
2	www.testbench.in							
3	www.asic-world.com							
4	https://nptel.ac.in/courses/117/101/117101105/							

CO-PO Mapping														
		Programme Outcomes (PO) PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3												3
CO2	2	3												3
CO3			3											3
CO4	2	3												3
CO5	2	3												3
CO6		2	3											3
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	of the	course	must	man to	at leas	t one F	0							

Assessment Plan based on Bloom's Taxonomy Level						
Bloom's Taxonomy Level	T1	T2	ESE	Total		
Remember						
Understand						
Apply	10		10	20		
Analyze	10	10	25	45		
Evaluate						
Create		10	25	35		
Total	20	20	60	100		

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
			AY	2021-22	,					
			Course	Information						
Progr	amme	;	B.Tech. (Electronics	Engineering)						
Class,	, Seme	ester	Third Year B. Tech.,	'hird Year B. Tech., Sem VII						
Cours	se Cod	e								
Course Name			Professional Elective	Professional Elective 6 : Optical Communication						
Desir	ed Rea	quisites:	Communication Engi	neering						
Te	eachin	g Scheme		Examination Sche	eme (Marks)					
Lectu	re	3 Hrs/week	T1	T2	ESE	Total				
Tutor	ial	-	20	20	60	100				
Practi	cal	-								
Intera	action	-		Credits	: 3					
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
1	<b>T</b> .	n donat 1 (	Course	Objectives						
		nderstand trans	mission characteristics	of optical fibers.	communication					
3	10 u				communication					
4										
		Cour	rse Outcomes (CO) w	vith Bloom's Taxor	nomy Level					
At the	end of	f the course, the	e students will be able to	),						
<u>CO1</u>	Relat	e light waves in	nto small optical comp	onents with high pr	ecision	Remember				
CO2 Calculate the attenuation and signal degradation due to intermodal and intramodal Ai distortion						Analyze				
CO3 Calculate power con fiber numerical aper			ipling losses due to con ture	inectors, splices, sou	arce output pattern and	Analyze				
<u>CO4</u>	Com	pute the modes	in step index fiber and	Apply						
Madu			Madula	Contonta		Houng				
Modu		ntroduction:	Iviouuie	Contents		nours				
I	In au p c	ntroduction, Ra ngle, Numerica ropagation, EM ylindrical fibers	y theory transmissi al aperture, Skew rays waves, modes in F , SM fibers.	on, Total internal r , Electromagnetic m Planar guide, phase	eflection, Acceptance node theory of optical and group velocity,	9				
Ш	Transmission characteristics of optical fibers :Attenuation, Material absorption losses in silica glass fibers, Linear and Nonlinear Scattering losses, Fiber Bend losses, Midband and farband infra redtransmission, Intra and inter Modal Dispersion, Over all Fiber Dispersion,Polarization, non linear Phenomena. Optical fiber connectors, Fiber alignmentand Joint Losses, Fiber Splices, Fiber connectors, Expanded Beam Connectors.					6				
III	S C (1) L fri N s ⁴ c d	<b>OURCES AND</b> <b>Optical Sources</b> LEDs)- structu aser Diodes -M requencies, stru fodulation of la ource linearity.C onstruction, cha etector noise -	<b>D DETECTORS</b> <b>s :</b> Semiconductor Phres, materials, Figure Aodes & threshold co ctures, characteristics aser diodes, Spectral Optical Detectors: PIN aracteristics and proper Noise sources, Signal	hysics background, of merits, character nditions, Diode Rat and figure of merit width, temperatur Photo detectors, Av rties, Comparison o to Noise ratio, Det	Light emitting diode ristics & Modulation. e equations, resonant s, single mode lasers, re effects, and Light alanche photo diodes, f performance, Photo rector response time.	6				

	Coupling and Receiver operation	
IV	<b>Power Launching and Coupling:</b> Source to fiber power launching, Lensing schemes, fiber-to-fiber joints, LED coupling to single mode fibers, fiber splicing, Optical fiber connectors. <b>Optical Receiver Operation :</b> Receiver operation, Preamplifier types, receiver performance and sensitivity, Eye diagrams, Coherent detection, Specification of receivers.	6
V	<b>Transmission Systems :</b> Point –to-point link –system considerations, Link power budget and rise time budget methods for design of optical link, BER calculation. <b>Optical Amplifiers :</b> Semiconductor optical Amplifier, EDFA, Raman Amplifier, Wideband Optical Amplifiers	7
	Measurements and Advances in Optical Fiber Systems :	
VI	Fiber Attenuation measurements- Dispersion measurements – Fiber effactive index profile measurements – Fiber cut- off Wave length Measurements – Fiber Numerical Aperture Measurements – Fiber diameter measurements.Principles of WDM, DWDM, Telecommunications & broadband application, SONET/SDH, MUX, Analog & Digital broadband, optical switching	7
	Text Books	
1	Optical Fiber Communications by Gerd Keiser, 4th Edition (Mc Graw Hill)	
2	Optical Fiber Communication by John M. Senior (PHI/Pearson)	
3		
4		
	<b>References</b>	
1	Fiber optical communication Technology by Djafar Mymbaev & Lowell L, Scheiner.	(Pearson)
2	Fiber optic Communication Systems by G. Agrawal (John Wiley and sons)	
3		
4		
1	Useful Links	
1	nttp://nptei.ac.m/	
2		
3		
1		

	CO-PO Mapping													
				Pr	ogran	nme O	utcon	nes (P	0)				PS	50
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3											1	
CO2			3											3
CO3			3											3
CO4			3											3
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO													

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember	10		20	30			
2	Understand							
3	Apply	10	10	20	40			
4	Analyze		10	20	30			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

		Wa	Alchand College of (Government Aided A	<b>Engineering, S</b> a utonomous Institute)	ngli			
			AY 202	21-22				
			Course Inf	formation				
Progr	amm	e	B.Tech. (Electronics En	ngineering)				
Class	, Sem	ester	Final Year B. Tech., Se	em VII				
Cours	se Co	de						
Cours	Course Name		Professional Elective 6:	Advanced Control Sys	tem			
Desir	ed Re	quisites:	Control System					
Te	eachir	ng Scheme	Ex	xamination Scheme	(Marks)			
Lectu	ire	3 Hrs/week	T1	T2	ESE	Total		
Tutor	rial	-	20	20	60	100		
Practi	ical	-		<u> </u>				
Inter	action	-		Credits: 3				
			0 0	1 •				
	Tak	ntus dus a stata se	Course O	bjectives	iont anatoma in ha	h 4h a		
1	1 10 introduce state space state variable approach for linear time invariant systems in both the							
	To explain about developing the describing function for the nonlinearity present to assess the							
	stab	oility of the syste	m.					
3	То	explain stability a	analysis of linear and non	linear systems				
4	То	explain design te	chniques of pole assignment	ent and state observer	using state feedbac	k.		
		Cour	se Outcomes (CO) with	h Bloom's Taxonomy	Level			
At the	end c	of the course, the	students will be able to,			A		
	<b>COI</b> Develop state models for linear continuous time and discrete time systems.				Apply			
CO2	the	system.		learity present to asses	ss the stability of	Apply		
CO3	Illus	strate Lyapunov	function for the stability a	e stability analysis of nonlinear systems.				
CO4	Des	ign pole assignm	nent and state observer us	ing state feedback.		Analyze		
Modu	ıle		Module (	Contents		Hours		
I	2 [ [ ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]	State Space Analysis :         Multivariable systems, State Space Representation of systems, Solution of State         Equation, State Transition Matrix, Transfer function from state variable model,         Eigenvalues and Eigenvectors, Concepts of controllability and observability, Tests         for controllability and observability for continuous time systems – Time varying         case, minimum energy control, time invariant case, Principle of Duality,         Controllability and observability form Jordan canonical form and other canonical         forms.						
II	]	Describing Function Analysis:         Definition, limitations, use of describing function for stability analysis,         Introduction to nonlinear systems, Types of nonlinearities, describing function analysis of nonlinear control systems, describing function of ideal relay, relay with hysteresis & dead zone, saturation/coulomb friction & backlash.						
ш		Stability in the se heorems. Direct autonomous syst	ense of Lyapunov., Lyapu method of Lypanov for t tems.	nov's stability and Ly he Linear and Nonline	rpanov's instability ar continuous time	6		

IV	<b>Digital Control Introduction:</b> Why Use Digital Control, Configuration of the Basic Digital Control Scheme, Principles of Signal Conversion, Basic Discrete – Time signals, Time – Domain models for discrete – time systems, Transfer function models, Stability on the Z- plane and the Jury stability criterion, Sampling as Impulse Modulation, Sampled Spectra and Aliasing, Filtering Practical Aspects of the choice of sampling rate,	7
	Principle of discretization, The Routh stability criterion on the r- plane.	
V	<ul> <li>Digital Control Devices And Systems And Algorithms:</li> <li>Introduction, z-Domain description of sampled continuous – time plants, z-Domain description of systems with Dead – Time, Implementation of Digital Controllers, Digital temperature control system, Digital position control system, Stepping motors and their control. z- plane specifications of control system design, Digital compensator Design using frequency response plots, Digital compensator Design using root Locus plots, z- plane Synthesis.</li> </ul>	7
VI	Pole-placement Design and State observers: Introduction, Stability improvement by state feedback, Necessary and sufficient conditions of arbitrary pole-placement, State regulator design, Design of State Observers, Compensator Design by the separation principle, Servo design: Introduction of the reference input by feed forward control, State Feedback with Integral Control, Digital Control systems with state feedback, Deadbeat control by state feedback and Dead beat observers.	7
	Text Books	1 11 1
1	Modern Control System Theory – by M. Gopal, New Age International Publishers, 21 1996	nd edition,
2	Digital Control and State Variable Methods: Conventional and Intelligent Control M.Gopal McGraw Hill 3 rdEdition, 2008	Systems
3	Modern Control Engineering, Ogata, Fifth edition, Prentice Hall of India, 2009.	
4		
	-	
	<b>References</b>	
	"Modern Control Engineering" – by K. Ogata, Prentice Hall of India, 3rd edition, 1998	$\mathbf{a}$
2	Ltd.	lal (F)
3	Digital Control and State Variable Methods" – by M. Gopal, Tata Mc Graw-Hill Companies, 1997	
4	Systems and Control by Stainslaw" H. Zak, Oxford Press, 2003	
	Useful Links	
1		
2		
3		
4		

	CO-PO Mapping													
				Pr	ogran	nme O	utcom	nes (P	0)				PS	0
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		2		1									1
CO2	2		1											1
CO3	2		1											1
CO4	1	1	2		1									1
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO.													

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	loom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand							
3	Apply	10	10	30	50			
4	Analyze	10	10	30	50			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)						
			AY 202	1-22	,		
			Course Info	rmation			
Progra	amme		B.Tech. (Electronics Eng	ineering)			
Class.	, Seme	ster	Final Year B. Tech., Sem	NII			
Cours	se Cod	e					
Cours	se Nan	ie	Professional Elective 6-T	CP/IP and Indu	strial Protocols		
Desire	ed Rea	nuisites:					
		•					
Те	achin	g Scheme	Exa	mination Sche	me (Marks)		
Lectu	re	3 Hrs/week	T1	T2	ESE	Total	
Tutor	ial	-	20	20	60	100	
Practi	cal	-		1	I I		
Intera	action	-		Credits	: 3		
			Course Ob	jectives			
1	To d	evelop an unde	erstanding of computer net	working basics			
2	be ex	posed to the T	CP/IP protocol suite				
3	To d	evelop an under	rstanding of different comp	ponents of com	puter networks, vari	ous protocols,	
	modern technologies and their applications.						
4	4 To gain conceptual understanding of Software Defined Networks (SDN)						
At the	end of	Course the	e students will be able to	Bloom's laxol	iomy Level		
CO1	Desi	on a small TCP	P/IP Network			Apply	
CO2	Iden	tify security iss	sues and suggest suitable so	olution		Analyze	
CO3	Explain concept of cloud and its models. Understand						
<b>CO4</b>	CO4Explain OpenFlow, challenges in SDN, and developments in SDNUnderstand						
Modu	le		Module Cor	itents		Hours	
	I	nternet Proto	ocol : IPv4 :				
т		P Datagram	Formats - Data and	0			
	P S	witching and	8				
		esolution Prot	ocol ICMP.	and Loo	podeks - Address		
	T	ransport layer	r protocols				
II	U	DP and TCP s	segments, comparison, TC	P flow control	, congestion control	6	
	e	rror control.					
₁₁₁		pplication lay	er protocols:		Application large		
		rotocols HTTI	P SMTP SNMP FTP	(ICP, SCIP),	Application layer	0	
		ecurity:					
	T	he Need of Se	ecurity, Security Approacl	nes, Principal o	f Security, Types of		
1 1 1	A	ttacks. Networ	k Security: Brief Introduct	ion to Firewalls	, IP Security, Virtua		
	P	rivate Network	as (VPN)				
		undamental (	Cloud Computing :	ations Das	ia Concenta and		
		erminology -	Roles and Boundaries	- Cloud Chai	acteristics - Cloud	7	
		elivery Models	s - Cloud Deployment M	lodels. Cloud-H	Enabling Technology	,	
	S	oftware Defin	ed Networking(SDN):				
VI	ł	basics and (	Open flow, SDN Contro	ller, SDN cl	nallenges, SDN and	6	
	V	irtualization.					
				-1			
1	D A	Eorouzon " C	Text Bo	OKS	ion 2016		
$\frac{1}{2}$	D A Soft	rorouzan, C ware defined N	etworking Chuck Rlack F	i aw filli Educat Elsevier 2014	1011 2010		
3	5010		Chuck Diack I	2014			
	1						

4	
	References
1	
2	
3	
4	
	Useful Links
1	
2	
3	
4	

	CO-PO Mapping													
				P	rograr	nme (	Outcor	nes (F	<b>PO</b> )				P	SO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			2										2	
CO2		2												1
CO3		1												1
CO4	1	1												1
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO.													

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	loom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand	10		20	30			
3	Apply	10	10	20	40			
4	Analyze		10	20	30			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

	Walchand College of Engineering, Sangli								
<u> </u>				1- <b>?</b> ?					
			Course Info	rmation					
Progr	amme		B Tech (Electronics En	gineering)					
Class	. Seme	ster	Final Year B. Tech. sem	VIII					
Cours	se Cod								
Cours	se Nam	e	Project 2						
Desir	ed Reo	uisites:							
Т	eachin	g Scheme	Exa	amination Scheme	(Marks)				
Lectu	re	-	LA1	LA2	Lab ESE	Total			
Tutor	ial	-	30	30	40	100			
Practi	ical	6 Hrs/Week			I I				
Intera	action	-		Credits: 3					
			1						
			Course Ob	jectives					
	To pi	ovide students l	hands on experience on, tr	oubleshooting, maint	enance, fabrication,				
1	1 innovation, record keeping, documentation etc thereby enhancing the skill and competency par								
	technical education								
$\frac{2}{3}$	<ul> <li>2 To create an Industrial environment and culture within the institution.</li> <li>3 To inculcate inpovative thinking and thereby preparing students for main project.</li> </ul>								
3		t up self-mainte	and thereby plana hereby plana cell within departm	ents to ensure optima	lusage of infrastru	cture			
4	facilit	ties.		ents to ensure optima	i usage of inflastru	cuic			
		Cours	se Outcomes (CO) with	Bloom's Taxonomy	Level				
At the	end of	the course, the	students will be able to,						
CO1	Choo	se, Initiate and	manage a minor project.			Apply			
CO2	Prop	ose research pro	oblem and present them i	in a clear and disting	et manner through	Evaluate			
<u>CO3</u>	Cons	truct Commen	t and design techniques.	dertaken		Create			
CO4	Deliv	er the seminar	on project work complete	d		Analyze			
			rj			<u> </u>			
			List of Experiments	/ Lab Activities					
Projec	t Desc	ription:							
A proj	ject gro	up shall consist	of 5 students per group. T	The project will involv	e the design, constr	ruction,			
and de	buggin	g of an electron	ic system approved by the	department. Each st	udent should concei	ve, design			
develo	p and 1	digital systems	onic product. The electron	ic part of the product	should be an applic	ation of			
done r	alog & Ising ar	ugital systems	rd schematic canture & PC	B design software	The realization of th	ne product			
should	l includ	e design and fal	brication of PCB.			le product			
		U							
Each s	student	must keep a pro	oject notebook/logbook. T	he project notebooks	will be checked per	iodically			
throug	ghout th	ie semester, as p	part of in-semester-evaluat	ion. The student shou	ild submit a soft bo	und report			
at the	end OI	the semester. I	ne final product as a result	of project should be	demonstrated at the	time of			
The P	rojects	may be from the	e following areas/domains	, but not limited to:					
	· Em	bedded Systems	5	,					
	· Elec	etronic Control	Systems						
	· Elec	tronic Commu	nication Systems						
	· Bio	medical Electro	nics						
	· POV · Rot	ver Electronics	atronic Systems						
	· Elec	tric Vehicles	au one systems						
	· Arti	ficial Intelligend	ce and Machine Learning						

Applications of Electronics to Agriculture								
ASSESSMENT								
A demonstration and oral examination on the mini project shall be conducted at the end of the semester.								
The examination will consist of demonstration and viva voce on the project.								
Text Books								
1 Make: Electronics, by Charles Platt, Published by Maker Media, 2015								
References								
1								
Lineful Links								
Userui Links								
2								

	CO-PO Mapping													
				Pr	ogran	ıme O	utcon	nes (P	0)				PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3											2	2
CO2			3											2
CO3			3											2
CO4						3								2
The stren Each CO	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.													

	Assessment									
There are thr	There are three components of lab assessment, LA1, LA2 and Lab ESE.									
IMP: Lab ES	IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.									
Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks						
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	20						
	attendance, journal	ndance, journal Faculty Marks Submission at		50						
1.42	Lab activities,	Lab Course	During Week 7 to Week 12	20						
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50						
Lob ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40						
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40						
Week 1 indic	ates starting week of a	a semester. The ty	pical schedule of lab assessments is shown,							
considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab										
performance shall include performing experiments, mini-project, presentations, drawings, programming										
and other su	table activities, as per	the nature and rec	juirement of the lab course. The experimenta	.I lab						
shall have ty	pically 8-10 experimer	nts.								

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy Level LA1 LA2 Lab ESE Tota									
Remember									
Understand									
Apply	20			20					
Analyze	10	10		20					
Evaluate		20	20	40					
Create			20	20					
Total	30	30	40	100					

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
			AY	2021-22						
	Course Information									
Progra	amme		B.Tech. (Electronic	s Engineering)						
Class, Semester Final Year B. Tech. Semester VII										
Cours	e Cod	e								
Cours	e Nam	ie	Techno Social Activ	vities						
Desire	ed Req	puisites:								
Te	eachin	g Scheme		Examination Sch	eme (Marks)					
Lectu	re		LA1	LA2	ESE	Total				
Tutori	Tutorial -		30	30	40	100				
Practi	cal	-			··					
Intera	action	1Hrs/Week		Credits	s: 1					
			Cours	e Objectives						
1	To n	urture the life sl	kill qualities							
2	To er	ngage in indepe	ndent and lifelong lea	rning						
3										
4		2								
A 1	1 0	Cou	rse Outcomes (CO)	with Bloom's Taxo	nomy Level					
At the	end of	the course, the	students will be able	to,		A _ 1				
	Use	life skills	a o attraction in components	1:6		Apply				
	CO2     Select the proper opportunity in corporate life.     Analyze									
CO3	<b>Develop</b> communication effectively with the engineering community and with society Create at large.									
<b>CO4</b>	CO4         Develop himself/ herself as successful Engineer         Create									
			C	ontents						

To earn the credit, participation of the students in following activities (More than one activity) will be evaluated.

1. Internship: 15 days internship ( Online/ Offline)

**2.** Co-curricular Activities : Co-Curricular activities include activities by chapters of professional societies like SAE, IEEE, ISTE, IET, Department Associations, Lab Development, Paper Presentation in National/International Conferences, Paper Publication in National/ International Journal, Model Building, Project competition, Entrepreneurship, Patenting, Participation in Dept level/ Institute level Technical (Engineering) club activities.

**3. Extra - Curricular Activities**: Extra-Curricular Activities include activities such as NSS, Unnat Bharat, Gymkhana Clubs, Cultural Fests (Inside or outside of the college), Spots Event (Inside or outside of the college), Community Services, Social work, Activities in Alumni Association, Participation in Sports, Various Clubs of Institute, Intra and Inter Collegiate competitions. Participation in Dept level/ Institute level club activities. (Activity conducted by club should be Technical- Ethics, Management, Professionalism/ skill/ Proficiency developments activities)

4. Course ( Technical or fine arts) completed through Continuing Education Program

5. Any project completed which is helping the Electronics Engineering Department

The performance of a student shall be monitored and evaluated by the Faculty-in-charge

	CO-PO Mapping													
		Programme Outcomes									PSO			
			-		-	(P	U)	-		10				-
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1						3		3					2	2
CO2							3							2
CO3										3				2
CO4												3		2
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO.													

	Assessment										
There are three components of lab assessment, LA1, LA2 and Lab ESE.											
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.											
Assessment Based on Conducted by Typical Schedule (for 26-week Sem)											
TA1	Lab activities,	Lab Course	During Week 1 to Week 6	20							
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50							
T A 2	Lab activities,	Lab Course	During Week 7 to Week 12	20							
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50							
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40							
Lad ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40							
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,											
considering a	26-week semester. Th	he actual schedule	shall be as per academic calendar. Lab activit	ities/Lab							

performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total					
Remember									
Understand									
Apply	15	10	10	35					
Analyze	15	10	10	35					
Evaluate			10	10					
Create		10	10	20					
Total Marks	30	30	40	100					

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)										
Total										
100										
I										
ers and receivers.										
oarison.										
Course Outcomes (CO) with Bloom's Taxonomy Level										
using Understand										
Archure										
e Analyze										
in Understand										
Hours										
orm of										
and										
nal,										
5										
ability,										
System										
system										
Slock										
iver,										
2 4										
ram										
with –										
y Line										
iggered 4										
to MTI										
Scan,										
Scan, nd two- ion and 4										
<b>s</b> ) <b>E</b> <b>i</b> <b>i</b> <b>i</b> <b>i</b> <b>i</b> <b>i</b> <b>i</b> <b>i</b>										

	Detection of Radar Signals in Noise : Introduction, Matched Filter Receiver –	
	Response Characteristics and Derivation, Correlation Function and Cross-	
	correlation Receiver, Efficiency of Non-matched Filters, Matched Fitter with	
	Nonwhite Noise.	
	Radar Receivers – Noise Figure and Noise Temperature. Displays — types.	5
	Duplexers — Branch type and Balanced type. Circulators as Duptexers.	5
	Introduction to Phased Array Antennas - Basic Concepts, Radiation Pattern,	
	Beam Steering and Beam Width changes, Applications. Advantages and	
	Limitations.	
	Radar clutter and basic navigational radar system 9 :	
и м	Introduction to Radar Clutter - Types, Surface clutter radar equation,	
VI	Fundamentals of Navigation aids: Types of Navigation aids, ILS, DME, VOR,	4
	TACAN, MLS, LORAN, DECCA, OMEGA,	
	Text Books	
1	Introduction to Radar Systems - Men* I. Skolnik, TMH Special Indian Edition, 2nd	Ed 2007
2	GSN Raju,"Radar Engineering and Fundamentals of Navigational Aids" IK International	tional
	Publishers, 2008	
	References	
1	Principles of Modem Radar: Basic Principles – Mark A. Rkhards, James A. Scheer, V	Villiam A.
1	HoIm. Yesdee, Scitech Publication, 2013	
	Useful Links	
1	www.Nptel.ac.in	
2	https://ocw.mit.edu/resources/res-ll-001-introduction-to-radar-systems	
3	www.radartutorial.eu/index.en.html	

	CO-PO Mapping														
		Programme Outcomes (PO)											PS	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3		3										2		
CO2	3		3										2		
CO3	3		3										2		
CO4	3		3											2	
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															
Each CO	of the	course	must	map to	at leas	t one F	Ю.								

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

Assessment Plan based on Bloom's Taxonomy Level									
Bloom's Taxonomy Level	T1	T2	ESE	Total					
Remember									
Understand	10	10	20	40					
Apply		5	20	25					
Analyze	10	5	20	35					
Evaluate									
Create									
Total	20	20	60	100					

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)											
			AY 2021-2	22								
			Course Inforn	nation								
Progr	amme		B.Tech. (Electronics En	gineering)								
Class.	. Semest	er	Final Year B. Tech. Se	mester VIII								
Cours	se Code											
Cours	se Name		Professional Elective 7-	Wavelet and Filt	er Banks							
Desire	ed Requi	sites:	Signals and Systems	Signals and Systems								
	e a rie qu	510051										
,	Teaching	Scheme	Fxa	mination Scher	ne (Marks)							
Lectu	re	2 Hrs/week	T1	T2	FSE	Total						
Tutor	iəl	2 1113/ W CCK	20	20	60	100						
Practi	ical	-	20	20	00	100						
Inton	nation			Cradita	<b>ว</b>							
Intera		-			2							
			Course Ohio	<b>4•</b>								
	<b>T</b>	· 1	Course Objec	cuves	· · · · · f · · · · · · · 1							
1	their us	e in analysing fu	nctions and function space	cory and application	ions of orthogonal	wavelets and						
	It inclu	tes a brief surve	of Fourier series represe	entation of funct	ions, Fourier trans	form and the						
2	Fast Fo	urier Transform	(FFT) before proceeding	g to the Haar wa	velet system, mult	i resolution						
	analysi	, decomposition	and reconstruction of fu	nctions, Daubec	hies wavelet const	ruction, and						
	other wavelet systems.											
Course Outcomes (CO) with Bloom's Taxonomy Level												
CO1	Explain	the basic conce	pts and terminology that a	re used in the Fo	ourier Techniques,	Understand						
CO2	Apply	nulti-resolution	inalysis	515.		Apply						
	Calcula	te filter bank coe	efficients and <b>Apply</b> the c	oncepts of CW7	. STFT and DWT	Evaluate						
CO3	for sign	al analysis			,							
<b>CO4</b>	Constr	ict perfect recor	struction wavelet filter ba	anks for a partic	ular application	Analyze						
Modu	le		Module Conte	nts		Hours						
	Fur	damentals of L	inear Algebra:									
I	Vec	tor spaces, Bases	s, Orthogonality, Ortho no	ormality, Project	on, Functions and	4						
	fun	ctions	nogonal functions, Of tho									
<u> </u>	Sig	nal Representat	ion in Fourier Domain									
	Fou	rier series, Orth	ogonality, Orth normality	y and the meth	od of finding the							
п	Fou	rier coefficients	Complex Fourier ser	ries, Orthogona	lity of complex	5						
	exp	onential bases, M	athematical preliminaries	for continuous a	nd discrete Fourier	5						
	tran	sform, limitation	s of Fourier domain sign	al processing, F	Review of Nyquist							
	theo	orem, Review of	Z transform		1							
	<b>Sh</b>	rt lime Fourie	<b>r Iransform:</b> Signal re	presentation wit	n continuous and							
III		ciated with STF	T Heisenberg's Uncerta	inty principle ar	ad time frequency	3						
	tilin	g. why wavelet f	ransform?.	inty principie u	la time frequency							
	Col	tinuous Wavel	et Transform: Wavelet tr	ansform-A first	level introduction,	1						
IV IV	Cor	tinuous time-free	quency representation of s	signals, Propertie	s of wavelets used	3						
	in c	ontinuous wavele	et transform, Continuous	us versus discrete wavelet transform								
	Dis	crete Wavelet	Transform									
	Wa	velets and other	wavelet like transforms,	History of wave	let from Morlet to	_						
		bechies via Mall	at, Different communities	s and tamily of w	vavelets, Different							
	a fam	mes of wavelets	within wavelet commun	hogonality of T	ing Functions and							
	run	cuon spaces, Ir	ansiation and scaling, Ort	mogonality of 11	ansiates, runction	1						

	Space Vo, Finer Haar Scaling Functions, Nested Spaces Haar Wavelet Function,						
	Scaled Haar Wavelet Functions, Orthogonality of $\varphi(t)$ and $\psi(t)$ , Normalization of						
	Haar Bases at Different Scales, Standardizing the Notations, Refinement Relation						
	with Respect to Normalized Bases, Support of a Wavelet System, Triangle Scaling						
	Function, Daubechies Wavelets.						
	Discrete Wavelet Transform and Relation to Filter Banks						
	Signal decomposition (Analysis), Relation with filter banks, Frequency response,						
И	Signal reconstruction: Synthesis from coarse scale to fine scale, Up sampling and	4					
VI VI	filtering, Perfect reconstruction filters, QMF conditions, Computing initial sj+1	+					
	coefficient, Concepts of Multi-Resolution Analysis (MRA) and Multi-rate signal						
	processing, Applications of DWT						
Text Books							
1	K P Soman, Ramachandran, Resmi, Insights into wavelets from theory to practice, Prentice						
1	¹ Hall,New Delhi,						
2	A.N. Akansu and R.A. Haddad, "Multiresolution signal Decomposition: Transform	ns, Subbands					
	and Wavelets", Academic Press, Oranld, Florida, 1992.						
2	John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing", Pearson P	Prentice Hall,					
5	2007.						
	References						
1	C. Sidney Burrus, Ramesh A. Gopinath, Haitao Guo, Introduction to Wavelets and Wavelet						
1	Transforms, A Primer PH International Editions, 1998.						
2	Raghuveer M. Rao, Ajit S. Bopardikar, Wavelet Transforms - Introduction to The	neory and					
2	Applications, Addison Wesley Pearson Education Asia, 2000.						
3	IEEE Transaction Papers.						
	Useful Links						
1	https://nptel.ac.in/courses/117/101/117101001/						

	Programme Outcomes (PO)											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			2											2
CO2				2										2
CO3				1										2
<b>CO4</b>			2											2

Assessment Plan based on Bloom's Taxonomy Level										
Bloom's Taxonomy Level	T1	T2	ESE	Total						
Remember										
Understand	10	10	10	30						
Apply	10	5	20	35						
Analyze		5	25	30						
Evaluate			5	5						
Create										
Total	20	20	60	100						

Walchand College of Engineering, Sangli										
AY 2021-22										
			Course Inf	formation						
Progr	ammo		B Tech (Electronics Er	ngineering)						
Close	Some	aton	Einel Veer P. Tech. So	mostor VIII						
Class,			Tillal Teal D. Teell. Se							
Course Code										
Cours	se nan	le misitos	Communication Engine		DIIS					
Desire	ea kec	juisites:	Communication Engine	ering						
	1. *	- Calcara	<b>T</b> -							
Ie	eachin	g Scheme	EX TT1	amination Scheme (	Marks)	T. A. I				
Lectu	re	2 Hrs/week		12	ESE	Total				
Tutor	ial	-	20	20	60	100				
Practi	ical	-		~ ~ ~						
Intera	action	-		Credits: 2						
			Course O	bjectives						
1	To p	provide students munication	s with solid foundation i	in orbital mechanics a	and launches for	the satellite				
2	To tr	ain the students	with a basic knowledge	of link design of satellit	e with a design ex	amples				
3	To p	rovide better ur	derstanding of multiple a	access systems and ea	rth station techno	ogy				
4	4 To prepare students with knowledge in satellite navigation and GPS & and satellite packet communications									
	Course Outcomes (CO) with Bloom's Taxonomy Level									
At the	end of	the course, the	students will be able to,							
<u>CO1</u>	Anal	yze satellite orb	it			Analyze				
CO2	Anal	yze the earth se	gment and space segmer	nt		Analyze				
003	Desi	gn various satel	lite applications			Create				
Modu	ile		Module (	ontents		Hours				
Wiouu		ommunication	<b>Satellite:</b> Orbit and D	escription A Brief	nistory of satellite					
Ι	C P at C	communication, eriod and Veloc ngle and slant R deo-Stationary c	Satellite Frequency Band ity, effects of Orbital Incl Range, Eclipse, Orbital Pe orbit.	s, Satellite Systems, A ination, Azimuth and E erturbations, Placemen	pplications, Orbita levation, Coverage t of a Satellite in a	5				
Satellite Sub-Systems: Attitude and Orbit Control system, TT &C subsystem, Attitude Control subsystem, Power systems, Communication subsystems, Satellite Antenna Equipment.IISatellite Link: Basic Transmission Theory, System Noise Temperature and G/T ratio, Basic Link Analysis, Interference Analysis, Design of satellite Links for a specified C/N, (With and without frequency Re-use), Link Budget.										
III	P T at	ropagation eff ropospheric an ttenuation, rain	<b>Cects:</b> Introduction, Atmo d lonospeheric Scintillation induced cross polarization	ospheric Absorption, C on and Low angle fac n interference.	Cloud Attenuation ling, Rain induced	4				
IV	M C B A C	Iultiple Access Calculation of C urst Structure ssignment Mu Characteristics,	Frequency DivisIon Mu /N, Time Division Multi , Satellite Switched T ltiple Access (DAMA) CDMA Spread Spectrum	Itiple Access (FDMA) ple Access (TDMA) DMA, On-board Pro — Types of Den Transmission and Re	<ul> <li>Intermodujation</li> <li>Frame Structure</li> <li>Decessing, Demand</li> <li>nand Assignment</li> <li>ception.</li> </ul>					
V	E	Earth Station Technology: Transmitters, Receivers, Antennas, Tracking Systems, 4								

	Terrestrial Interface, Power Test Methods, Lower Orbit Considerations.							
VI	Satellite Navigation and GPS Systems: Radio and Satellite Navigation, GPS Position Location Principles, GPS Receivers, GPS C/A Code Accuracy, Differential GPS.	4						
	Text Books							
1	1 Satellite Communications Dennjs Roddy, 2nd Edition, 1996, McGraw Hill.							
	Satellite Communications — Timothy Pratt, Charles Bostian, Jeremy Allnutt, 2nd Edition, 2003,							
2 John Wiley & Sons.								
3								
4								
	References							
1	Satellite Communications: Design Principles — M. Richcharia, 2nd Ed., BSP, 2003.							
2	Fundamentals of Satellite Communications — K. N. Raja Rao, PHI, 2004.							
3								
4								
	Useful Links							
1								
2								
3								

CO-PO Mapping														
	Programme Outcomes (PO) PSO											SO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3											2	
CO2	1												3	
CO3	3	3												3
CO4		2												1
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO.													

Assessment Plan based on Bloom's Taxonomy Level										
Bloom's Taxonomy Level	T1	T2	ESE	Total						
Remember										
Understand										
Apply										
Analyze	20	10	40	70						
Evaluate										
Create		10	20	30						
Total	20	20	60	100						

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
			AY 202	21-22					
			Course Inf	ormation					
Progra	amme		B.Tech. (Electronics En	gineering)					
Class,	Class, Semester Final Year B. Tech. Semester VIII								
Course Code									
Course Name Professional Elective 8-IoT									
Desired Requisites:									
Teaching Scheme         Examination Scheme (Marks)									
Lectu	re	2 Hrs/week	T1	T2	ESE	Total			
Tutor	ial	-	20	20	60	100			
Practi	cal	-							
Intera	action	-		Credits: 2					
			Course O	bjectives					
1	To p	rovide understa	nding of the Internet of Th	nings concepts.					
2	To d	emonstrate vari	ous IoT protocols.	. 1	11 1 1	• /1			
3	3 To expose the student with the latest trends & techniques in the field and expertise him/her								
4	COIIS	idering academ	ic & professional aspect.						
-	Course Outcomes (CO) with Bloom's Taxonomy Level								
At the	At the end of the course, the students will be able to,								
CO1	CO1 Explain in a concise manner how Internet of Things work Understand								
CO2	Expl	ain on various	connectivity and commu	nication technologi	es used in IoT.	Understand			
CO3	Appl	y the knowledg	ge for solution building in	n IoT domain		Apply			
<u>CO4</u>									
Mada	1.		Madula Ca	mtomta		Hanna			
Modu		worviow of Int	Module Co	ion of IoT Network	Configuration on	Hours			
I		ddressing IoT	sensors and actuators	IOII OI IOI, INELWOIK	Comgutation and	4			
<u> </u>		connectivity and	communication technolo	gies for IoT : IEEE 8	02.15.4.6LoPAN				
II	R	FID, WiFi, Blue	etooth, Zigbee, Wireless I	HART for IoT, MQ	TT, CoAP, XMPP	5			
	A	MQP							
III	S	ensor networks	:Target tracking, MWSN	, UWSN, Stationary	and Mobile WSN	, 4			
		Av InelWORKS	hine Communication · M	M Features Noda	types Facevetor				
IV IV		arious M2M nl:	atforms	21v1 Features, houe	types, heosystem	'   4			
N/	S	ensor Cloud :	Limitations of WSN, Are	chitecture, workflo	w, target tracking				
V	V	irtual sensor, ca	aching in sensor cloud, p	erformance, pricing		5			
VI	Ι	oT Applications	: Smart cities, Smart Hor	nes, Smart Agricult	ure, Smart Energy	, 4			
	Smart vehicles 4								
			T- 4 D						
	Intro	duction to Indu	Iext B	000KS W Sudin Miara, Char	ndana Dov. Anana	omin			
1	<u>Muk</u>	herjee 2021	smarmerner or rnings B	y <u>suaip misra</u> , <u>Cha</u>	ndana Koy, Ananc	ar up			
2	Intro	duction to Indu	strial Internet of Things	and Industry 4.0 E	By <u>Sudip Misra</u> , <u>O</u>	<u>Chandana Roy</u> ,			
	Anar	darup Mukher	ee, Cambridge University	y Press, 2020					
3									
4									

	References									
1	1 D.E. Comer "Internetworking with TCP/IP", Vol. I (4th Edition), II, III (PHI)									
2	2 "Internet of Things Applications and Protocols", Wiely publication 2nd Ed.									
2	William Stallings "Foundations of Modern Networking: SDN, NFV, QoE, IoT and Cloud" Pearson									
5	Education									
	Useful Links									
1	https://onlinecourses.nptel.ac.in/noc21_cs17/preview									
2										
3										
4										

	CO-PO Mapping													
	Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			3										2	
CO2			3											2
CO3	2													3
CO4														
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														
Each CO	Each CO of the course must map to at least one PO.													

Assessment Plan based on Bloom's Taxonomy Level										
Bloom's Taxonomy Level	T1 T2 ESE		ESE	Total						
Remember										
Understand	10	10	30	50						
Apply	10	10	30	50						
Analyze										
Evaluate										
Create										
Total	20	20	60	100						