		Wa		ege of Engineerin Aided Autonomous Instit								
				AY 2021-22								
			Cou	rse Information								
Progra	amme		B. Tech. (Mecha	nical Engineering)								
Class,	Semes	ter	Third Year B. To	ech., Sem. V								
Cours	e Code	!										
Cours	e Nam	e	Heat Transfer									
Desire	d Requ	ıisites:										
Τe	eaching	g Scheme		Examination So	cheme (Marks)							
Lectur	re	3Hrs/week	T1	Total								
Tutor	ial	-	20	100								
Practi	cal	-		-	I							
Intera	ction	-		Cred	its: 3							
		·	·									
			Co	urse Objectives								
1			ious mechanisms o	of heat and mass transf	fer that characterizes a	given physi	ical					
	syster To m		s familiarize conse	ervation equations alor	g with models for heat	transfer						
2	proce			i varion equations afor		uunsioi						
2			nts for analysis of	one-dimensional stead	ly and unsteady partial	differentia	ıl					
3	equat		-									
4	To tra syster		to develop repres	entative models of real	-life heat transfer proc	esses and						
	5,5001	115										
		Cou	rse Outcomes (C	O) with Bloom's Tax	onomy Level							
At the	end of	the course, the	students will be al	ble to,								
CO1	Demo	onstrate the basi	ic laws of heat and	l mass transfer and con	npute heat transfer rate	s. App	ply					
CO2				d transient state heat tr		Anal	lyze					
CO3	Asses	s the heat exch	anger performance	e by using the LMTD	and NTU.	Evalı	uate					
Modu			Me	odule Contents		Hou	urs					
		troduction		· CC 1 (1								
Ι					ermodynamics and h	4	ŀ					
				ling & Condensation (Fer, thermal conductiv	ity						
		onduction		ing & Condensation (
			te problems in he	at conduction concept	of thermal resistance a	nd						
				ems in heat conduction, concept of thermal resistance and uation of temperature field in three dimensional Cartesian								
			as. Application of above (one dimensional case) equation to the									
		•	all (including composite structure) as well as to the system with									
II	-			tion i.e. cylinders and Sphere (including composite structures).								
					tended surface (fins)							
		-		-	conduction with unifo							
	heat generation, (plane wall and solid cylinder) critical radius of insulation. Concept of unsteady state heat conduction. Transient heat flow system with											

Nature of thermal radiation, definitions of absorptivity, reflectivity, transmissivity, monochromatic emissive power, total emissive power and emissivity, concept of

9

negligible internal resistance

Radiation

III

	black body and gray body, Kirchhoff laws, Wien's law and Planck's law, deduction of Stefan Boltzmann equation. Lambert's cosine rule, intensity of radiation, energy change by radiation between two black surfaces with non- absorbing medium in between and in absence of reradiating surfaces, geometric shape factor, energy exchange by radiation between two gray surfaces without absorbing medium and absence of radiation and radiosity, radiation network method, network for two surfaces	
IV	Free Convection Mass, momentum and energy conservation equations, non-dimensional numbers, hydrodynamic and thermal boundary layers, basics of heat transfer in external and internal laminar and turbulent flows, and use of co-relations. Free Convection and use of its co-relations	6
V	 Forced Convection External flow: Thermal analysis of Flow over flat plate, cylinder, sphere and flow across tubes. Internal flow: Convection correlations, Hydrodynamic and thermal considerations, thermal analysis and convection correlations for circular and non-circular tubes. 	6
VI	Heat Exchangers Exchangers, Tubular heat exchangers, Extended surface heat exchangers. Classification according to flow arrangement. Fouling factor, mean temperature difference, LMTD for parallel flow, counter flow, mean temperature for cross flow, correction factor, and special cases. The effectiveness by NTU method, effectiveness of parallel, counter flow and cross flow heat exchangers and design consideration. Heat pipe component and working principle.(Elementary treatment only) Types of Heat exchangers	5
	Text Books	
1	Text BooksP. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011	
1 2	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi	
	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011	
2	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013	
2 3	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References	
2 3 1	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting , K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000	ations, 7 th
2 3 1 2	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting , K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000 K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" Y Edition, 2012	ations, 7 th
2 3 1	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting , K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000 K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design"	ations, 7 th
2 3 1 2	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting , K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000 K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" Y Edition, 2012 J P Holman, Souvik Bhattacharyaa, "Heat Transfer" McGraw-Hill, 10 th Edition, 2017	ations, 7 th
2 3 1 2 3	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting, K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000 K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" Edition, 2012 J P Holman, Souvik Bhattacharyaa, "Heat Transfer" McGraw-Hill, 10 th Edition, 2017 Useful Links	ations, 7 th
2 3 1 2	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011 Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill,5 th Editi Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publica Edition, 2013 References H. Schlichting , K. Gersten, "Boundary Layer Theory" Springer, 8 th Edition, 2000 K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" Y Edition, 2012 J P Holman, Souvik Bhattacharyaa, "Heat Transfer" McGraw-Hill, 10 th Edition, 2017	ations, 7 th

	CO-PO Mapping															
		Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1			3									1				
CO2	1	2		3									2	2		
CO3			3								2		2			
The stren	gth of a	mappir	ng is to	be wr	itten as	,1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh				

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy Level	T1	T2	ESE	Total								
1	Remember												
2	Understand												
3	Apply	6	6	18	30								
4	Analyze	7	7	21	35								
5	Evaluate	7	7	21	35								
6	Create												
	Total	20	20	60	100								

		W		ge of Engineerin ded Autonomous Instit									
				Y 2021-22	uie)								
				se Information									
Progra	amme		B. Tech. (Mechanic	cal Engineering)									
	Semes	ter	Third Year B. Tec										
	e Code												
	e Nam		Applied Thermodynamics										
	ed Requ												
Desire	<u>a neq</u>												
Т	'eachin	g Scheme		Examination Sc	heme (Marks)								
Lectu		2 Hrs./week	T1	Total									
Tutori		-	20	T2 20	ESE 60	100							
Practi			20	20	00	100							
Intera				Credi	its. 2								
mera	CUUII				u) • <i>4</i>								
			Carr	rse Objectives									
1	To la	arn about cas ar		neir first law and seco	nd law officiancias								
2		¥	<u> </u>	and wet air and the pr		tric							
$\frac{2}{3}$			namics of air flow	and wet an and the pr	incipies of psycholic	uic.							
4		<u> </u>	mpressors with and v	without intercooling									
5	1		mance of steam turbi										
	10 ai	aryze the perior	manee of steam turb	1103.									
		Co	urse Outcomes (CO) with Bloom's Taxo	nomy Level								
At the	end of		tudents will be able										
CO1	1		ractical power cycles			Understand							
CO2	1		· · ·	peed compressible flo	ows.	Apply							
CO3		· ·	<u> </u>	hermal devices such									
COS	comp	ressors.											
Modu	ıle		Mod	Hours									
		apour Power C	•										
Ι			ic Rankine Cycle.	Rankine cycle with	superheat, reheat	and 4							
		generation.											
						1							
		as Power Cycle		1									
II	A	ir standard Otto	, Diesel and Dual	cycles, Air standard	Brayton cycle, effec	t of 5							
II	A re	ir standard Otto heat, regeneration		cycles, Air standard	Brayton cycle, effec	t of 5							
	A re P	ir standard Otto heat, regenerationsychrometry	o, Diesel and Dual on and intercooling	-		t of 5							
II	A re P P	ir standard Otto heat, regeneration sychrometry sychrometry: Pro-	o, Diesel and Dual on and intercooling operties of dry and w	et air, use of psychron	metric chart,	4							
	A re P P	ir standard Otto heat, regeneratio sychrometry sychrometry: Pro sychrometric	o, Diesel and Dual on and intercooling operties of dry and w processes:	et air, use of psychron									
	A re P P P hu	ir standard Otto heat, regeneration sychrometry sychrometry: Pro- sychrometric unidification/de	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification.	et air, use of psychron	metric chart,	4							
III	A re P P hu C	ir standard Otto heat, regeneration sychrometry sychrometry: Pro- sychrometric unidification/de ompressible Flo	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow	et air, use of psychron involving he	metric chart, ating/cooling	and 4							
	A re P P hu C B	ir standard Otto heat, regeneration sychrometry sychrometry: Pro- sychrometric imidification/de ompressible Flassics of compre	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow ssible flow, stagnatio	et air, use of psychron involving he on properties, Isentrop	metric chart, ating/cooling pic flow of a perfect	and 4							
III	A ree P P hu C B th	ir standard Otto heat, regenerations sychrometry sychrometry: Pro- sychrometric <u>unidification/de</u> ompressible Fla asics of compre- rough a nozzle,	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow ssible flow, stagnatic choked flow, subso	et air, use of psychron involving he on properties, Isentrop nic and supersonic flo	metric chart, ating/cooling pic flow of a perfect ows- normal shocks-	and 4							
III	A ree P P hu C B th o	ir standard Otto heat, regeneration sychrometry: Pro- sychrometric unidification/de ompressible Fla asics of compre- rough a nozzle, ideal gas tables	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow ssible flow, stagnatic choked flow, subso	et air, use of psychron involving he on properties, Isentrop	metric chart, ating/cooling pic flow of a perfect ows- normal shocks-	and 4							
III IV	A ree P P htt C B tt t o C	ir standard Otto heat, regeneration sychrometry: Pro- sychrometric unidification/de ompressible Fla asics of compre- rough a nozzle, ideal gas tables ompressors	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow ssible flow, stagnatic choked flow, subso s for isentropic flow a	ret air, use of psychron involving he on properties, Isentrop nic and supersonic flow and normal shock flow	metric chart, ating/cooling pic flow of a perfect ows- normal shocks-	and 4 gas use 5							
III	A re P P ht C B tt c C B C R	ir standard Otto heat, regeneration sychrometry sychrometry: Pro- sychrometric unidification/de ompressible Fla asics of compre- rough a nozzle, fideal gas tables ompressors eciprocating co	o, Diesel and Dual on and intercooling operties of dry and w processes: humidification. ow ssible flow, stagnatic choked flow, subso for isentropic flow a ompressors: constru-	et air, use of psychron involving he on properties, Isentrop nic and supersonic flo	metric chart, ating/cooling pic flow of a perfect ows- normal shocks- v necessity of coolin	and 4 gas use 5							

and a second offer a law for a labor of all second and for flam and the second se	
	4
compounding of steam turbines. Numerical on steam turbines.	
Text Books	
P. K. Nag "Engineering Thermodynamics", Tata McGraw Hill Publication, 6th Edition, 2	2017
R. Yadav, "Fundamentals of Thermodynamics", Central Publication house, Allahabad,	Revised 7th
Edition, 2011	
References	
Cengel and Boles, "Thermodynamics an Engineering Approach", Tata McGraw-Hill	publication,
Revised 9th Edition, 2019	
Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics"	", John Wiley
and Sons, 7th Edition, 2009	-
Moran, M. J. and Shapiro, H. N., "Fundamentals of Engineering Thermodynamics", Joh	hn Wiley and
Sons, 8th Edition, 1999	·
Useful Links	
https://nptel.ac.in/courses/112/105/112105123/	
https://nptel.ac.in/content/storage2/courses/112104117/ui/Course_home-lec6.htm	
	P. K. Nag "Engineering Thermodynamics", Tata McGraw Hill Publication, 6th Edition, 2 R. Yadav, "Fundamentals of Thermodynamics", Central Publication house, Allahabad, Edition, 2011 Cengel and Boles, "Thermodynamics an Engineering Approach", Tata McGraw-Hill Revised 9th Edition, 2019 Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics" and Sons, 7th Edition, 2009 Moran, M. J. and Shapiro, H. N., "Fundamentals of Engineering Thermodynamics", Jol Sons, 8th Edition, 1999 Useful Links https://nptel.ac.in/courses/112/105/112105123/

	CO-PO Mapping															
		Programme Outcomes (PO)													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	3										1	2	2		
CO2	3	2	1	2	3			3	3	1	3		2	2		
CO3	3	2	1		2	1	1		3					1		
The streng	gth of n	happing	g is to b	be writt	en as 1	,2,3; W	/here, 1	l:Low,	2:Med	ium, 3:	High					

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy Level	T1	T2	ESE	Total								
1	Remember												
2	Understand	6	6	18	30								
3	Apply	7	7	21	35								
4	Analyze	7	7	21	35								
5	Evaluate												
6	Create												

Total	20	20	60	100
-------	----	----	----	-----

	Wa	(Government Aid	e of Engineerin ded Autonomous Instit										
		A	Y 2021-22										
			se Information										
Programme		B. Tech. (Mechani	<u> </u>										
Class, Semes	ter	Third Year B. Tec	h., Sem. V										
Course Code													
Course Name	e	Manufacturing Te	<i>e.</i>										
Desired Requ	isites:	Basic knowledge	of manufacturing pro	ocesses and tool eng	gineering.								
Teaching	g Scheme	Examination Scheme (Marks)											
Lecture	-	LA1	LA2	ESE	Total								
Tutorial	-	30	30	40	100								
Practical													
Interaction	2Hrs/Week		Cred	its: 2									
		Cour	se Objectives										
1 To su	mmarize the too	oling techniques.	se objectives										
		<u> </u>	n various concepts c	f manufacturing tec	hnology.								
			uction planning and										
	~												
At the end of		rse Outcomes (CO) students will be able	with Bloom's Tax	onomy Level									
			oduction planning co	ontrol methods	Understand								
			cturing technologies		Analyze								
	n of jig and fixt	^	88		Create								
		1	ments / Lab Activi										
			y eight topics of the	e following:									
		oint cutting tools an	d inserts.										
 Tool geoin Design of 		int cutting tools.											
Ų	milling fixture.												
•	press tool asser												
		anufacturing indust	ries.										
		process sheets and the	heir selection.										
		control techniques.											
9. MRP-I an		1											
10. Interchang	geadility and sel	lective assembly.											
		Т	'ext Books										
	kjian and Schm n, 2014		Processes for Engin	neering Materials",	Pearson India, 5 th								
		Book of Production	Engineering", S. Ch	and Company, New	v Delhi, 2008								
3 K.C.	Arora, "Product	tion and Operations	Management" Laxn	ni Publications Ltd.,	New Delhi, 2004								
		n n	oforonces										
		ĸ	References										

1	P. H. Joshi, "Jigs and Fixtures", Tata McGraw-Hill Publishing Ltd., New Delhi, ISBN:9780070680739, 2010											
2	Edward Hoffmann, "Jig and fixture design", Cengage Learning, 5 th edition, 2008											
Useful Links												
1	https://www.youtube.com/watch?v=7yzvno4AvKw											
2	https://www.youtube.com/watch?v=9qBZyzjoqAo											
3	https://www.youtube.com/watch?v=ygFTjc8foeI											

	CO-PO Mapping														
	Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			3			2							2		
CO2			3			2							2		
CO3				3								2		2	
The stren	oth of i	mannir	ng is to	he wr	itten as	123.	Where	1.10	$w 2 \cdot N$	ledium	3.Hic	₇ h			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment						
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.						
Assessmen	Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) M					
t				S		
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30		
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	- 30		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30		
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50		
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40		
Lad ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40		
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,						
considering a 26 meets connected. The actual achadule shall be as non-condemic color day. I also						

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)				
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand	10	10	10	30
Apply				
Analyze	10	10	15	35
Evaluate				
Create	10	10	15	35
Total Marks	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)						
					ite)	
				2021-22		
Ducanon				Information		
Program			B. Tech. (Mechan Third Year B. Tec			
Class, Se			Пппа теаг Б. тес	n., sem. v		
Course						
Course I			Heat Transfer Lab)		
Desired	Requisi	tes:				
				—		
	ching S	cheme		Examination Sc		1
Lecture		-	LA1	LA2	ESE	Total
Tutorial		-	30	30	40	100
Practica		2Hrs/Week		-		
Interact	ion	-		Credi	ts: 1	
				e Objectives		
1			is mechanisms of he	eat and mass transf	er that character	izes a given
1	<u> </u>	al system.				
2			tion equations along			
			one-dimensional stea			*
3			ntative models of re			
_	1		system design or pe			
4			sional approach to l			
4	practic		ess of social and env	Ironnent issues as	sociated with en	gineering
	practic					
		Course	• Outcomes (CO) w	vith Bloom's Taxo	nomy Level	
At the en	d of the		tudents will be able			
			ic laws and concepts		onvection and	Understand
CO1			and Condensation h			011001300110
			of Radiation, Conve		r and	Analyze
CO2			steady and transien			•
	geome	tries.			_	
CO3	Evalua	te the heat ex	changer performan	ce by using the me	thod of log	Evaluate
0.05	mean temperature difference and effectiveness methods.					
			List of Experim	ents / Lab Activiti	ies	
List of Experiments:						
		cal's should b	be considered for IS	E and ESE evaluation	ion.	
Experiments						
			luctivity of metal ba			(D) ()
2.	To find thermal conductivity of Composite wall and evaluate the performance of Pin fin.					
	To verify the Stefan –Boltzmann constant and find the emissivity of non-black surface.					

- To find the Heat Transfer coefficient in Natural Convection. 4.
- To find the Heat Transfer coefficient in Forced Convection. 5.
- 6.
- 7.
- Trial on Heat Transfer Coefficient in Forced Convection. Trial on Heat exchanger parallel / counter flow. To conduct the experiment on Pool Boiling, critical heat flux. To find the Heat Transfer coefficient in Drop and film condensation. Experiment on unsteady state heat transfer. Trial on compact heat exchanger and its performance 8.
- 9.

Demonstration / Study

- 1. Heat Pipe Demonstration.
- 2. Various applications of heat exchanger in process and food industries.
- 3. Visit to / Demonstration of Heat exchanger manufacturing plant/dairy plant

	Text Books		
1	P. K. Nag, "Heat Transfer", Tata McGraw Hill Publishing, 3 rd Edition, 2011		
2	Yunus. A. Cengel, "Heat Transfer – A Practical Approach", Tata McGraw Hill, 5 th Edition, 2017		
3	Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", Wiley publications, 7 th Edition, 2013		
	References		
1	H. Schlichting, K. Gersten, "Boundary Layer Theory" Springer, 8th Edition, 2000		
2	K Ramesh Shah, Dusan P. Sekulic, "Fundamentals of Heat Exchanger Design" Wiley, 5 th Edition,2012		
3	J P Holman, Souvik Bhattacharyaa, "Heat Transfer" McGraw-Hill, 10 th Edition, 2017		
Useful Links			
1	https://nptel.ac.in/courses/112/101/112101097/		
2	https://www.youtube.com/watch?v=IedD23t5jI4		
3	https://web.iitd.ac.in/~pmvs/course_mel242.php		

						CO	-PO M	lappin	ıg						
				Р	rograi	mme C	Outcon	nes (PC))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														
CO2		2									2		2		
CO3	2	2	2		1						2		2	2	
The str	rength	of map	ping i	s to be	writter	n as 1,2	2,3; Wł	ere, 1:	Low, 2	2:Medi	um, 3:1	High			

Assessment						
There are three	ee components of lab a	assessment, LA1,	LA2 and Lab ESE.			
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.		
Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) Ma						
t				S		
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30		
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30		
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50		
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40		
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40		
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,						

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)

Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand	10	10	10	30
Apply				
Analyze	10	10	15	35
Evaluate	10	10	15	35
Create				
Total Marks	30	30	40	100

I	Walchand College of Engineering, Sangli				
	(Government Aided Autonomous Institute)				
	AY 2021-22				
	Course Information				
Programme	B. Tech. (Mechanical Engineering)				
Class, Semester	Third Year B. Tech., Sem. V				
Course Code					
Course Name	Applied Thermodynamics Lab				
Desired Requisites:					
Teaching Scheme	Examination Scheme (Marks)				

Teaching	g Scheme	Examination Scheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total	
Tutorial	-	30	30	40	100	
Practical	2Hrs/Week	-				
Interaction	-	Credits: 1				

		Course Objectives				
	1	To learn about of phychrometric processes and comfort conditions				
2 To develop the student's skills in applying the isentropic flow and nor		To develop the student's skills in applying the isentropic flow and normal shock to so	me flow			
	<u> </u>	systems.				
	3	To develop student's ability to demonstrate different power cycles				
	Course Outcomes (CO) with Bloom's Taxonomy Level					
	At the	At the end of the course, the students will be able to,				
	COA		I Indepeter			

CO3	Understand different power cycles	Understand
CO2	Interpret the different physchrometric processes and	Analyze
CO1	Investigate the sonic, subsonic and supersonic flow situations	Apply

List of Experiments / Lab Activities

List of Experiments:

- 1. Study of factors affecting the performance of Rankine cycle through numericals.
- 2. Study of factors affecting the performance of Gas Power cycles through numericals.
- 3. Study of different psychrometric processes through numericals.
- 4. Study of stagnation properties through numericals.
- 5. Study of centrifugal compressor and its performance through numericals.
- 6. Study of velocity and pressure compounding in steam turbines.

List of experiments (Trial/Demonstration type)

- 7. Trial on gasoline engine to understand air standard Otto cycle.
- 8. Trial on diesel engine to understand air standard Diesel cycle.
- 9. Trial on reciprocating compressor.
- 10. Trial on steam power plant and demonstration on Power Plant simulator.
- 11. Trial of Gas Power Plant on simulator.

	Text Books			
1	P. K. Nag "Engineering Thermodynamics", Tata McGraw Hill Publication, 2017, 6 th Edition			
2	R. Yadav, "Fundamentals of Thermodynamics", Central Publication house, Allahabad, 2011, Revised 7 th Edition			
	References			
1	Cengel and Boles, "Thermodynamics an Engineering Approach", Tata McGraw-Hill publication,			

	Revised 9 th Edition, 2019
2	Sonntag, R. E, Borgnakke, C. and Van Wylen, G. J., "Fundamentals of Thermodynamics", John
	Wiley and Sons, 7 th Edition, 2009
3	Moran, M. J. and Shapiro, H. N., "Fundamentals of Engineering Thermodynamics", John Wiley
5	and Sons, 8 th Edition, 1999
	Useful Links
1	https://www.youtube.com/watch?v=v36FiXcxt0k&list=PLkUEX3IbW7leYWEB0baTgg6SbS2zV
1	E-Au&index=3
2	https://www.youtube.com/channel/UC-znD1sQHOQIRqZBrs1UJbA/videos
1	E-Au&index=3

CO-PO Mapping															
	Programme Outcomes (PO)													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2											1	2	
CO2	3	2	1		3			3	3		3		1	2	
CO3 3 2 3 2 1 3 1 1															
The stren	gth of	mappii	ng is to	be wr	itten as	\$ 1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

Assessment									
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.									
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark					
t				S					
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30					
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50					
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30					
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50					
Lob ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40					
Lab ESELab courseDaring week is to week is40attendance, journalFacultyMarks Submission at the end of Week 1840									
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab									

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total					
Remember									
Understand	10	10	10	30					
Apply	10	10	15	35					
Analyze	10	10	15	35					
Evaluate									
Create									
Total Marks	30	30	40	100					

Walchand College of Engineering, Sangli												
	(Government Aided Autonomous Institute) AY 2021-22											
Course Information												
Drogr												
-	Class, Semester Third Year B. Tech., Sem V Course Code											
Cours			Mini Project 1									
		uisites:										
Desire	u Key	uisites.										
Т	eachin	g Scheme		Examination So	cheme (Marks)							
Lectu		-	LA1	LA2	ESE	Total						
Tutor		-	30	30	40	100						
Practi		2 Hrs./Week			-							
Interac		-		Credi	ts: 01							
		I	1		-							
			Cou	rse Objectives								
1	To fa	amiliarize studer		sional CAD modellin	ng.							
•	To g	give hands-on e	experience to stude	ents on creating 2	dimensional model	s of engineering						
2	com	oonents.	-	-								
3	To le	arn the drafting	features of 2 dimen	sional modelling sof	tware.							
) with Bloom's Tax	onomy Level							
			students will be able	-								
CO1				ols of 2 dimensional	<u> </u>	Understand						
CO2	Prod softv		onal models of en	ngineering compone	ents using modelli	ng Create						
CO3	Build	l drafting drawin	ngs of the 2 dimensi	ional model prepared	l using software.	Create						
			Cou	arse contents								
Gu 1. 2. 3. 4. 5.	Stud Stud cove A log Facu on se The • L se • P Se • P With	ents shall submit r weekly activity g book to be pre lty advisor may elf-learning. project work sha earning and us oftware such as reparing 2 D mo ectional views, c reparing assemb the focus on se	I to work in a group it an implementation of mini project. pared by each group give inputs to stud all consist following ing different comm AutoCAD or other of odels of different er cut sections, explode oly and component of	hands, features, utili- online freeware tools ngineering componen- ed views etc. detail drawing along ovation within the stu	f Gantt/PERT/CPM can record weekly w oject activity; howev ties and tools in th s. nts using software. T with drafting for sin udents through the M	vork progress. er, focus shall be e 2 D modelling This shall include uple assemblies.						

- 8. Students are encouraged to produce drawings / 2 D models for components used in industry.
- 9. The topic / drawing for the mini project shall be chosen in consultation with the faculty.
- 10. At the end of the project, students are required to submit the soft copy of the models and or print of the same for evaluation.

Guidelines for Assessment of Mini Project Practical / Oral Examination:

Report should be prepared as per the guidelines issued by the department.

Mini Project shall be assessed through a presentation and demonstration by the student project group to faculty advisor / a panel of examiners.

Students shall be motivated to publish a paper based on the work in students competitions / Conferences / journals.

- 1. Mini Project shall be assessed based on following points;
- 2. Quality of problem and clarity
- 3. Proper use of drawing conventions, standards and standard practices
- 4. Effective use of skill sets
- 5. Contribution of an individual's as member or leader
- 6. Clarity in written and oral communication

	Text Books									
1	George Omura, Brian C. Benton, "Mastering AutoCAD 2019 and AutoCAD LT 2019", Wiley									
1	India Pvt Ltd, 2018 edition, ISBN: 9788126578443, 8126578440									
2	Sunil K. Pandey, "Learn AutoCAD in a Easy Way", Unitech Books, 2010									
	References									
1	Cadfolks, "AutoCAD 2019 for Beginners", Kishore 2018, ISBN 8193724119, 9788193724118									
2	Bill Fane, "AutoCAD Dummies", 18th edition									
3	https://images-na.ssl-images-amazon.com/images/I/C1BxaOC0-IS.pdf									
4	www.thesourcecad.com/autocad-commands/									
	Useful Links									
1	www.youtube.com/watch?v=QuR-VKis3jU									
2	www.youtube.com/watch?v=JfHGU6M_Uwg									

CO-PO Mapping															
	Programme Outcomes (PO) PSO														
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3		1		2				3			3	3		
CO2	2	2	3		2				3		3		2	1	
CO3 3 3 1															
The stren	gth of i	mappir	ig is to	be wr	itten as	1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

	Assessment										
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.											
Assessmen											
t				S							

LA1	Synopsis report	Lab Course	During Week 1 to Week 6	30			
LAI	and presentation	Faculty	Marks Submission at the end of Week 6	30			
	Progress review /	Lab Course	During Week 7 to Week 12				
LA2	presentation /	Faculty	Marks Submission at the end of Week 12	30			
	demonstration	Faculty					
	Assessment based	Lab Course	During Week 15 to Week 18				
Lab ESE	on implementation	Faculty	Marks Submission at the end of Week 18	40			
	and presentation.	raculty					
Week 1 indic	ates the starting week	of a semester. Th	e typical schedule of lab assessments is show	n,			
considering a	a 26-week semester. Th	ne actual schedule	shall be as per academic calendar. Lab				
activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,							
programming and other suitable activities, as per the nature and requirement of the lab course. The							
experimental	lab shall have typicall	y 8-10 experimen	ts.				

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total					
Remember									
Understand	15	15	15	45					
Apply									
Analyze									
Evaluate									
Create	15	15	25	55					
Total Marks	30	30	40	100					

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)								
	AY 2021-22							
	Course Information							
Programme B.Tech. (Mechanical Engineering)								
Class, Semester	Third Year B. Tech., Sem V							
Course Code								
Course Name	Mini Project 2							
Desired Requisites:								

Teachin	ig Scheme		Examination S	Scheme (Marks)						
Lecture	-	LA1	LA2	ESE	Total					
Tutorial	-	30	30	40	100					
Practical	2 Hrs/Week	-								
Interaction	-		Credits: 01							

	Course Objectives	
1	To familiarize students with the different 3 dimensional modelling software available	e in the
1	department / freeware available on-line.	
2	To give hands- on experience to students on 3 dimensional modelling of simple asser	mblies.
3	To enable students to use drafting features of 3 dimensional modelling software.	
	Course Outcomes (CO) with Bloom's Taxonomy Level	
At the	end of the course, the students will be able to,	
CO1	Use different commands, utilities and tools of 3 dimensional modelling software.	Understand

COI	Use different commands, duffices and tools of 5 differisional moderning software.	Onderstand
CO2	Create 3 dimensional models of engineering components and assemblies using	Create
002	modelling software.	
CO3	Build drafting drawings of the 3 dimensional model / assemblies prepared using 3	Create
005	D modelling software.	

Course contents

Guidelines for Mini Project 2:

- 1. Students are required to work in a group of maximum five students per group.
- 2. Students shall submit implementation plan in the form of a Gantt/PERT/CPM chart, which will cover the weekly activity of the mini project.
- 3. A log book to be prepared by each group, wherein the group can record weekly work progress.
- 4. Faculty advisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- 5. The project work shall consist following :
 - Students will learn different commands, features, utilities and tools in the 3D modelling software such as CATIA, SOLIDWORKS or other freeware available online.
 - Students will prepare 3 D models of different engineering components and assemblies using the software.
 - Students will prepare assembly drawing and drawing of components, exploded views, sectional views, detailed drafting drawing etc. for the 3 D model.
 - Students may opt for modelling of the components / assemblies of standard engineering parts.

- 6. With the focus on self-learning and innovation within the students through the Mini Projects, it is preferable that the mini project of appropriate level and quality be carried out.
- 7. Students may complete a mini project as an industry sponsored project, in consultation with the faculty advisor.
- 8. Students are encouraged to produce drawings 3 D models for components used in industry.
- 9. The topic / model for the mini project shall be chosen in consultation with the faculty.
- 10. At the end of the project, students are required to submit the soft copy of the models and or print of the same for evaluation.

Guidelines for Assessment of Mini Project Practical / Oral Examination:

Report should be prepared as per the guidelines issued by the department.

Mini Project shall be assessed through a presentation and demonstration by the student project group to faculty advisor / a panel of examiners.

Students shall be motivated to publish a paper based on the work in students competitions / Conferences / journals.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and clarity
- 2. Proper use of drawing conventions, standards and standard practices
- 3. Effective use of skill sets
- 4. Contribution of an individual's as member or leader
- 5. Clarity in written and oral communication

	Text Books
1	Danan Thilakanathan, "3D Modeling for Beginners", CreateSpace Independent Publishing Platform, 27-Mar-2016, ISBN 1530799627, 9781530799626
2	Naresh Bhagat, "Workbook on 3 D modelling", LeLogix Design Solutions Pvt.Ltd., 2019, ISBN 8193928504
	References
1	Sachidanand Jha, "CATIA EXERCISES: 200 Practice Drawings For CATIA and Other Feature-
1	Based Modeling Software", Kindle edition, 2019
	Useful Links
1	www.youtube.com/watch?v=PJxr-Va4u7U
2	www.youtube.com/watch?v=z44k-T5gBIg
3	www.youtube.com/watch?v=Zy1HFiraQQQ

						CO-I	PO Ma	pping							
		Programme Outcomes (PO) PSO													
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	3				2				3			3	3		
CO2	2	2	3		2				3		3		2	1	
CO3		3						3						1	
The stren	gth of 1	mappir	ig is to	be wr	itten as	1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

	Assessment							
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	f passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.				
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark				

t				S
LA1	Synopsis report and presentation	Lab Course Faculty	During Week 1 to Week 6 Marks Submission at the end of Week 6	30
LA2	Progress review / presentation / demonstration	Lab Course Faculty	During Week 7 to Week 12 Marks Submission at the end of Week 12	30
Lab ESE	Assessment based on implementation and presentation.	Lab Course Faculty	During Week 15 to Week 18 Marks Submission at the end of Week 18	40

Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on	Bloom's Tay	konomy Level	(Marks) (For lab	Courses)
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand	15	15	15	45
Apply				
Analyze				
Evaluate				
Create	15	15	25	55
Total Marks	30	30	40	100

		Wa		ge of Engineeri						
				Y 2021-22						
				rse Information						
Progr	amme			nical Engineering)						
	Semes	tor	Third Year B. Tech., Sem V							
-	e Code		Third Tear D. Te							
	e Coue		Diastia Tashnala	~~~						
		-	Plastic Technolo	gy						
Desire	ed Req	uisites:								
			I							
		g Scheme		1	Scheme (Marks)					
Lectu	re	2 Hrs/week	T1	T2	ESE	Total				
Tutor	ial	-	20	20	60	100				
Practi	cal	-			-					
Intera	ction	-		Cred	lits: 02					
		1	1							
			Сон	rse Objectives						
1	To m	ake the students		· ·	of plastics technology.					
				<u> </u>	polymers, packaging					
2	techn		8		r , , , , , , , , , , , , , , , , , , ,	1				
3	To pr metho	A	its to analyze / sug	gest implementation	of plastics and polymo	er moulding				
)) with Bloom's Ta	xonomy Level					
At the			students will be ab			1				
CO1		• •	tic moulding proce			Understand				
CO2		<u> </u>	cedure for design o			Apply				
CO3	Discr	iminate differen	t polymers and the	eir characteristics.		Analyze				
Modu	ıle		Modu	le Contents		Hours				
mouu		olymers	mouu			nouis				
Ι		ypes of polyme	er, Polymer alloys, Recycling of poly		Composites, Ceramic	4				
II	C	ompression mo	v	ss and molding cyc	le, Transfer molding, techniques, Casting.	5				
III	E E	quipments used quipments for c	d for Plastic Moul ompression and tra	lding	ipments for rotational	4				
IV	D D	esign of Plastic	Moulds		ds, Transfer moulds,	5				
V	P P us	lastic Packagin lastics for packa	aging, Packaging g their properties,		ous plastics materials ations, Fabrication &	4				

	Different Plastic Processing Techniques Extrusion, Sheet extrusion, Profile extrusion, Calendaring, Blow Moulding,	
VI	Thermoforming, Finishing and machining plastics, Equipments for extrusion,	4
	calendaring, blow moulding.	
	Text Books	
1	Bikales, Compression and Transfer Moulding, Wiley, 2 nd Edition, 1986	
2	Bullers, A guide to Injection Molding of Plastics, Wiley, 1 st Edition, 2000	
3	J.H. DuBois, W.I. Pribble, Plastic Mold Engineering, Van Nostrand Reinhold, 1 st e	edition, 2000
	References	
1	R.P. Singh L.K. Das S.K. Mustafi, Polymer Blends & Alloys, Asian Book Pvt. L	td., New Delhi,
1	2 nd edition, 2001	
2	John Briston, Advances in plastics packaging technology, John Wiley & sons,	New York, 2 nd
2	edition, 2005	
3	Handbook of Engineering Plastics – by Brown / Derock	
4	Plastic Engineering Handbook – by Joel Frados	
	Useful Links	
1	https://nptel.ac.in/courses/112/107/112107221/	
2	https://nptel.ac.in/courses/112/107/112107086/	
3	https://onlinecourses.nptel.ac.in/noc20_ch41/preview	

						CO-I	PO Ma	pping						
		Programme Outcomes (PO)PSO												
	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3													
CO1	3					2				2			2	
CO2					2									
CO3														
The stren	gth of	mappi	ng is to	be wr	itten a	s 1,2,3	; Wher	e, 1:Lc	w, 2:N	⁄Iediun	n, 3:Hig	ġh		

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand	10		20	30			
3	Apply	10	10	20	40			
4	Analyze		10	20	30			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

		Wal	chand College	of Engineerin	g. Sangli				
		,,		d Autonomous Instit					
			AY	2021-22	,				
			Course	Information					
Prog	ramme		B. Tech. (Mecha	nical Engineerin	g)				
Class	, Semes	ter	Third Year B. Te	ech., Sem. V	-				
Cours	se Code	;							
Cours	se Nam	e	Advanced Strength of Materials						
Desir	ed Prei	equisites:	Strength of Materials						
1	Teachin	g Scheme		Examination S	cheme (Marks)				
Lectu	ire	2 Hrs/week	T1						
Tutor		-	20	20	60	100			
Pract		-			-				
Intera	action	-		Crea	lits: 2				
				Objectives	0	1. 1.1			
1	-		a sound knowled	lge in strength of	of materials require	d to solve the			
	-	ems in industry	ation land physics	l nain ain lag in y	ndometon din o the lin	aan aantinuum			
2		ior of solids.	alical and physica	a principies in u	nderstanding the lin	ear continuum			
	Dellav								
		Course	Outcomes (CO) w	vith Bloom's Tay	vonomy I ovol				
At the	e end of		students will be al						
C01	1								
		Explain the concept of theory of elasticity							
CO2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*		-	rent types of loadin				
CO_2	and ol	se the deformat	tion behavior of so	olids under differ	rent types of loadin				
		se the deformat	ion behavior of so cal solutions for s	olids under differ imple geometries	5.	g Analyze			
CO2	Show	se the deformat otain mathemati basic relations	ion behavior of so cal solutions for s	olids under differ imple geometries d strains from th	e theory of elasticity	g Analyze			
	Show	se the deformat otain mathemati basic relations	ion behavior of so cal solutions for s between stress an	olids under differ imple geometries d strains from th	e theory of elasticity	g Analyze			
	Show perspe	se the deformat otain mathemati basic relations	ion behavior of so cal solutions for s between stress an energy methods to	olids under differ imple geometries d strains from th	e theory of elasticity	g Analyze			
CO3	Show perspo ile In	se the deformation otain mathemations basic relations ective and use ective troduction to s	ion behavior of so cal solutions for s between stress an energy methods to Module tress analysis	blids under differ imple geometries d strains from th solve structural j	e theory of elasticity problems.	g Analyze y Apply Hours			
CO3	Show perspo ile In As	se the deformation otain mathemations basic relations ective and use e troduction to sumptions and	tion behavior of so cal solutions for s between stress an energy methods to Module tress analysis application of the	blids under differ imple geometries d strains from th solve structural Contents ory of elasticity,	e theory of elasticit problems. Body Force, surfac	g Analyze y Apply Hours e			
CO3	Show perspo ile In As for	se the deformation otain mathematic basic relations ective and use e troduction to sumptions and ree and stress te	tion behavior of so cal solutions for so between stress an energy methods to Module tress analysis application of the ensor, The state of	blids under differ imple geometries d strains from th solve structural Contents ory of elasticity, f stress at a point	e theory of elasticity problems. Body Force, surfac , Normal, Shear an	g Analyze y Apply Hours e 4			
CO3	Show perspo ile In As for Re	se the deformation otain mathemation basic relations ective and use e troduction to se sumptions and ree and stress te ctangular stress	tion behavior of so cal solutions for so between stress an energy methods to Module tress analysis application of the components, Stree	blids under differ imple geometries d strains from th solve structural Contents ory of elasticity, f stress at a point	e theory of elasticit problems. Body Force, surfac	g Analyze y Apply Hours e 4			
CO3	Show perspo ile In As for Re Eq	se the deformation of the deform	tion behavior of so cal solutions for s between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stre shears	blids under differ imple geometries d strains from th solve structural Contents ory of elasticity, f stress at a point	e theory of elasticity problems. Body Force, surfac , Normal, Shear an	g Analyze y Apply Hours e 4			
CO3	Show perspo ile In As for Re Eq Ar	se the deformation otain mathemation basic relations ective and use e troduction to se sumptions and ree and stress te ctangular stress uality of cross se alysis of stress	tion behavior of so cal solutions for so between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stres- bhears	blids under differ imple geometries d strains from the solve structural p Contents ory of elasticity, f stress at a point ess components o	s. e theory of elasticity problems. Body Force, surfac , Normal, Shear an on an arbitrary plane	g Analyze y Apply Hours e d 4 y,			
CO3	Show perspo ile In As for Re Eq Ar	se the deformation otain mathemation basic relations ective and use e troduction to se sumptions and ree and stress te ctangular stress uality of cross se alysis of stress ncipal stresses,	tion behavior of so cal solutions for so between stress and energy methods to Module tress analysis application of the ensor, The state of components, Streshears	olids under differ imple geometries d strains from the solve structural p Contents ory of elasticity, f stress at a point ess components of Octahedral stress	e theory of elasticity problems. Body Force, surfac , Normal, Shear an on an arbitrary plane sses, Cauchy's stress	g Analyze y Apply Hours e 4 4 s 5			
CO3 Modu I	Show perspo ile In As for Re Eq Ar Pri for	se the deformation otain mathemation basic relations ective and use e troduction to sumptions and rece and stress te ctangular stress uality of cross sumptions sumptions recent stress use the stress sumption of stress the stresses, sumption of stresses, sumption of stresses, sumption of stresses, sumption of stresses, stress	tion behavior of so cal solutions for s between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stre shears Stress invariants, tial equations of e	olids under differ imple geometries d strains from the solve structural p Contents ory of elasticity, f stress at a point ess components of Octahedral stress	s. e theory of elasticity problems. Body Force, surfac , Normal, Shear an on an arbitrary plane	g Analyze y Apply Hours e 4 4 s 5			
CO3 Modu I	Show perspo ile In As for Re Eq Ar Pri for in	se the deformation of an mathematic basic relations ective and use e troduction to se sumptions and ree and stress te ctangular stress uality of cross se alysis of stress ncipal stresses, mula, Different cylindrical coor	tion behavior of so ical solutions for so between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stress shears Stress invariants, tial equations of e dinates	olids under differ imple geometries d strains from the solve structural p Contents ory of elasticity, f stress at a point ess components of Octahedral stress	e theory of elasticity problems. Body Force, surfac , Normal, Shear an on an arbitrary plane sses, Cauchy's stress	g Analyze y Apply Hours e 4 4 s 5			
CO3 Modu I II	Show perspo ile In As for Re Eq Eq Ar Pri for in X	se the deformation otain mathemation basic relations ective and use ective troduction to sumptions and rece and stress te ctangular stress uality of cross sumptions ncipal stresses, mula, Different cylindrical coor	tion behavior of so cal solutions for s between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stre shears Stress invariants, tial equations of e dinates	olids under differ imple geometries d strains from th solve structural Contents ory of elasticity, f stress at a point ess components of Octahedral stress equilibrium, Equal	Body Force, surfac , Normal, Shear an on an arbitrary plane sses, Cauchy's stres ttions of equilibriur	y Apply Hours e 4 d 4 s, 5 e 5			
CO3 Modu I	Show perspo ile In As for Re Eq Ar Pri for in Ar Co	se the deformation otain mathemation basic relations ective and use ective troduction to supprise sumptions and rece and stress tectangular stress uality of cross supprise nailysis of stress nailysis of stress mula, Different cylindrical coor alysis of Strain oncept of strain,	tion behavior of so cal solutions for s between stress an energy methods to Module tress analysis application of the ensor, The state of components, Stre shears Stress invariants, tial equations of e dinates Deformations in	olids under differ imple geometries d strains from th solve structural p Contents ory of elasticity, f stress at a point ess components of Octahedral stress quilibrium, Equation the neighborhood	e theory of elasticity problems. Body Force, surfac , Normal, Shear an on an arbitrary plane sses, Cauchy's stress	g Analyze y Apply Hours e d 4 s, 5 e 4 e 4			

	rosettes and Strain Measurement.							
IV	Stress-Strain Relations Generalized statement of Hooke's law, Stress-strain relations for isotropic materials, Relation between the elastic constants, Plane Stress and Plane strain, Mohr's circles for the 3-D state of stress	5						
V	potential energy, Rayleigh- Ritz method							
VI	Shear Center							
	Text Books							
1	S.P. Timoshenko and J.N. Goodier, <i>"Theory of Elasticity"</i> , McGraw-Hill Pu Ltd., 3 rd Edition, 1970.	blishing Co.						
2	Beer and Johnston, "Mechanics of Materials", McGraw Hill, 6th Edition, 201	2						
3	L.S. Srinath, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Edition 2009.	Co. Ltd, 3^{rd}						
	References							
1	Shames, I.H. and Pitarresi, J.M, <i>"Introduction to solid Mechanics"</i> , PHI learn 3 rd Edition, 2009	-						
2	Hulse, R and Cain J, "Solid Mechanics", Palgrave publisher, 2 nd Edition, 2004	4.						
3	F.B Seely and Smith, "Advanced Mechanics of Materials", John Wiley Edition, 1978.	& Sons, 2 nd						
	Useful Links							
1	https://nptel.ac.in/courses/112/101/112101095/							
2	https://nptel.ac.in/courses/105/105/105105177/							
3	https://nptel.ac.in/courses/112/107/112107146/							

	CO-PO Mapping														
		Programme Outcomes (PO) PS											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2												2		
CO2			2								3	3	2		
CO3	CO3 2 2 3 2														
The stren	oth of	manr	ing is	to he	writte	n ac 1	$23 \cdot v$	Vhere	1.L ov	$\sqrt{2} \cdot M$	edium	3.Hi	σh		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all

A	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course										
Bl	oom's Taxonomy Level	T1	T2	ESE	Total						
1	Remember										
2	Understand	6	6	18	30						
3	Apply	7	7	21	35						
4	Analyze	7	7	21	35						
5	Evaluate										
6	Create										
	Total	20	20	60	100						

modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	W		e of Engineerin		
		1	ded Autonomous Instit	tute)	
			Y 2021-22		
D			se Information		
Program		B.Tech. (Mechani Third Year B. Tec			
Class, Se Course (Third Year B. Tec	zn., Sem Iv		
Course C Course N		Composite Materi	-1		
	Requisites:		a18		
Jesireu	Kequisites:				
Теас	hing Scheme		Examination S	cheme (Marks)	
Lecture	2Hrs/week	T1	T2	ESE	Total
Futorial		20	20	60	100
ractical				~~	100
nteracti			Cred	its: 2	
		Сон	rse Objectives		
1 T	o understand the m		of composite materia	ıls.	
			anufacturing composite		
I			0_1		
) with Bloom's Tax	onomy Level	
		students will be abl			
	ummarize advant einforcements.	ages, applications	s of composites,	and Effect of	Understand
	Dutline usage, prope omposite materials	erties various lamir	nates and its role and	I Manufacturing of	Apply
CO3 E	Evaluate mechanics	of laminates.			Evaluate
Module			Contents		Hours
Ι	Composite mat Functional requ	erials. Advantages irements of rein size, shape, distrib	Classification and s and application forcement and n pution, volume fra	of composites. natrix. Effect of	4
II	•		d aramid fibers; M ; characteristics of fi	· ·	4
III	reduction of he orthotropic stiff	omogeneous ortho	viewpoint, general tropic lamina, isot mercial material p sformed stiffness.	ropic limit case,	5
IV	Manufacturing moulding, pultru	of composite mat sion, filament weldi	terials, bag mould ng, other manufactu	ring processes	4
V	angle ply lamin evaluation of maximum stress materials, genera	ates, cross ply la lamina properties, and strain criteria, lized Hill's criterio posites, prediction	isotropic plates, syr minates, laminate determination of von Mises Yield crit n for anisotropic ma of laminate failure, t	structural moduli, lamina stresses, terion for isotropic aterials, Tsai-Hill's	5

VI	Analysis of laminated plates- equilibrium equations of motion, energy formulation, static bending analysis, buckling analysis, free vibrations, natural frequencies	4
	Text Books	
	Krishan K. Chawla Composite Materials: Science and Engineering, 3rd ed. 2012	adition
1		culuoli,
	Springer.	
2	Krishan K. Chawla Metal Matrix Composites ,2006 edition, Springer-Verlag New	
2	Mulmudi Hemant Kumar, Applications of Composite Materials, Arcler Educatio	n Inc, 2018
3	Edition.	
	References	
1	Gibson R.F. Principles of Composite Material Mechanics, second edition, McGra	w Hill,1994
2	Hyer M.W., Stress Analysis of Fiber- Reinforced Composite Materials, McGraw H	lill,
3	ASM handbook Vol.21, Composites, Editor: D.B. Miracle and S.L. Donaldson, Edit	tion 2020.
	Useful Links	
1	https://www.twi-global.com/technical-knowledge/faqs/what-is-a-composite-mate	erial
2	https://netcomposites.com/guide/	

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					2		1					2	1	
CO2	2			2					2					1	
CO3 1 2 2 1															
The stren	gth of	mappi	ng is to	be wr	itten a	s 1,2,3	; Wher	e, 1:Lc	w, 2:N	Aediun	n, 3:Hi	zh			

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course										
B	Bloom's Taxonomy Level	T1	T2	ESE	Total						
1	Remember										
2	Understand	6	6	18	30						
3	Apply	7	7	21	35						
4	Analyze										
5	Evaluate	7	7	21	35						
6	Create										
	Total	20	20	60	100						

			alchand Colleg (Government Aid	ded Autonomous Ins		
			A	Y 2021-22		
			Cours	e Information		
Progr	amme		B. Tech. (Mechani	ical Engineering)		
	Semest	er	Third Year B. Tec	0 0		
,	e Code					
	e Coue e Name		Mechatronics Syst	tama Lah		
			wiechau offics Syst			
Desire	ed Requ	isites:				
			I			
	0	Scheme			Scheme (Marks)	
Lectu	re	-	LA1	LA2	ESE	Total
Tutor	ial	-	30	30	40	100
Practi	cal	2Hrs/Week			-	
Intera	ction	_		Cre	edits: 1	
			Сош	se Objectives		
	To rev	isa hasic alactr		0	d use of basic electronics	components
1			rs etc. and their use			s components
					icrocontroller and PLC a	nd use of
2			oing various tasks.	integration whith		
3			niliar with various n	nodern and advanc	ed control tools.	
		Cou	rse Outcomes (CO)) with Bloom's Ta	axonomy Level	
At the	end of t		students will be able		/	
CO1	Select	appropriate ele	ectrical/ electronic c	omponents like die	odes, transistors etc. to fo	orm Apply
CO1	meanii	ngful circuits.		_		
CO2					PLC or a microcontrolle	
CO3	Summ	arize the requi	rements of process e	elements and equip	ment's available in mode	ern Evalua
05	era					e
			List of Experi	iments / Lab Activ	vities	
Term	work sł	nall contain ex	periments from fo	llowing list:		
1.	Demo	nstration and d	evelopment based o	n Relay logic cont	rol	
2.			gic programming			
3.			n for three road cros			
4.			n for four road cross			
5.			n for six road crossi			
6.	-	-	ntrolling for lift/ ele	-		
7.			ntrolling for coin co			
8.			se of star delta starte	er.		
9. 10	-	-	ntrolling for HMI. ntrolling for Vendir	a machina anarati	on	
10	. Flogfa		nuoning for vendir	ig machine operati	011.	
			Т	ext Books		
1	Gaonh	ar "Introducti			lishing (I) Pvt. Ltd, 2002	,
-					Controller — Program	
2			earson Education, 20			ining method
			carbon Laucation, 20			

	References
1	"Manufacturer's Manuals for different PLC Systems".
2	Gary Dumming, "Introduction to PLC", Delmar Publication
	Useful Links
1	https://www.youtube.com/watch?v=J89K1x7b6Ec&list=PLg0bf3Cfp1mwNBrZ-
	oERNOAVU_iMpaclW

	CO-PO Mapping														
		Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													
CO2		1 2											2		
CO3			2												

		Asses	sment								
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.										
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.											
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark							
t				S							
ΤΑΙ	Lab activities,	Lab Course	During Week 1 to Week 6	20							
LA1 attendance, journal Faculty Marks Submission at the end of Week 6 30											
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30							
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50							
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40							
Labese	attendance, journal	Faculty	Marks Submission at the end of Week 18	40							
Week 1 indic	ates starting week of a	semester. The typ	pical schedule of lab assessments is shown,								
			shall be as per academic calendar. Lab								
			experiments, mini-project, presentations, drav								
			nature and requirement of the lab course. The	e							
experimental	lab shall have typicall	y 8-10 experimen	ts.								

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)											
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total							
Remember											
Understand											
Apply	10	15	15	40							
Analyze	15	10	15	40							
Evaluate	5	5	10	20							
Create											
Total Marks	30	30	40	100							

				Aided Autonomous Ins	stitute)	
				AY 2021-22		
			Cou	urse Information		
Progr	amme		B. Tech. (Mech	anical Engineering)		
Class,	Semest	ær	Third Year B. T	Tech., Sem. V		
Cours	se Code					
Cours	se Name	•	Microprocessor	s in Automation Lab		
Desir	ed Requ	usites:				
	1-					
Т	eaching	Scheme		Examination	Scheme (Marks)	
Lectu		-	LA1	LA2	ESE	Total
Tutor			30	30	40	100
Practi		2Hrs/Week	50	50		100
		2HIS/Week		0	14 1	
Intera	action	-		Cre	edits: 1	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
	<u> </u>			ourse Objectives		
1				· · · ·	cocessor system and d	•
2		-	-	-	et ups related to autom	
2	To de	velop a profess	ional approach to	lifelong learning in	design of some autom	ated systems in
3	indust	ries				
		Cou	rse Outcomes (C	O) with Bloom's Ta	axonomy Level	
At the		the course, the	students will be a	ble to,	axonomy Level	
CO1	Under	the course, the stand basics of	students will be a f microprocessor	ble to, and its components		Understand
	Under Demo	the course, the stand basics of nstrate use of	students will be a f microprocessor microprocessor in	ble to, and its components a control and commu		Understand Analyze
CO1	Under Demo	the course, the stand basics of nstrate use of	students will be a f microprocessor	ble to, and its components a control and commu		
CO1 CO2	Under Demo	the course, the stand basics of nstrate use of	students will be a f microprocessor microprocessor in	ble to, and its components a control and commu		Analyze
CO1 CO2	Under Demo	the course, the stand basics of nstrate use of	students will be a f microprocessor microprocessor in algorithms for sig	ble to, and its components a control and commu	nication	Analyze
CO1 CO2 CO3	Under Demo Apply	the course, the stand basics of nstrate use of digital control	students will be a f microprocessor in algorithms for sig List of Exp	ble to, and its components a control and commu- gnal processing	nication vities	Analyze
CO1 CO2 CO3	Under Demo Apply work sl	the course, the stand basics of nstrate use of a digital control	students will be a f microprocessor in algorithms for signature List of Exponent 10 experiment	ble to, and its components a control and commu gnal processing eriments / Lab Acti	nication vities t:	Analyze
CO1 CO2 CO3	Under Demo Apply work sl Introd	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num	students will be a f microprocessor in algorithms for sig List of Exp ber Systems, code	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis	nication vities t:	Analyze
CO1 CO2 CO3 Term	Under Demo Apply work sl Introd Assen	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p	students will be a f microprocessor in algorithms for sig List of Exp by 10 experiment ber Systems, code programming of 8	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics	nication vities t:	Analyze
CO1 CO2 CO3 Term 1. 2.	Under Demo Apply work sl Introd Assen Assen	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p	students will be a f microprocessor in algorithms for sig List of Exp by 10 experiment ber Systems, code programming of 8	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor	nication vities t:	Analyze
CO1 CO2 CO3 Term 1. 2. 3.	Under Demo Apply work sl Introd Assen Assen Appl	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p ication of 8087	students will be a f microprocessor in algorithms for sig List of Exp by 10 experiment ber Systems, code orogramming of 8	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r	nication vities t:	Analyze
CO1 CO2 CO3 Term 1. 2. 3. 4.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p ication of 8087 f peripheral dev g to Digital con	students will be a f microprocessor in algorithms for signification List of Expension ber Systems, code orogramming of 8 orogramming of 8 math coprocessor vices and their int nverter and Digita	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r eerfacing al to Analog Convert	nication vities t : : Logic Gates.	Analyze
CO1 CO2 CO3 Term 1. 2. 3. 4. 5.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multij	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p ication of 8087 f peripheral dev g to Digital con polexed seven se	students will be a f microprocessor in algorithms for sig List of Exp by 10 experiment ber Systems, code orogramming of 8 orogramming of 8 math coprocesso vices and their int averter and Digita egments LED disp	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 8086 microprocessor r terfacing al to Analog Convert blay systems	nication vities t : : Logic Gates. er	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multij Intern	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p fication of 8087 f peripheral dev g to Digital con plexed seven se apts and their u	students will be a f microprocessor in algorithms for sig List of Exp by 10 experiment ber Systems, code orogramming of 8 orogramming of 8 math coprocesso vices and their int averter and Digita egments LED disp	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 8086 microprocessor r terfacing al to Analog Convert blay systems	nication vities t : : Logic Gates.	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multip Interr Raspb	the course, the stand basics of nstrate use of a digital control hall contain an uction to Numbily language p bbly language p ication of 8087 f peripheral dev g to Digital con polexed seven se upts and their up perry pie	students will be a f microprocessor in algorithms for sig List of Expendent ber Systems, code orogramming of 8 math coprocesso vices and their int nverter and Digita egments LED disp use in control - Pra	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r eerfacing al to Analog Convert blay systems actically demonstrate	nication vities t : : Logic Gates. er er use of interrupts usir	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multip Interr Raspb	the course, the stand basics of nstrate use of a digital control hall contain an uction to Numbily language p bbly language p ication of 8087 f peripheral dev g to Digital con polexed seven se upts and their up perry pie	students will be a f microprocessor in algorithms for sig List of Expendent ber Systems, code orogramming of 8 math coprocesso vices and their int nverter and Digita egments LED disp use in control - Pra	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r eerfacing al to Analog Convert blay systems actically demonstrate	nication vities t : : Logic Gates. er	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multij Intern Raspb Stepp	the course, the stand basics of nstrate use of r digital control hall contain an uction to Num ably language p ably language p bication of 8087 f peripheral dev g to Digital con plexed seven se apts and their u perry pie er motor Contro	students will be a f microprocessor in algorithms for sig List of Expendent ber Systems, code orogramming of 8 math coprocesso vices and their int nverter and Digita egments LED disp use in control - Pra	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r eerfacing al to Analog Convert blay systems actically demonstrate	nication vities t : : Logic Gates. er er use of interrupts usir	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8. 9.	Under Demo Apply work sl Introd Assen Assen Assen Appl Use o Analo Multij Intern Raspb Stepp outpu	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p bication of 8087 f peripheral dev g to Digital con plexed seven se upts and their u perry pie er motor Contro t measure motio	students will be a f microprocessor in algorithms for sig List of Expendent ber Systems, code orogramming of 8 math coprocessor vices and their int averter and Digitate gments LED disp ise in control - Pra- ol using Arduino/ on for stepper mo	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 8085 microprocessor 8086 microprocessor r aerfacing al to Analog Convert blay systems actically demonstrate ( Raspberry pie – Use otor	nication vities t : : Logic Gates. er er use of interrupts usir	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8. 9.	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multij Intern Raspb Stepp outpu	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p for Digital con plexed seven se upts and their u perry pie er motor Contro t measure motions	students will be a f microprocessor in algorithms for sig List of Expendent ber Systems, code orogramming of 8 math coprocessor vices and their int averter and Digitate gments LED disp ise in control - Pra- ol using Arduino/ on for stepper mo	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r erfacing al to Analog Convert blay systems actically demonstrate ' Raspberry pie – Use otor pberry pie (Sensors–	nication vities t : : Logic Gates. er er e use of interrupts usir e PWM for speed cont	Analyze Apply
CO1 CO2 CO3 Term 1. 2. 3. 4. 5. 6. 7. 8. 9. 10	Under Demo Apply work sl Introd Assen Assen Appl Use o Analo Multip Intern Raspt Stepp outpu ). Read encod	the course, the stand basics of nstrate use of a digital control hall contain an uction to Num ably language p ably language p for Digital con plexed seven se upts and their u perry pie er motor Contro t measure motions	students will be a f microprocessor in algorithms for sig List of Expo ber Systems, code orogramming of 8 programming of 8 math coprocesso vices and their int overter and Digita egments LED disp use in control - Pra ol using Arduino/ n for stepper mo ing Arduino/ Rasp isplay the measur	ble to, and its components a control and commu- gnal processing eriments / Lab Acti ts from following lis es, digital electronics 3085 microprocessor 3086 microprocessor r erfacing al to Analog Convert blay systems actically demonstrate ' Raspberry pie – Use otor pberry pie (Sensors–	nication vities t : : Logic Gates. er er e use of interrupts usir e PWM for speed cont	Analyze Apply

13	B. Demonstration on X-Y plotter							
	Text Books							
1	William H. Gothmann, "Digital Electronics. An Introduction to Theory and Practice", PHI							
1	Learning Private Limited, 2 nd Edition, 1982							
2	Albert Paul Malvino, "Digital Computer Electronics.' An Introduction to Microcomputers", Tata							
2	McGraw-Hill Publishing Company Ltd, 3 rd Edition, 2017							
3	Ramesh Gaonkar, "Microprocessor Architecture, Programming, arid Applications with the 8085",							
	References							
1	Benjamin C. Kuo, "Digital Control Systems", Oxford University Press, 2 nd Edition, 2007							
2	Lance A, Leventhal, "Microcomputer Experimentation with the Intel SDK-85", Prentice Hall,							
	1980							
3	S. G. Tzafestas, "Microprocessors in Robotic and Manufacturing Systems", Springer Publications,							
5	1981							
	Useful Links							
1	https://link.springer.com/article/10.1007/BF01047156							
2	https://ieeexplore.ieee.org/document/4321442							
3	https://youtu.be/NRdmIe9Afcs							
4	https://www.iitk.ac.in/new/microprocessor-and-microcontroller-laboratory							

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	1		3												
CO2		3		2								1		2	
CO3				3	2					1			2		

	Assessment								
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.								
IMP: Lab ES	IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.								
Assessmen	n Based on Conducted by Typical Schedule (for 26-week Sem) Mark								
t				s					
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30					
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50					
LA2	Lab activities, Lab Course During Week 7 to Wee		During Week 7 to Week 12	20					
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30					
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40					
Lauese	attendance, journal	Faculty	Marks Submission at the end of Week 18	40					
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,									
considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab									
activities/Lab	performance shall inc	clude performing of	experiments, mini-project, presentations, dra	wings,					

programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand	15		10	25		
Apply	15	15	20	50		
Analyze		15	10	25		
Evaluate						
Create						
Total Marks	30	30	40	100		

		Wa	alchand Colleg	e of Engineerin	g. Sangli						
	(Government Aided Autonomous Institute)										
			A	Y 2021-22							
			Cours	se Information							
Progr	amme		B. Tech. (Mechan	B. Tech. (Mechanical Engineering)							
Class, Semester Third Year B. Tech., Sem. V											
Course Code											
Cours	se Nam	е	Industrial Hydraul	lics and Pneumatics	Lab						
Desired Requisites:											
			1								
		g Scheme		Examination S							
Lectu		-	LA1	LA2	ESE	Total					
Tutor		-	30	30	40	100					
Practi		2 Hrs/Week		-	• •						
Intera	action	-		Cred	its: 1						
			Com	rse Objectives							
1	Tode	velon an interes		id pneumatic system	e						
				appropriate system		problem with due					
2			ntages, limitations,		for an industrial j						
3			-	tem for various appl	ications.						
				) with Bloom's Tax	onomy Level						
			students will be able								
<u>CO1</u>	<u> </u>		he hydraulic and pn	· · ·		Apply					
CO2	-		-	ts of hydraulic and p ic circuits for autom	-	Analyze Create					
CO3	Desig		fraunc and pheumat	ic circuits for autom	ation.	Create					
			List of Experi	iments / Lab Activi	ties						
Labor	ratory v	work shall cont		ents from following							
			c trainer kit with fo								
			cuit for linear and ro	tary motion.							
		enerative circui									
		verse and feed c		:4							
			and bleed-off circu with sequence valve								
			otion of cylinders.								
	-		tic trainer kit with fo	ollowing circuits							
			for linear and rotary								
	b. Sequencing circuit of type $A + B + A - B$										
	c. Sequencing circuit for A+ B+ B— A—										
d. Sequencing of cylinders with electric and electronic control											
			Т	ext Books							
1	SR. I	Majumdar, "Oil		-Principles and Mai	ntenance ", Tata M	lcGraw-Hill, New-					
1	Delhi,	, 2006		Principles and Main							
2	Delhi,		comune ogoterno. I	interpres und multi							

	References							
1	1 D.A. Pease, "Basic Fluid Power", Prentice Hall Ltd., 1988							
2	2 J.J. Pipenger, "Industrial Hydraulics". McGraw-Hill Publications, 1979							
3	3 Goodwin, "Power Hydraulics							
	Useful Links							
1	1 https://www.youtube.com/watch?v=dxAsr14DW6Y&list=PLbMVogVj5nJTKwm1WjlutrAEZrL E995Ja							

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1		3												
CO2		3	3									1	2		
CO3		3	1	1											

Assessment							
There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	f passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
Assessmen	Based onConducted byTypical Schedule (for 26-week Sem)M						
t				S			
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	20			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	30			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lau ESE	attendance, journal Faculty Marks Submission at the end of V		Marks Submission at the end of Week 18	40			
Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown,							

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)							
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total			
Remember							
Understand							
Apply	10	10	10	30			
Analyze	10	10	15	35			
Evaluate							
Create	10	10	15	35			
Total Marks	30	30	40	100			

	Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)								
				d Autonomous Instit 2021-22	tute)				
	Course Information								
Duogu	Programme     B. Tech. (Mechanical Engineering)								
					<u>,</u>				
	Class, Semester Third Year B. Tech., Sem. V								
	Course Code     Mechanical Measurement and Control Lab								
			Mechanical Meas	surement and Con	itrol Lab				
Desire	Desired Requisites:								
	Teaching Scheme     Examination Scheme (Marks)								
Lectu	0	Scheme	LA1	LA2	ESE	Total			
		-							
Tutor		-	30	30	40	100			
Practi		2 Hrs/Week			-				
Intera	ction	-		Cre	edits: 1				
			C						
	G( 1 (	<u>'11 1 1 4</u>		Objectives	1 44 41 11				
1					relevant to the subje				
$\frac{2}{3}$		A	function as a team		t-rigs, Experimental	setup.			
3	Students		Outcomes (CO) w		onomy Level				
At the	end of the		s will be able to,						
C01			nical quantities.			Evaluate			
<b>CO2</b>			nical measuring in	struments		Analyze			
CO3			urement technique			Analyze			
						·			
			List of Experim	ents / Lab Activi	ties				
	f Experime								
			Pressure Gauge.						
-	ed measure			_					
		-	stance strain gauge	Э.					
	uum measi	measurement by							
			fluid flow measure	ement.					
		ment using dyn							
			parameters of a ro	tary machine.					
9. Noi	se measure	ment and addit	ion /subtraction of	noise levels.					
		of the torque.							
11. Ca	libration of	f thermocouple	and measurement	of the temperature	e using various temp	erature sensors.			
	KumorD	S Machanical		t Books	litan Book Co. Det	I to Now Dalk:			
1	1 Kumar D.S., Mechanical Measurement and Control, Metropolitan Book Co. Pvt. Ltd., New Delhi, 4th Edition, 2007.								
2			hanical Measurem	ent, Pearson Educ	cation Asia, 5th Edit	ion, 2001.			
3			brations, Pearson			, •			
				ferences					
1			irement Systems, N	McGraw Hill Inter	rnational Publication	n Co. New			
	York, 4th	Edition,1990							

2	2 Rettinger Michael, Acoustic Design and Noise Control, Vol. I &II, Chemical Publishing Co. New York, 1st edition, 19						
	Useful Links						
1	http://mdmv-nitk.vlabs.ac.in/						
2	http://va-coep.vlabs.ac.in/						
3	https://sm-nitk.vlabs.ac.in/						

CO-PO Mapping															
		Programme Outcomes (PO)						PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1			2					2				1		
CO2		3		1								2			
CO3		3							2			2	1		
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															

Assessment									
There are three components of lab assessment, LA1, LA2 and Lab ESE.									
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.									
Assessmen Based on		Conducted by	Typical Schedule (for 26-week Sem)	Mark					
+				C					

t				S	
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30	
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50	
LA2	Lab activities,	Lab Course During Week 7 to Week 12		30	
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50	
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40	
	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	
XXX 1 4 1 11	1 0				

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)							
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total			
Remember							
Understand							
Apply							
Analyze	15	15	20	50			
Evaluate	15	15	20	50			
Create							
Total Marks	30	30	40	100			

		W		ge of Engineerin					
				Y 2021-22	<i>iuie)</i>				
			Cour	se Information					
Progra	amme		B. Tech. (Mechanical Engineering)						
	Semest	er	Third Year B. Tech						
Course	e Code								
Course	e Name		Energy Engineerin	g					
Desired Requisites:									
	1		I						
Т	eaching	g Scheme		Examination So	cheme (Marks)				
Lectur		2 Hrs./week	T1	T2	ESE	Total			
Tutori		_	20	20	60	100			
Practi						100			
Intera				Cred	its• 2				
muta	CHUII			Cicu	100. 4				
			Сон	rse Objectives					
	To in	troduce student		<u> </u>	mportance, needs, globa	scenario and			
1		mic consideration		ergy sources, then i	inportance, needs, gioba	sechario and			
2				and ocean energy pla	nts and its design method	ology			
3					nics of thermal energy sys				
0	10 pr	epure the studen	to unuryze the peri		nes of thermal energy sys				
		Co	urse Outcomes (CO	) with Bloom's Tax	onomv Level				
At the	end of		tudents will be able		<b>v</b>				
CO1	1		scenario and energy			Understand			
CO2				io mass as alternate so	ources of energy.	Apply			
CO3				siderations of energy		Analyze			
Modu	le		Mod	Hours					
	Ir	Introduction to Non-Conventional Energy Sources							
		Introduction, Indian and global energy scenario, fossil fuels, India's energy							
Ι		production, consumption and demand of energy, solar energy and other non-							
		conventional energy resources, role of alternate energy sources of worlds power							
		generation in future							
		Solar Energy							
т		Extra-terrestrial solar radiation, solar radiation on earth, beam and diffused							
II		radiation, global radiation on a surface, solar radiation geometry, solar energy							
		collectors, solar energy storage, solar pond, applications of solar energy, cooking, pumping, distillation, solar PV energy generation							
		imping, distillat							
		0.	ergy estimation, avai						
III				5					
		selection, basic wind energy conversion systems, types of wind machines, performance of wind m/c, energy storage, and applications of wind energy							
		io-Energy and		<u></u>	<i>0</i> ,				
	Bio-mass and photosynthesis, biogas generation, types of biogas plants, factors								
IV			generation, commu	5					
					related to biogas plant	5			
						1			
	Fı	el cells- Desig	in and principle of	Operation of a fuel	cell, Classification and				

	Fuel Cells, Batteries- Basic Batteries Theory, Classification of Batteries	
	Ocean Energy	
	Ocean thermal energy conversion (OTEC): principle of OTEC, open and closed	
V	cycle OTEC, working fluids for OTEC	4
	Tidal energy: principle of tide generation, tidal power plants, estimation of energy	4
	from tides, site selection for tidal power plants	
	Energy Economics and Environment	
	Life cycle costing, present worth factor, present worth of capital and maintenance	
VI	cost, energy conservation opportunities, energy audit, co-generation systems, waste	4
	heat utilization, impact	-
	of conventional energy use on environment	
	Text Books	
1	G. D. Rai, "Non-Conventional Energy Sources", Khanna Publishers, 5 th Edition, 2014	
2	V. M. Domkundwar, "Solar Energy and Non-Conventional Energy Sources", Dhanpat Ra	ui & Co. Ltd.,
	1 st Edition, 2010	
3	R. K. Singal, "Non-Conventional Energy Sources", Katson Publication, 2 nd Edition, Repr	int, 2013
	References	
1	Jhon Twidell and Tony Weir, "Renewable Energy Resources", Roultledge Publication,	2 nd Edition,
1	2005	
2	S. P. Sukhatme, "Solar Energy", McGraw Hill Publication, 4 th Edition, 2017	
3	G. S. Sawhney, "Non-Conventional Resources of Energy", PHI Publication, 5 th Edition,	
4	Recent reports of agencies: International Energy Agency (IEA), Ministry of New and	d Renewable
	energy (MNRE), Technology and Action for Rural Advancement (TARA)	
	Useful Links	
1	https://mnre.gov.in/	
2	https://beeindia.gov.in/	
3	https://ascelibrary.org/journal/jleed9	
4	https://onlinecourses.nptel.ac.in/noc21_ch11/preview	

	Civil															
CO-PO Mapping																
		Programme Outcomes (PO) PSO														
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	1						1					1				
CO2	1	1			1		1					1				
CO3	2	1	2		1		1					1				
The streng	yth of n	happing	y is to h	e writt	en as 1	.2.3: W	here. 1	:Low.	2:Med	ium. 3:	High		-			

	Electronics															
	CO-PO Mapping															
				PSO												
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2											1				
CO2	1	1			1		1					1				
CO3	1	2	2		1		1					1				
The streng	gth of n	happing	g is to l	be writt	en as 1	,2,3; W	here, 1	l:Low,	2:Medi	um, 3:	High					

	Electrical															
	CO-PO Mapping															
		Programme Outcomes (PO) PSO														
	1	2 3 4 5 6 7 8 9 10 11 12 1 2 3														
CO1	2						2					1				
CO2	2	1			1		1					1				
CO3	CO3         2         2         2         1         1         1         1         1															
The streng	gth of n	napping	g is to b	e writt	en as 1	,2,3; W	here, 1	l:Low,	2:Med	ium, 3:	High					

### **Computer Science**

CO-PO Mapping																
					PSO											
	1	2         3         4         5         6         7         8         9         10         11         12         1         2         3														
CO1	2															
CO2	1	1			1											
CO3	1	1	2		1											
The streng	th of n	happing	g is to b	be writt	en as 1	.2.3: W	here. 1	:Low.	2:Med	ium. 3:	High		-			

### **Information Technology**

CO-PO Mapping															
				F	Progra	mme C	Outcom	es (PC	))					PSO	
	1	2	3	12	1	2	3								
CO1	2														
CO2	1	1			1										
CO3	1	1	2		1										
The streng	gth of n	napping	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High												

# Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy Level	<b>T1</b>	T2	ESE	Total								
1	Remember												
2	Understand	7	8	20	35								
3	Apply	8	7	17	32								
4	Analyze	5	5	23	33								
5	Evaluate												
6	Create												
	Total         20         20         60         100												

		W	alchand Colleg	ge of Engineer										
				Y 2021-22	sume)									
			Cour	rse Information										
Progra	amme		B. Tech. (Mechan	ical Engineering)										
Class,	Seme	ster	Third Year B. Teo	ch., Sem. V										
Cours	e Cod	e												
Cours	æ Nan	ne	Non-Conventiona	l Machining Proce	sses									
Desire	ed Req	uisites:												
		g Scheme			Scheme (Marks)									
Lectur	re	3Hrs/week	T1	T2	ESE	Total								
Tutori		-	20	20	60	100								
Practi		-			-									
Interaction - Credits: 3														
	<b>T</b> 1	<u> </u>		rse Objectives		G								
1	To learn about various nonconventional machining processes the various techniques, performance													
2	To introduce students with various machine tools and their neculiars used for nonconventional													
3			s to identify main developed product.		nventional machining proce	esses and to								
		Cou	rse Outcomes (CO	)) with Bloom's Ta	axonomv Level									
At the	end of		students will be ab											
CO1			nconventional ma manufacturing appl		, tooling and equipment's	understa nding								
CO2	Expl	oit the capabiliti	es and applications	of nonconventiona	al machining processes.	Apply								
CO3		-	lifferent parameter are with other techn	-	nonconventional machining	Analyze								
Modu			Mo	dule Contents		Hours								
Ι	I: n	Introduction:       Introduction to nontraditional machining methods -Need for non -traditional machining -Sources of metal removal Classification on the basis of energy sources       6         -Parameters influencing selection of process.       6												
II	A U	Iltrasonic Mach	hining – Water Jet	, AWJM and US	nsive Water Jet Machining – M). Working Principles – ions	7								
III	E		ge Machining (El		rinciple-equipments-Process Fool – Power and control									

	Circuits-Tool Wear - Dielectric - Flushing - Wire cut EDM - Applications-	
	Micro-EDM, Micro-WEDM.	
IV	Chemical Type AMPs: Chemical machining and Electro-Chemical machining (CHM and ECM)-Etchants – Maskant -techniques of applying maskants - Process Parameters – Surface finish and MRR-Applications .Principles of ECM- equipments-Surface Roughness and MRR, Electrical circuit-Process Parameters- ECG and ECH – Applications	7
V	Medium Assisted AMPs: Laser Beam Machining: Material removal mechanism, types of Lasers, LBM equipment, process characteristics, applications. Electron Beam Machining: Basic equipment and metal removal mechanism, process characteristics, applications. Plasma Beam Machining: Machining systems, material removal rate, accuracy and surface quality, applications. Ion Beam Machining: Introduction, material removal rate, accuracy and surface effects, applications	7
VI	Advanced MPs: Basics and definitions: Principle of layer-based technology, advantages, classification. Rapid Prototyping Process Chain: 3D Modeling, Data Conversion and Transmission, Checking and Preparing, model building, post processing. Rapid prototyping techniques: Stereo lithography, Solid Ground Curing (SGC), Fused Deposition Modeling (FDM)	6
	Text Books	
1	Mishra, P. K., Non-Conventional Machining, The Institution of Engineers (India), Series, New Delhi, 1997	Text Book
2	Garry F. Benedict, Unconventional Machining Process, Marcel Dekker Publication, 1 1987	New York,
3	Vijay.K. Jain "Advanced Machining Processes" Allied Publishers Pvt. Ltd, New Delhi,	2009.
	References	
1	Hassan El-Hofy, "Advanced Machining Processes: Nontraditional and Hybrid Processes", McGraw-Hill Co, New York (2005).	Machining
2	Benedict, Gary F., "Non-Traditional Manufacturing Processes", Marcel Dekker Inc., (1987)	New York
3	Chua C. K. and Leong, Lim, "Rapid Prototyping Principles and Applications", 2nd ed Wiley and Sons.	ition, John
	Useful Links	
1	https://nptel.ac.in/courses/112/105/112105212/	
2	https://nptel.ac.in/courses/112/103/112103202/	
3	https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-me15/	
4	https://onlinecourses.nptel.ac.in/noc20_me17/preview	

	000														
CO-PO Mapping															
					PSO										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	2			2	2										

## Civil

CO2	2	2			1				1	1				
CO3	2	2			1	1	1					1		
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														

# Electronics CO-PO Mapping

	CO-r O Mapping															
				F	Program	mme C	Outcom	es (PO	)					PSO		
	1	2     3     4     5     6     7     8     9     10     11     12     1     2     3														
CO1	2				2	2										
CO2	2	1			1	1	1					1				
CO3         2         2         2         1         1         1																
The streng	gth of n	napping	g is to b	be writt	en as 1	,2,3; W	here, 1	:Low,	2:Medi	um, 3:	High	-				

# Electrical

	CO-PO Mapping															
		Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2			2								1				
CO2	2	2			2				1			1				
CO3	2	2		2	2							1				
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															

# **Computer Science**

	CO-PO Mapping															
	Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	2			1	1	1										
CO2	2	2	1		2							1				
CO3	2	1	2		2							1				
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															

### **Information Technology**

						CO-l	PO Ma	pping							
		Programme Outcomes (PO)											PSO		
	1 2 3 4 5 6 7 8 9 10 11 12											1	2	3	
CO1	2														
CO2	2	1			2				1						
CO3	CO3         1         2         2         2         1         1														
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														

# **Assessment (for Theory Course)**

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20

marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy Level	T1	T2	ESE	Total								
1	Remember												
2	Understand	7	8	20	35								
3	Apply	8	7	17	32								
4	Analyze	5	5	23	33								
5	Evaluate												
6	Create												
	Total 20 20 60 100												

		W		e of Engineerir							
			1	ded Autonomous Instit	tute)						
				Y 2021-22							
Ducan				se Information							
Progra		4	B. Tech. (Mechan	e e:							
Class,			Third Year B. Tec	n., Sem. VI							
Cours											
Cours		-	Design of Machin	e Elements							
Desire	d Req	uisites:									
Те	eaching	g Scheme		Examination S	cheme (Marks)						
Lectu		2Hrs/week	T1	T2	ESE	Т	otal				
Tutori		-	20	20	60		100				
Practi	cal	_		-							
Intera		-	Credits: 2								
	1			rse Objectives							
1				d design guidelines							
2	<ul> <li>2 To explain the effect of combined loading on machine elements and safety critical design.</li> <li>2 To appraise the relationships between component level design and overall machine system</li> </ul>										
3		erformance.	ionships between co	omponent level desig	gn and overall mach	nne syste	em design				
		Cou	nco Outoomos (CO	) with Bloom's Tax	onomy Loval						
At the	end of		students will be abl								
CO1				rious machine elemen	nts.		Apply				
<b>CO2</b>			meters of machine e				Analyze				
				ne elements subjec	ted to different	loading	Evaluat				
CO3	condi	tions.		-		_	e				
<b>N 1</b>	•						TT				
Modu		• • •		dule Contents			Hours				
Ι	G ar co	nd significance,	process and procedu theories of failure a design	re, types of loads, fa and their application			4				
II	D ar fle	esign of solid and line shafts, s exible bushed p	plined shafts, types in type flange coup	ased on elastic theor of couplings, design lings, design of keys	n of muff, rigid flan		5				
IIIDesign of screws and joints Forms of threads, design of power screws and nuts, types of induced stresses, efficiency of power screw, self-locking and overhauling properties, introduction to re -circulating ball screw. Types of welded, bolted and riveted joints, design of welded, bolted and riveted joints subjected to transverse and eccentric loads											
IV	D U st	esign of clutch niform pressure ress and deflect	es, brakes and spr e and wear theory, ion equation for hel	<b>ings</b> types of clutches and	d brakes, types of s	prings,	4				
V			ing contact bearing analysis of rolling contact bearings, selection of bearings from								

	manufacturer's catalogue	
VI	Design of sliding contact bearing           Design and analysis of sliding contact bearings, hydrodynamic and hydrostatic           bearings, Reynold's equation and numerical solutions using dimensionless parameter	4
	Text Books	
1	V. B. Bhandari, "Design of Machine Elements", Tata McGraw Hill Publication, 3 rd Edit	tion, 2008
2	J.F. Shigley, "Mechanical Engineering Design", McGraw Hill Publication, 8th Edition, 2	2008
3	R. L. Norton, "Design of Machinery", McGraw Hill Publication, 3 rd Edition, 2003	
	References	
1	Timothy Wentzell, "Machine Design", Cengage Learning, 1 st Edition, 2009	
2	M. F. Spotts, T.E Shoup, Hornberger, Jayaram, Venkatesh, "Design of Machine E Pearson Education, 8 th edition, 2011	Elements",
3	PSG Design Data Book, Third Edition, 1978	
	Useful Links	
1	https://nptel.ac.in/courses/112/105/112105124/	

	CO-PO Mapping															
		Programme Outcomes (PO)												PSO		
	<u>1 2 3 4 5 6 7 8 9 10 11 12</u>													2	3	
<b>CO1</b> 2 3 1 1											1	2				
CO2		1	2	2									1			
CO3	CO3         2         3         1         2															
The stren	The strength of manning is to be written as 1 2 3: Where 1: Low 2: Medium 3: High															

### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy Level	<b>T1</b>	T2	ESE	Total								
1	Remember												
2	Understand												
3	Apply	7	7	20	34								
4	Analyze	6	6	20	32								
5	Evaluate	7	7	20	34								
6 Create													
	Total 20 20 60 100												

		W		ge of Engineerin ided Autonomous Insti								
				Y 2021-22								
			Cou	rse Information								
Progra	amme		B. Tech. (Mechan	ical Engineering)								
Class,	Semes	ter	Third Year B. Teo	ch., Sem. VI								
Cours	e Code	•										
Cours	e Nam	e	Automation in Ma	anufacturing								
Desire	d Req	uisites:										
			1									
		g Scheme		Examination S								
Lectu		2Hrs/week	T1	T2	ESE		otal					
Tutor		-	20	20 20 60 100								
Practi Intera		-		Cred								
Intera	ction	_		Creu	ns: 2							
			Cou	rse Objectives								
1	To ur	derstand the in		•	nachine tool based ma	anufactu	iring.					
2					ring automation-CAI							
		natics, hydraul										
3	To w	ork on the basic	es of product design	and the role of man	ufacturing automation	n.						
		Cou	rse Outcomes (CC	)) with Bloom's Tax	onomy Level							
At the	end of		students will be ab	-								
CO1	Ident				ol systems for autom	ation	Apply					
CO2	Empl syster	•	ware's, controllers	and optimization t	echniques for autom	ation	Analyze					
CO3	Verif	y automation sy	ystems knowledge	into various modern	applications		Evaluate					
Modu				dule Contents			Hours					
Ι	W ha	hy automation	ne tools. Flexible au		Rigid automation: r control of machine		4					
II	N	-	rt programming, <b>(</b> ably, flexible fixtu	-	trol, automated mat	terial	4					
III	Fi ba	use, Geometric	CAD- Hardware i modeling for down	stream applications a	raphics software and and analysis methods	data	5					
IV	C	NC technology		<b>g</b> ollers, CNC-Adaptiv	e control		5					
V		obotics and a troduction to r		l and electro mecha	nical systems, pneum	natics	4					

	and hydraulics, Illustrative examples and case studies	
	Modeling and Simulation	
VI	Product design, process route modeling, optimization techniques, case studies and	4
	industrial applications	
		I
	Text Books	
1	Mikell P. Groover, "Automation, Production systems and computer integrated manu	facturing",
1	Prentice Hall, 2007	-
2	Serope Kalpakjain and Steven R. Schmid, "Manufacturing Engineering and Technology	ology", 7 th
2	edition, Pearson, 2013	
3	Ibrahim Zeid, CAD/CAM : Theory & Practice, 2 nd edition, 2006	
	References	
1	YoramKoren, "Computer control of manufacturing system", McGraw Hill, 1 st edition, 2	2017
2	Webb and Reis, "Programmable Logic Controller – Principles and Applications", Prent	
2	India, 5 th Edition, 2002	
2	Kolk R.A. and Shetty Devdas, "Mechatronics System Design", Thomson Learning,	, 2007, 3 rd
3	Edition	
	Useful Links	
1	https://nptel.ac.in/courses/112/103/112103293/	
2	https://onlinecourses.nptel.ac.in/noc20_me58/preview	
3	https://nptel.ac.in/courses/112/104/112104288/	
4	https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-me58/	

	CO-PO Mapping														
		Programme Outcomes (PO)											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1													
CO2		1	2		1								2		
CO3	1			1	2	1							2		
The stren	gth of	mappii	ng is to	be wr	itten a	s 1,2,3	; Wher	e, 1:Lo	w, 2:N	/Iediun	1, 3:Hig	zh			

**Assessment (for Theory Course)** 

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course												
B	Bloom's Taxonomy LevelT1T2ESETotal												
1	Remember												
2	Understand												
3	Apply	7	8	18	33								

4	Analyze	6	6	22	34
5	Evaluate	7	6	20	33
6	Create				
	Total	20	20	60	100

				e of Engineering led Autonomous Institut							
			AY	2021-22	,						
			Cours	e Information							
Progr	amme		B. Tech. (Mechanic	B. Tech. (Mechanical Engineering)							
	Semes	ter	Third Year B. Tech	Third Year B. Tech., Sem. VI							
Cours	se Code	1									
Cours	se Nam	е	Engineering Metrol	logy							
Desire	ed Req	uisites:									
			1								
Т	eaching	g Scheme		Examination Sch	eme (Marks)						
Lectu	re	1Hr/week	T1	T2	ESE	Total					
Tutor	rial	-	20	20	60	100					
Pract	ical	-		-	ı — I — I						
Intera	action	-		Credits	s <b>:</b> 1						
			Cours	se Objectives							
1	To el	aborate basic co	oncepts of standards	and methods of dimer	nsional measurement.						
2	To train the students to apply principles of magnification and interferometry.										
3	To ex	plain importan	ice of measurement of	f various parameters	of screw threads and gear	·s.					
			irse Outcomes (CO)		nomy Level						
		· · · · ·	e students will be able	· · · · · · · · · · · · · · · · · · ·							
CO1			andards, linear and ar			Apply					
CO2			struments for differen			Analyze					
CO3	Estim	ate the limits o	of gauges and deviation	on in measurement pa	rameters.	Evaluat					
<b>N</b> <i>T</i> <b>1</b>	•					Hours					
Modu			Module Contents								
Ι	Linear and angular measurements										
1		Slip gauges and other devices of linear measurements; Bevel protractor, spirit level, clinometers, angle dekkor, sine bar, angle slip gauges									
			•	bar, angie silp gauges	5 						
II		<b>Tolerances and gauging</b> Unilateral and bilateral tolerances, limit and fits, types of fits, plain gauges and									
		gauge design									
TTT	Ň	Magnification									
		0	ical, electrical, pneum	natic methods of mag	nification, comparators	2					
		Interferometry									
	In	Interferometry: principles of interferometry and application in checking of									
IV		flatness and height									
IV	fl		Screw thread inspection								
	fla Se	rew thread in				_					
IV V	fla So Ea	rors in screw	threads, measuremen	5	fective diameters, pitch	2					
	fli So Ei ar	erew thread in rors in screw and thread angle	threads, measuremen , floating carriage dia	5	· .	2					
	fla So Ex ar G	crew thread in rors in screw d thread angle ear Inspectior	threads, measuremen , floating carriage dia 1	meter measuring mad	· .	2					

	Text Books					
1	1 R.K. Jain, "Engineering Metrology", Khanna Publisher, 2009					
2	M. Mahajan, "Statistical Quality Control" Dhanpat Rai & Co., 2012					
3	I.C. GUPTA, "Engineering Metrology", Dhanpat Rai & Sons, 2018					
	References					
1	J.F.W. Gayler and C.R. Shotbolt, "Metrology for Engineers", Cassell, 5th Edition, 2015					
2	K.W.B. Sharp, "Practical Engineering Metrology", Pitman London, 1 st Edition 1973					
3	R.C. Gupta, "Statistical Quality Control", Khanna Publication, 9th Edition, 1998					
	Useful Links					
1	https://nptel.ac.in/courses/112/104/112104250/					
2	https://nptel.ac.in/courses/112/106/112106179/					

CO-PO Mapping															
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	1													
CO2			3	2									2		
CO3			2	3								1			
The stren	gth of	mappiı	ng is to	be wr	itten a	s 1,2,3	; Wher	e, 1:Lo	w, 2:N	/Iediun	້າ <i>,</i> 3:Hig	gh			

### **Assessment (for Theory Course)**

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand							
3	Apply	7	6	20	33			
4	Analyze	7	7	20	34			
5	Evaluate	6	7	20	33			
6	Create							
	Total	20	20	60	100			

			1	ded Autonomous Instit	,				
				Y 2021-22					
			Cour	se Information					
Progr	amme		B. Tech. (Mechanical Engineering)						
Class,	Semes	ter	Third Year B. Teo	ch., Sem. VI					
Cours	æ Code	!							
Cours	e Nam	е	Design of Machin	e Elements Lab					
Desire	ed Requ	uisites:							
			1						
Т	eaching	g Scheme		Examination S	cheme (Marks)				
Lectu		-	LA1	LA2	ESE	Total			
Tutor	ial	_	30	30	40	100			
Practi		2 Hrs./Week			-				
Intera		-		Cred	ite• 1				
murt				Citu	u.s. 1				
			Con	rse Objectives					
1	To far	miliorize the stu		ical Engineering Des	ign Process				
2				uired for design of n					
$\frac{2}{3}$			s for design of macl		iccitatical systems.				
5	10 us		s for design of maci						
		Cou	rse Autcomes (CA	) with Bloom's Tax	onomy I aval				
At the	end of		students will be abl						
					siderations for design	of At	pply		
CO1		gs, brakes and c		and o ther westgin com			51-7		
		·		s of bearings, couplin	ngs, clutches, breaks	and An	alyze		
CO2	welds		2				5		
CO3	Inves	tigate stresses ir	n machine elements						
			List of Exper	iments / Lab Activi	ties				
List of	f Experi	ments:							
Term	Work	contains follow	'ing:-						
1.	Aesth	etic and ergono	mic considerations	in product design					
2.		n of shaft							
3.			ible flange coupling	g					
4.	•	n of screw jack	-						
5.		n of spring							
6.		n of clutch							
7.	•	n of brake	-1						
8.		ng design and s		0					
9. 10	-		veted / welded joint	8					
10.	Desig	n of gears							
			7	Toxt Dools					
	VP	Bhandari Dag		Text Books	lightion 3rd adition	2008			
1	V. B. Bhandari, "Design of Machine Elements", TMGH Publication, 3 rd edition, 2008								
$\frac{1}{2}$	<ul> <li>J.F. Shigley, "Mechanical Engineering Design", McGraw Hill Publication, 8th Edition, 2008</li> <li>R. L. Norton, "Design of Machinery", McGraw Hill Publication, 3rd Edition, 2003</li> </ul>								

1	Timothy Wentzell, "Machine Design", Cengage Learning, First Edition, 2009						
	M. F. Spotts, T.E Shoup, Hornberger, Jayaram, Venkatesh, "Design of Machine Elements",						
2	Pearson						
	Education, 8 th edition, 2011						
3	PSG Design Data Book, Third Edition, 1978						
	Useful Links						

1 https://nptel.ac.in/courses/112/105/112105124/

	CO-PO Mapping														
		Programme Outcomes (PO)										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1												2		
CO2		3	2		2	3	3					1		2	
CO3		3					2			1					

Assessment								
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.								
Assessmen	Assessmen Based on Con		Typical Schedule (for 26-week Sem)	Mark				
t				S				
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30				
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50				
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30				
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50				
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40				
Lab ESE	attendance, journal	ance, journal Faculty Marks Submission at the end of Week 18		40				
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,								

considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)							
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total			
Remember							
Understand							
Apply	10	10	20	40			
Analyze	10	10	10	30			
Evaluate	10	10	10	30			
Create							
Total Marks	30	30	40	100			

		Wa		e of Engineerin ded Autonomous Instit					
				Y 2021-22	шс)				
				se Information					
Progr	amme		B. Tech. (Mechanical Engineering)						
	Semest	er	Third Year B. Tec	<b>e</b>					
	se Code								
	se Name		Automation in Ma	anufacturing Lab					
	ed Requ								
Desite	eu Kequ	isites.							
т	aaahina	Scheme		Examination So	home (Marks)				
Lectu		Scheme	LA1	LA2	ESE	Total			
		-							
Tutor		- 21 Inc /3371	30	30	40	100			
Practi		2Hrs/Week		-	· 1				
Intera	action	-		Cred	its: 1				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
		<u> </u>		rse Objectives	· · · ·				
1		•		omated systems for	improving the proc	luctivity of the			
	 manufacturing industry. To demonstrate effective use of various microprocessors, microcontrollers, PLC and other modern 								
2 routenoistiate effective use of various incroprocessors, incrocontrollers, PLC and other moc									
3									
	10 40	elep stadent s	ucinty to ucintonisu		5,5001115				
		Cou	rse Outcomes (CO)) with Bloom's Tax	onomy Level				
At the	end of t		students will be able		U				
CO1					strial use to pick and	Apply			
		<u> </u>	elding, painting etc.						
CO2				stem using higher en		Analyze			
CO3	Create	independent s	mall application ori	ented PLC based des	sign	Create			
					•				
				iments / Lab Activit	ties				
			periments from fo	llowing list:					
1. 2.		nated bottle fill	ection and identification	ation					
2. 3.			d actuator control	auon					
<i>3</i> . 4.				ted fluid mixer syste	m				
5.	-	-	ntrolling for spot w	-					
6.	-	-	ntrolling for spray p	-					
7.	PLC b	ased control of	f various sensor inte	erface					
8.			ntrolling for pick ar						
9.	-	-	ntrolling for annunc						
10). Auton	nation based ar	alysis on case study	y in specific manufac	cturing domain				
				lort Doole					
1	R Tho	mas Wright "		ext Books	ogy", Tata Mc Hill, 2	002			
1					o_{5y} , rata ivit rilli, 2				

2	Serope Kalpakjain and Steven R. Schmid, "Manufacturing Engineering and Technology", 7 th edition, Pearson, 2013.							
	References							
1	"Manufacturer's Manuals for different PLC Systems".							
2	Gary Dumming, "Introduction to PLC", Delmar Publication							
	Useful Links							
1	https://www.youtube.com/watch?v=J89K1x7b6Ec&list=PLg0bf3Cfp1mwNBrZ-							
1	oERNOAVU_iMpaclW							
2	https://nptel.ac.in/courses/112/103/112103293/							

	CO-PO Mapping														
	Programme Outcomes (PO)													PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		3												
CO2		1		2								1		2	
CO3				1	2								2		

Assessment											
There are three components of lab assessment, LA1, LA2 and Lab ESE.											
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.											
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark							
t				s							
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30							
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50							
LA2	Lab activities,	Lab Course	During Week 7 to Week 12								
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30							
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40							
Lad ESE	attendance, journal Faculty Marks Submission at the end of Week 18										
Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,											
•			shall be as per academic calendar. Lab								
activities/Lab	nerformance shall inc	lude performing a	experiments mini-project presentations drav	wings							

activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)											
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total							
Remember											
Understand											
Apply	10	10	15	35							
Analyze	10	10	15	35							
Evaluate											

Create	10	10	10	30
Total Marks	30	30	40	100

		Wa		ge of Engineerin							
			,	Y 2021-22	uie)						
				se Information							
Progr	amme		B. Tech. (Mechan								
	Semes	ter	Third Year B. Teo								
	se Code										
Cours	se Name	9	Engineering Metrology Lab								
Desire	ed Requ	isites:									
			1								
Т	eaching	g Scheme		Examination S	cheme (Marks)						
Lectu	re	-	LA1	LA2	ESE	Total					
Tutor	ial	-	30	30	40	100					
Practi	ical	2Hrs/Week		-		·					
Intera	nction	-		Cred	its: 1						
			Cou	rse Objectives							
1				suring the dimensior							
2				ent of various param		ds and gears.					
3	To pre	epare the studer	nts to calibrate linea	r and angular measu	ring instruments.						
) with Bloom's Tax	onomy Level						
			students will be abl		1 111 /		1				
CO1		-		nal measurement and	^ ^ ^						
CO2	-	rement.	for quality char	acteristics by usin	g different metho	ds of Ana	iyze				
CO3	-		al instruments used	for linear and angula	r measurements	Eval	uate				
000	Cullor			Tor inical and ungan							
			List of Exper	iments / Lab Activi	ties						
1. '	To calib	orate micromete	er using slip gauges								
			using dial gauge ca								
3. '	To mea	sure angle by u	sing sine bar.								
		y and use of co									
		*	demonstration of in	2							
		-		ing floating carriage	diameter measuring	g machine.					
			gear tooth vernier ca	aliper.							
		profile projecto Tool Maker's n									
			face roughness teste	۹r							
		•	linate measuring ma								
			7	Text Books							
1	R.K. J	lain, "Engineeri		anna Publisher, 21 st	Edition						
2				Dhanpat Rai & Son		3					
							_				
			I	References							

1	J.F.W. Gayler and C.R. Shotbolt, "Metrology for Engineers", Cassell, 1990
2	K.W.B. Sharp, "Practical Engineering Metrology", Pitman London, 1st Edition 1973
	Useful Links
1	https://www.youtube.com/watch?v=FqSJhY_lctc&list=PLkUEX3IbW7le4Okwm_qe4a1h6634US
1	ZTi
2	https://www.youtube.com/watch?v=5saq-
	oYBE&list=PLrcSDk_gQ7jiQCfWEzw93ZMaxHkg2v-CC
3	https://www.youtube.com/watch?v=7yzvno4AvKw

	CO-PO Mapping															
		Programme Outcomes (PO)												PSO		
	1	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3								3						
CO1			3			2							2			
CO2			3			2							2			
CO3				3								2	2			
The stren	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															
Each CO	of the	course	must 1	nap to	at leas	t one F	Ю.									

Assessment There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation. Assessmen **Based** on **Conducted by** Typical Schedule (for 26-week Sem) Mark t S Lab activities, Lab Course During Week 1 to Week 6 LA1 30 attendance, journal Faculty Marks Submission at the end of Week 6 Lab activities, Lab Course During Week 7 to Week 12 LA2 30 attendance, journal Faculty Marks Submission at the end of Week 12 Lab Course Lab activities, During Week 15 to Week 18 Lab ESE 40 attendance, journal Faculty Marks Submission at the end of Week 18 Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings,

programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)												
Bloom's Taxonomy Level	LA1	A1 LA2 Lab ESE										
Remember												
Understand												
Apply	10	10	10	30								
Analyze	10	10	15	35								
Evaluate	10	10	15	35								
Create												
Total Marks	30	30	40	100								

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)								
AY 2021-22								
Course Information								
Programme B.Tech. (Mechanical Engineering)								
Class, Semester	Third Year B. Tech., Sem VI							
Course Code								
Course Name	Mini Project 3							
Desired Requisites:								

Teachin	ig Scheme	Examination Scheme (Marks)									
Lecture	-	LA1	LA2	ESE	Total						
Tutorial	-	30	30	40	100						
Practical	2 Hrs./Week										
Interaction	-		Credits: 01								

Course Objectives

- **1** To familiarize students with the different machine tools used to produce components.
- 2 To provide hands- on experience by operating conventional machine tools.
- **3** To provide hands-on experience by handling advanced machine tools.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the	At the end of the course, the students will be able to,								
CO1	Use different machines and laboratory set ups.	Apply							
CO2	Operate different advanced machines and welding equipment.	Apply							
CO3	Create a component / part as per given drawing / design / model. Create								

Course contents

Students need to choose different topics / concepts / ideas for mini projects 3 and 4. Guidelines for Mini Project 3:

- 1. Students shall complete the mini project in a group of maximum five students.
- 2. Students are encouraged to choose the mini project, which solves real life problems / live industrial problems / sponsored mini projects.
- 3. The mini project can be any of the form given below :
 - a) Manufacturing / fabrication of the components / sub assembly / assembly modelled in mini project 1.
 - b) Making physical working models, prototypes and scaled models, of a concept machine or development / repair / modifications of laboratory set-ups.
 - c) Making virtual / CAD models of sufficiently complex machines / concepts.
 - d) Making study, modeling, analysis, programming and simulation of a system / machine / operation / process.
 - e) Tools / gadgets / devices / applications involving use of other emerging technologies such as Arduino, Raspberry pi or other electronic tools, simulation software.
 - f) Any other project work in mechanical or multidisciplinary areas in consultation with the faculty in charge.
- 4. Students shall submit an implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.

- 5. A log book to be prepared by each student / group, wherein they can record weekly work progress,
- 6. Faculty advisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- 7. Students shall convert the best solution into a working model using various components of their domain areas and demonstrate / validate the same with proper justification.

Students may use the following facilities available.

- 1. Wood turning lathe
- 2. Centre Lathe machine
- 3. Grinding machine
- 4. Milling machine
- 5. Shaping machine
- 6. CNC machine
- 7. Wire EDM machine
- 8. CNC router
- 9. Welding spot welding, smart welding machine
- 10. Co-ordinate measuring machine (CMM)
- 11. 3D printer
- 12. Programmable logic controller (PLC)
- 13. Any other laboratory facility available

Guidelines for Assessment of Mini Project Practical / Oral Examination:

- Report should be prepared as per the guidelines issued by the department.
- Mini Project shall be assessed through a presentation and demonstration of mini project by the student project group to faculty advisor.
- Students shall be motivated to publish a paper based on the project work in student competitions / Conferences / journals.

Mini Project shall be assessed based on following points;

- Innovativeness in solutions
- Use of engineering principles / norms
- Cost effectiveness
- Quality of workmanship and accuracy
- Demonstration of the mini project work
- Effective use of skill sets
- Contribution of an individual's as member or leader
- Clarity in written and oral communication
- Technical report prepared

Text Books Text Books 1 Suitable books and e books on design engineering, manufacturing processes, thermal engineering, design of experiments, optimization techniques suitable for selected project domain. References 1 Suitable user manuals of software tools and research papers from reputed national and international journals and conferences. Useful Links 1 Any online resources suitable for the project domain.

	CO-PO Mapping															
	Programme Outcomes (PO)													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1	3	2							3		2		3			
CO2	2		3		2				3		3		2	1		
CO3		3		2	3		1	3				3		1		
The stren	oth of	mannir	n is to	he wr	itten as	123.	Where	1.L o	$\frac{1}{1}$ $2 \cdot N$	Iedium	3.Hic	rh				

	Assessment							
There are three	There are three components of lab assessment, LA1, LA2 and Lab ESE.							
IMP: Lab ES	E is a separate head of	f passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.				
Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) M								
t				s				
LA1	Synopsis report	Lab Course	During Week 1 to Week 6	30				
LAI	and presentation	Faculty	Marks Submission at the end of Week 6	50				
	Progress review /	Lab Course	During Week 7 to Week 12					
LA2	presentation /	Faculty	Marks Submission at the end of Week 12	30				
	demonstration	Faculty						
	Assessment based	Lab Course	During Week 15 to Week 18					
Lab ESE	on implementation	Faculty	Marks Submission at the end of Week 18	40				
	and presentation.	Taculty						
			e typical schedule of lab assessments is show	n,				
			shall be as per academic calendar. Lab					
			experiments, mini-project, presentations, dra					
			nature and requirement of the lab course. The	e				
experimental	lab shall have typicall	y 8-10 experimen	ts.					

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)						
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total		
Remember						
Understand						
Apply	20	20	20	60		
Analyze						
Evaluate						
Create	10	10	20	40		
Total Marks	30	30	40	100		

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)						
AY 2021-22						
	Course Information					
Programme	B.Tech. (Mechanical Engineering)					
Class, Semester	Third Year B. Tech., Sem VI					
Course Code						
Course Name	Mini Project 4					
Desired Requisites:	Desired Requisites:					

Teachin	ng Scheme		Examination S	cheme (Marks)				
Lecture	-	LA1	LA2	ESE	Total			
Tutorial	-	30	30	40	100			
Practical	2 Hrs./Week	- · · ·						
Interaction	-		Credits: 01					

Course Objectives

- **1** To familiarize students with the different machines available in department and institute.
- 2 To provide hands- on experience by operating conventional machine tools.
- **3** To provide hands-on experience by handling advanced machine tools.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,							
Understand different machining processes and applications of various	Understand						
conventional machines available in the department.							
Operate different advanced machines and welding equipment.							
Create a component / part as per given drawing / design / model.							
	Understand different machining processes and applications of various conventional machines available in the department. Operate different advanced machines and welding equipment.						

Course contents

Students need to choose different topics / concepts / ideas for mini projects 3 and 4.

Guidelines for Mini Project 4:

- 1. Students shall complete the mini project in a group of maximum five students.
- 2. Students are encouraged to choose the mini project, which solves real life problems / live industrial problems / sponsored mini projects.
- 3. The mini project can be any of the form given below :
 - a) Manufacturing / fabrication of the components / sub assembly / assembly modelled in mini project 2.
 - b) Making physical working models, prototypes and scaled models, of a concept machine or development / repair / modifications of laboratory set-ups.
 - c) Making virtual / CAD models of sufficiently complex machines / concepts.
 - d) Making study, modeling, analysis, programming and simulation of a system / machine / operation / process.
 - e) Tools / gadgets / devices / applications involving use of other emerging technologies such as Arduino, Raspberry pi or other electronic tools, simulation software.
 - f) Making study / teaching modules of a sufficiently complex topic for pedagogy purposes.
 - g) Any other project work in mechanical or multidisciplinary areas in consultation with the faculty in charge.

- 4. Students shall submit an implementation plan in the form of Gantt / PERT / CPM chart, which will cover weekly activity of mini project.
- 5. A log book to be prepared by each student / group, wherein they can record weekly work progress,
- 6. Faculty advisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- 7. Students shall convert the best solution into a working model using various components of their domain areas and demonstrate / validate the same with proper justification.

Students may use the following facilities available.

- 1. Wood turning lathe
- 2. Centre Lathe machine
- 3. Grinding machine
- 4. Milling machine
- 5. Shaping machine
- 6. CNC machine
- 7. Wire EDM machine
- 8. CNC router
- 9. Welding spot welding, smart welding machine
- 10. Co-ordinate measuring machine (CMM)
- 11. 3D printer
- 12. Programmable logic controller (PLC)
- 13. Any other laboratory facility available

Guidelines for Assessment of Mini Project Practical / Oral Examination:

- Report should be prepared as per the guidelines issued by the department.
- Mini Project shall be assessed through a presentation and demonstration of mini project by the student project group to faculty advisor.
- Students shall be motivated to publish a paper based on the project work in student competitions / Conferences / journals.

Mini Project shall be assessed based on following points;

- Innovativeness in solutions
- Use of engineering principles / norms
- Cost effectiveness
- Quality of workmanship and accuracy
- Demonstration of the mini project work
- Effective use of skill sets
- Contribution of an individual's as member or leader
- Clarity in written and oral communication
- Technical report prepared

Text Books

1	design of experiments, optimization techniques suitable for selected project domain.						
	References						
1	Suitable user manuals of software tools and research papers from reputed national and						
1	international journals and conferences.						
	Useful Links						
1	Any online resources suitable for the project domain.						

	CO-PO Mapping														
	Programme Outcomes (PO)									PSO	,				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2							3		2		3		
CO2	2		3		2				3		3		2	1	
CO3		3		2	3		1	3				3		1	

Assessment
There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark		
t				S		
LA1	Synopsis report	Lab Course	During Week 1 to Week 6	30		
LAI	and presentation	Faculty	Marks Submission at the end of Week 6	50		
	Progress review /	Lab Course	During Week 7 to Week 12			
LA2	presentation /	Faculty	Marks Submission at the end of Week 12	30		
	demonstration	Taculty				
	Assessment based	Lab Course	During Week 15 to Week 18			
Lab ESE	on implementation	Faculty	Marks Submission at the end of Week 18	40		
	and presentation	Taculty				
Week 1 indicates the starting week of a semester. The typical schedule of lab assessments is shown,						
0			shall be as per academic calendar. Lab			
activities/Lab	performance shall inc	clude performing	experiments, mini-project, presentations, drav	wings,		

activities/Lab performance shall include performing experiments, mini-project, presentations, draw programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on	Bloom's Ta	xonomy Level	(Marks) (For la	b Courses)
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total
Remember				
Understand	15	10	10	35
Apply	10	15	10	35
Analyze				
Evaluate				
Create	5	5	20	30
Total Marks	30	30	40	100

		W		ege of Engineerin Aided Autonomous Insti					
			,	Aidea Autonomous Insu AY 2021-22	ιμις j				
			Cou	urse Information					
Progr	amme		B. Tech. (Mecha	nical Engineering)					
Class,	Semes	ter	Third Year B. T	ech., Sem. VI					
Cours	e Code	e							
Cours	æ Nam	e	Energy Conserv	ation and Managemen	t				
Desire	ed Req	uisites:		<u> </u>					
Т	aachin	g Scheme		Examination S	chama (Marks)				
Lectu		2Hrs/week	T1	T2		Total			
Tutor		21115/ WCCK	20	20	60	100a1			
		-	20	20	00	100			
Practical - Interaction - Credits: 2									
				ourse Objectives					
1	and e	nergy impact o	n environment.		energy auditing, energy co				
2	-				ng and energy conservation				
3					thodologies for energy savi				
4	· ·	epare the stude gement.	ents for higher stud	lies and research in the	e field of energy conservation	on and			
		Cou	irse Outcomes (C	O) with Bloom's Tax	xonomy Level				
At the	end of	the course, the	students will be a	ble to,					
CO1			power scenario, el ergy impact on env	ectrical systems, energy vironment.	gy auditing, energy	Apply			
CO2			ounting and balan			Analyze			
CO3				hodologies for energy	savings.	Evaluate			
Modu			M	odule Contents		Hours			
I d n		ata, environme	ion to energy and power scenario of world; national energy consumption ironmental aspects associated with energy utilization, energy auditing - es, methodology and barriers, role of energy managers, instruments for						
Π	E C of ef ty lig	Electrical Systems Components of EB billing, HT and LT supply, transformers, cable sizing, concept of capacitors, power factor improvement, harmonics, electric motors – motor efficiency computation, energy efficient motors, Illumination – Lux, Lumens, types of lighting, efficacy, LED lighting and scope of energy conservation in lighting				5			
III	D ar	efinition, energy proach-unders	tanding energy	nent and Audit y audit, need, types of energy audit. Energy management (audit) anding energy costs, bench marking, energy performance, use to requirement, maximizing system efficiencies, optimizing					

	the input energy requirements, fuel and energy substitution, energy audit instruments and metering					
IV	Thermal SystemsThermal systems, boilers, furnaces and thermic fluid heaters- efficiencycomputation and energy conservation measures; steam distribution and usage,steam traps, condensate recovery, flash steam utilization; insulation & refractories	4				
V	Energy Conservation in major utilities Energy conservation in major utilities, pumps, fans, blowers, compressed air					
VI	Energy and environment, air pollution, climate change					
	Text Books					
1	Witte L.C. Schmidt P.S. and Brown D.R., "Industrial Energy Management and Utilization", Hemisphere Publ., Washington, 1988					
2	Callaghn P.W., "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981					
3	Murphy W.R. and McKay G., "Energy Management", Butterworths, London, 2003					
4	Energy Manager Training Manual, Bureau of Energy Efficiency (BEE) under Ministry GOI, 2008 (available at www.energymanager training.com)	Energy Manager Training Manual, Bureau of Energy Efficiency (BEE) under Ministry of Power,				
	References					
1	Recent reports of agencies: International Energy Agency (IEA), Ministry of New and I energy (MNRE), Technology and Action for Rural Advancement (TARA)	Renewable				
2	Dale R Patrick, Stephen W Fardo, "Energy Conservation Guidebook", 2 nd Edition, CRC	C Press				
3	Albert Thumann, "Handbook of Energy Audits", 6th Edition, The Fairmont Press					
4	4 Bureau of Energy Efficiency Reference book: No.1, 2, 3 4					
1	Useful Links					
$\frac{1}{2}$	http://nptel.iitm.ac.in/ www.bee.com					
$\frac{2}{3}$	www.powermin.nic.in					
3						

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2								1			1			
CO2	2	2											2		
CO3	CO3 2 2 1 2 2 2 2														
The stren	gth of 1	mappir	ng is to	be wr	itten as	1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

Assessment (for The	ory Course)
The assessment is based on 2 in-semester examinations in	the form of T1 (Test-1) and T2 (Test-2) of 20

marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on	Bloom's Taxon	omy Level (Mar	ks) For Theory	Course
B	Bloom's Taxonomy Level	T1	Τ2	ESE	Total
1	Remember				
2	Understand				
3	Apply	7	7	16	30
4	Analyze	6	7	22	35
5	Evaluate	7	6	22	35
6	Create				
	Total	20	20	60	100

		W		e of Engineerin							
				ded Autonomous Instit	ute)						
				Y 2021-22							
				se Information							
Progr			B. Tech. (Mechan								
	Semes		Third Year B. Tec	h., Sem. VI							
	æ Code										
	e Nam		Power Plant Engineering								
Desire	ed Requ	isites:									
Т	eaching	Scheme		Examination So	cheme (Marks)						
Lectu	re	2Hrs/week	T1	T2	ESE	T	otal				
Tutor	ial	-	20	20	60		100				
Practi	ical	-		-		1					
Intera	ction	-		Cred	its: 2						
			1								
				rse Objectives							
1				nt power plants, ener		mics.					
2	^	<u> </u>		ower plants and its va	<u> </u>						
3	To de	velop the skill	to select, analyze th	e power plant system	and allied parame	ters					
		Car		with Discussing Tax							
Δt the	end of		students will be abl) with Bloom's Tax	onomy Level						
				ater, fuels like co	al nuclear diese	el and	Apply				
CO1		carbon	arvesting from w	ator, rueis inte et	ui, nucleui, uics	or und	' ippij				
CO2			rpret the parameters	related to power pla	nts.		Analyze				
CO3				ruments and allied	l parameters bas	ed on	Evaluate				
	perfo	mance, energy	consumption and e	conomics.							
Modu	ıle		Mod	lule Contents							
1.1044							Hours				
		troduction				Introduction					
Ι											
I	E	nergy resource		lity, types of powe ic cycles used in pow		of the	Hours 5				
I	Er pl H	nergy resource ants, review of y dro-Electric	basic thermodynam Power Plants	ic cycles used in pov	ver plants						
	Er pl H Ra	nergy resource ants, review of ydro-Electric ainfall and run	basic thermodynam Power Plants -off measurements	ic cycles used in pov and plotting of vari	ver plants ous curves for esti	mating	5				
I	Er pl H Ra str	nergy resource ants, review of ydro-Electric anfall and run ream flow and	basic thermodynam Power Plants -off measurements size of reservoir, po	ic cycles used in pov and plotting of vari ower plants design, c	ver plants ous curves for esti onstruction and op	mating					
	Er pl H Ra stu of	nergy resource ants, review of ydro-Electric ainfall and run ream flow and different com	basic thermodynam Power Plants -off measurements size of reservoir, po ponents of hydro-ele	ic cycles used in pov and plotting of vari	ver plants ous curves for esti onstruction and op	mating	5				
	Er pl H Ra str of w	argy resource ants, review of ydro-Electric infall and run eam flow and different com ith other types	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants	ic cycles used in pov and plotting of vari ower plants design, c	ver plants ous curves for esti onstruction and op	mating	5				
	En pl H Ra stu of w St	ants, review of ydro-Electric infall and run eam flow and different com th other types eam Power Pl	basic thermodynam Power Plants -off measurements size of reservoir, por ponents of hydro-ele of power plants ants	ic cycles used in pov and plotting of vari ower plants design, c ectric power plants,	ver plants ous curves for esti onstruction and op site selection, comp	mating eration parison	5				
	En pl H Ra stu of w St Fl	argy resource ants, review of ydro-Electric ainfall and run ream flow and different com th other types eam Power Pl ow sheet and	basic thermodynam Power Plants -off measurements size of reservoir, por ponents of hydro-ele of power plants ants working of modern	ic cycles used in pov and plotting of vari ower plants design, c	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p	mating eration parison ressure	5				
II	En pl H R: stu of w Sti Fl stu	argy resource ants, review of ydro-Electric ainfall and run eam flow and different com th other types eam Power Pl ow sheet and eam stations,	basic thermodynam Power Plants -off measurements size of reservoir, po ponents of hydro-ele of power plants ants working of modern site selection, coal	ic cycles used in pov and plotting of vari ower plants design, c ectric power plants, -thermal power plant	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy	mating eration parison ressure /stems,	5				
II	En pl H Ra stu of W Sta Fl sta fe m	argy resource ants, review of ydro-Electric ainfall and run eam flow and different com th other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro	ic cycles used in pov and plotting of vari- ower plants design, c ectric power plants, -thermal power plan- storage, preparation fuel, ash handling	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy	mating eration parison ressure /stems,	5				
II	En pl H Ra stu of ww Sti Fl sta fe m O	argy resource ants, review of ydro-Electric ainfall and run ream flow and different com th other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl	basic thermodynam Power Plants -off measurements size of reservoir, por ponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro ants	ic cycles used in pov and plotting of vario ower plants design, c ectric power plants, -thermal power plants, storage, preparation fuel, ash handling ostatic precipitator	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy systems, dust coll	mating eration parison ressure ystems, ection-	5				
II	En pl H R: stu of w Sti Fl stu fe m O Ba	argy resource ants, review of ydro-Electric infall and run eam flow and different com th other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl usic principles	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electrometers ants and types of diesel p	ic cycles used in pov and plotting of vari ower plants design, c ectric power plants, -thermal power plan storage, preparation fuel, ash handling ostatic precipitator	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy systems, dust coll ad disadvantages of	mating eration parison ressure ystems, ection-	5				
Ш	En pl H Ri stu of w Sti Fil stu fe m O Bä pl	argy resource ants, review of ydro-Electric infall and run eam flow and different com ith other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl asic principles ants ,operation	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro ants and types of diesel p n performance of	ic cycles used in pov and plotting of vari- ower plants design, c ectric power plants, -thermal power plants, -thermal power plants storage, preparation fuel, ash handling ostatic precipitator plants, advantages ar a diesel engine, co	ver plants ous curves for esti- onstruction and op site selection, comp ts, super critical p , coal handling sy systems, dust coll and disadvantages of onstruction and w	mating eration parison ressure ystems, ection- f diesel yorking	5 7 7 7				
II	En pl H Ra stu of W Sti Fi sta fe m O Ba pl pr	argy resource ants, review of ydro-Electric ainfall and run eam flow and different com th other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl asic principles ants ,operation inciples of gas	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro ants and types of diesel poperformance of s turbine power plants	ic cycles used in pov and plotting of vari ower plants design, c ectric power plants, -thermal power plants, -thermal power plants storage, preparation fuel, ash handling ostatic precipitator 	ver plants ous curves for esti- onstruction and op site selection, comp ts, super critical p , coal handling sy systems, dust coll and disadvantages of onstruction and w nts and auxiliary s	mating eration parison ressure ystems, ection- f diesel yorking ystems	5				
Ш	En pl H Ra stu of ww Sta Fl sta fe m O Ba pl pr us	argy resource ants, review of ydro-Electric unfall and run eam flow and different com th other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl asic principles ants ,operation inciples of gas ed in gas turbi	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro ants and types of diesel p n performance of s turbine power plants, diff	ic cycles used in pov and plotting of vario over plants design, c ectric power plants, -thermal power plants, -thermal power plants, storage, preparation fuel, ash handling ostatic precipitator plants, advantages ar a diesel engine, con nts, basic component ferent types of fuels	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy systems, dust coll ad disadvantages of onstruction and w nts and auxiliary s and materials used	mating eration parison ressure ystems, ection- f diesel yorking ystems l in gas	5 7 7 7				
Ш	En pl H R: stu of w Sti Fl stu fe m O Ba pl pr us tu	argy resource ants, review of ydro-Electric infall and run eam flow and different com ith other types eam Power Pl ow sheet and eam stations, eding and bur echanical dust ther Power Pl usic principles ants ,operation inciples of gas ed in gas turbi	basic thermodynam Power Plants -off measurements size of reservoir, poponents of hydro-ele of power plants ants working of modern site selection, coal ning of pulverized collector and electro ants and types of diesel p n performance of s turbine power plants, diff	ic cycles used in pov and plotting of vario wer plants design, c ectric power plants, -thermal power plants, -thermal power plants, storage, preparation fuel, ash handling ostatic precipitator plants, advantages ar a diesel engine, co nts, basic componen ferent types of fuels uclear energy, basic	ver plants ous curves for esti onstruction and op site selection, comp ts, super critical p t, coal handling sy systems, dust coll ad disadvantages of onstruction and w nts and auxiliary s and materials used	mating eration parison ressure ystems, ection- f diesel yorking ystems l in gas	5 7 7 7				

VI	 Steam pressure and steam temperature measurement, flow measurement of feed water, fuel, air and steam with correction factor for temperature, speed measurement, level recorders, smoke density measurement, dust monitor, flue gas oxygen analyzer – analysis of impurities in feed water and steam, dissolved oxygen analyzer, ph meter-fuel analyzer, and pollution monitoring instruments, current simple methods of energy auditing Power Plant Economics Load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants- incremental rate theory, input-output curves, efficiency, heat rate, acanamic load charing and simple numerical 	7
	economic load sharing and simple numerical	
	Text Books	
1	EL-Wakil, "Power plant Technology", M.M., McGraw Hill, 1 st Edition, 2017	
2	P.K. Nag, "Power Plant Engineering", Tata McGraw Hill,4 th Edition 2017	
3	Domkundwar, Arora, "Power plant Technology", Dhanpat Rai and Co. sixth edition 201	3
	References	
1	Weisman, J., and Eckert, L., "Modem Power Plant Engineering", Prentice Hall, 1st edition	on. 1999.
2	Kam W. Li and A. Paul Priddy, "Power Plant System Design", John Wiley, 1st edition,	
3	Recent reports of agencies: International Energy Agency (IEA), Ministry of New and I energy (MNRE), Technology and Action for Rural Advancement (TARA)	Renewable
	Useful Links	
1	NPTEL Course on POWER PLANT ENGINEERING, Department of Mechanical E	ngineering
· ·	IIT Roorkee - https://nptel.ac.in/courses/112/107/112107291/	
2	Course on Power Plant Engg., IIT Kharagpur,	
	https://youtube.com/playlist?list=PLwOhSTeCfDgmA7LFqMnT0yb83dmr9esWZ	

	CO-PO Mapping														
	Programme Outcomes (PO)											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														
CO2		2											2		
CO3	2	2	2		1								2	2	
The stren	gth of	mappii	ng is to	be wr	itten as	1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course											
B	Bloom's Taxonomy Level	T1	Т2	ESE	Total							
1	Remember											
2	Understand											
3	Apply	7	7	20	34							
4	Analyze	6	6	20	32							
5	Evaluate	7	7	20	34							

6	Create				
	Total	20	20	60	100

		W		ege of Engineeri Aided Autonomous Inst									
				AY 2021-22									
			Cou	rse Information									
Progra	amme		B. Tech. (Mecha	nical Engineering)									
Class,	Semes	ter	Third Year B. Te	Third Year B. Tech., Sem. VI									
Cours	e Code	•											
Cours	e Nam	e	Operations Research										
Desire	d Req	uisites:											
Te	eaching	g Scheme		Examination S	Scheme (Marks)								
Lectur		2Hrs/week	T1	T2		Fotal							
Tutori		-	20	20	60	100							
Practi		-			-								
Intera		_		Cree	dits: 2								
u		1	1										
			Co	urse Objectives									
1	To er	able the studer	its to formulate and	d solve linear program	nming problems.								
2	To pr	epare the stude	ents to use mathem	atical models for solv	ving optimization problems.								
3	To tra	ain the students	to analyze real-wo	orld problems in view	v of finding optimal solution	S.							
				O) with Bloom's Ta	xonomy Level								
			students will be al	ble to,		1							
CO1			nming problems.	1.11.0		Apply							
CO2			tical models for rea			Analyze							
CO3	Selec	t models for op	otimization under d	lifferent constraints.		Evaluate							
Modu	le		M	odule Contents		Hours							
		inear program	ming problem										
Ι	F			g problem, graphica	l solution method, simplex	5							
		• •	and integer prog	0									
II				nod for LPP, Gomery	's cutting plane method for	4							
		teger program	<u> </u>										
		ransportation		ada ta abtain initi	1 hogin forsible 1-4								
III					l basic feasible solution, sting optimality solution of	5							
				, degeneracy and its									
		ssignment mo		, accentracy and its i									
IV		0		nced and unbalance	ed assignment problems,	3							
					aveling salesman problem								
			nd Queuing theory		· •								
					tions in queuing models,								
V			on, Model I (M/M/		1 1 2 0	5							
					ciple, solution of zero sum								
		· ·	-	nt, algebraic metho	od, dominance properties,								
	gi	aphical method	1										

VI	Replacement modelReplacement model for items whose maintenance cost increases with time (money value constant) and with change in money value, selection of best machine, replacement of items that fail suddenly, individual and group replacement policies.4
	Text Books
1	Hira D.S. and Premkumar Gupta, "Operation Research", S. Chand and Co. Ltd., Revised Edition, 2008
2	Sharma J.K., "Operations Research: Theory and Applications", Macmillan publishers India Ltd., 4 th Edition, 2009
3	Sharma S. D., "Operation Research", Kedarnath and Rannath & Co, 5 th Edition, 2005
	References
1	R. Panneerselvam, "Operations Research", Prentice Hall India Pvt. Ltd., 2004
2	Vohra N.D., "Quantitative Techniques in Management", McGraw Hill, 4 th Edition, 2010
3	Mahajan Manohar, "Operations Research", Dhanpat Rai and Company Pvt. Ltd., 1 st Edition 2006
	Useful Links
1	https://www.youtube.com/watch?v=a2QgdDk4Xjw&list=PLjc8ejfjpgTf0LaDEHgLB3gCHZYcNtsoX

	CO-PO Mapping														
		Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3			3								2	2		
CO2		3		3	1										
CO3			2	2	1										
The stren	oth of	mannii	ng is to	he wr	itten a	c 1 2 3	· \//hor	ο 1·I α	W 2.N	Aediun		, th			

Assessment (for Theory Course)

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course										
B	Bloom's Taxonomy Level	T1	T2	ESE	Total						
1	Remember										
2	Understand										
3	Apply	7	8	18	33						
4	Analyze	6	7	20	33						
5	Evaluate	7	5	22	34						
6	Create										
	Total	20	20	60	100						

		W		e of Engineerin			
			1	ded Autonomous Instit Y 2021-22	tute)		
				se Information			
Progra	amme		B. Tech. (Mechanical Engineering)				
Class, Semester		ter	Third Year B. Tech., Sem. VI				
Course Code							
Course Name		Design and Optimization					
Desired Requisites:							
20520							
Teaching Scheme		Examination Scheme (Marks)					
Lecture		2Hrs/week	T1	T2	ESE	Total	
Tutorial		-	20	20	60	100	
Practi	cal	-		<u> </u>	I		
Interaction		-	Credits: 2				
			Cou	rse Objectives			
		To design a system, component, or process to meet desired needs within realistic constraints such					
1		s economic, environmental, social, ethical, health and safety, manufacturability, and					
		sustainability.					
2		Γο use the optimization techniques and tools for necessary engineering practice.					
3 To use mathematical methods and computers to make rational decisions in solving optimization problems.						lving a variety of	
	opun						
		Соц	rse Outcomes (CO) with Bloom's Tax	onomy Level		
At the	end of		students will be abl		,		
CO1 Implement different		mont different	methods for optimum design				
		ment unierent	· · · · · · · · · · · · · · · · · · ·	in design		Applying	
		ze different op	timization techniqu	es.		Applying Analyzing	
CO3		ze different op	<u>^</u>	es.			
CO3	Evalu	ze different op	timization technique et solution of an opt	es. imization problem.		Analyzing Evaluate	
	Evalu	ze different op ate and interpro	timization technique et solution of an opt	es.		Analyzing	
CO3	Evalu le In	ze different op ate and interpro	timization technique et solution of an opt Modu	es. imization problem. ale Contents	ional varias Ostin	Analyzing Evaluate Hours	
CO3 Modu	Evalu le In In	ze different op ate and interpre- troduction troduction to	timization technique et solution of an opt Modu Design- The desig	es. imization problem. ule Contents n Process, Convent	ional versus Optin	Analyzing Evaluate Hours	
CO3	Evalu le In In de	troduction to esign process, o	timization technique et solution of an opt Modu Design- The desig ptimum design vers	es. imization problem. ule Contents n Process, Convent sus optimal control	×.	Analyzing Evaluate Hours 1000 4	
CO3 Modu	Evalu le In In de O	troduction troduction to esign process, o ptimum design	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulation	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem fo	rmulation process v	Analyzing Evaluate Hours 1000 4	
CO3 Modu	Evalu le In In de Oj ex	troduction troduction to esign process, o ptimum design	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati eral mathematical m	es. imization problem. ule Contents n Process, Convent sus optimal control	rmulation process v	Analyzing Evaluate Hours 1000 4	
CO3 Modu	Evalu le In In de O ex O	troduction troduction to sign process, o ptimum design amples, A geno	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulation eral mathematical m n Concepts	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem fo	rmulation process vesign	Analyzing Evaluate Hours num 4	
CO3 Modu	Evalu In In de O ex O U U	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulatieral mathematical m n Concepts obal and local minir and constrained O	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro-	rmulation process vesign pasic calculus conce oblems, postoptima	Analyzing Evaluate Hours num 4 with pts, lity 5	
CO3 Modu I	Evalu le In In de O ex O U an	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design amples, A gene ptimum design amples, A gene ptimum design amples, A gene ptimum design ptimum design pt	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati eral mathematical m n Concepts obal and local minir and constrained O al meaning of La	es. imization problem. ale Contents n Process, Convent sus optimal control on- The problem fo odel for optimum de na, review of some l	rmulation process vesign pasic calculus conce oblems, postoptima	Analyzing Evaluate Hours num 4 with pts, lity 5	
CO3 Modu I	Evalu le In In de O ex O Do Un an Er	troduction troduction to esign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a alysis: Physic ngineering design	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulative eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro-	rmulation process vesign pasic calculus conce oblems, postoptima	Analyzing Evaluate Hours num 4 with pts, lity 5	
CO3 Modu I II	Evalu	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a alysis: Physic ngineering design raphical Optin	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization	es. imization problem. ale Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro- angrange Multiplier	rmulation process vesign pasic calculus conce oblems, postoptima rs, Global Optima	Analyzing Evaluate Hours um 4 vith pts, lity, 5	
CO3 Modu I	Evalu In In de O ex O U u an Er G G G	troduction troduction troduction to sign process, o ptimum design amples, A geno ptimum design amples, A geno ptimum design efinitions of glo nconstrained a alysis: Physic ngineering design raphical Optim raphical solution	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati- eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization on process, Use of	es. imization problem. ale Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro angrange Multiplier	rmulation process v esign pasic calculus conce oblems, postoptima rs, Global Optima graphical optimizat	Analyzing Evaluate Hours um 4 vith pts, lity, 5 ion, 5	
CO3 Modu I II	Evalue In In de O ex O Un an Er G G G	ze different op ate and interpre- troduction troduction to sign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a alysis: Physic ngineering design raphical Optim raphical solution	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization on process, Use of with multiple solu	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro angrange Multiplier f mathematica for utions, problem with	rmulation process vesign pasic calculus conce oblems, postoptima rs, Global Optima graphical optimizat n Unbounded solut	Analyzing Evaluate Hours um 4 vith pts, lity, 5 ion, 5	
CO3 Modu I II	Evalu In In de O ex O Do Un an Er G G In	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a alysis: Physic ngineering design raphical Solution esign problem feasible problem	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulative eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization on process, Use of with multiple solution	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro angrange Multiplier f mathematica for itions, problem with on for different appli	rmulation process vesign pasic calculus conce oblems, postoptima rs, Global Optima graphical optimizat n Unbounded solut	Analyzing Evaluate Hours um 4 vith pts, lity, 5 ion, 5	
CO3 Modu I II	Evalu Evalu In In de O ex O Evalu In	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design efinitions of glo nconstrained a alysis: Physic raphical Optin raphical solutio esign problem feasible proble inear Program	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati- eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization on process, Use of with multiple solution ming Methods for	es. imization problem. ule Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro angrange Multiplier f mathematica for itions, problem with on for different appli	rmulation process vesign pasic calculus conce oblems, postoptima rs, Global Optima graphical optimizat n Unbounded solut cation.	Analyzing Evaluate Hours num vith 4 pts, lity, 5 ion, 5 ion, 5	
CO3 Modu I II	Evalu Evalu In In de O ex O O U I an Er G G G I D C I I I I I I I I I I I I I I I I I	troduction troduction troduction to sign process, o ptimum design amples, A gene ptimum design amples, A gene traphical Solution and the solution of a solution feasible problem fensible problem	timization technique et solution of an opt Modu Design- The desig ptimum design vers problem formulati eral mathematical m n Concepts obal and local minir and constrained O al meaning of La gn examples nization on process, Use of with multiple solution ming Methods for tandard linear progr ing problems, Basi	es. imization problem. ale Contents n Process, Convent sus optimal control on- The problem for odel for optimum de na, review of some l ptimum design pro- angrange Multiplier f mathematica for tions, problem with on for different appli Optimum Design	rmulation process vesign pasic calculus conce oblems, postoptima s, Global Optima graphical optimizat n Unbounded solut cation.	Analyzing Evaluate Hours um 4 vith pts, lity, 5 lion, ion, 5 d to 4	

v	Numerical Methods for Unconstrained Optimum Design General concepts related to Numerical algorithms, basic ideas and algorithms 4 for step size determination, search direction determination: steepest descent 4								
VI	Numerical Methods for Constrained Optimum Design Basic Concepts and Ideas Linearization of constrained problem sequential								
	Text Books								
1	1 Jasbir. Arora, Introduction to optimum Design, Elsevier, 4 th edition								
2									
3	Singeresu S. Rao, "Engineering Optimization - Theory and Practice" New Ag Publishers, 2000.	ge Intl. Ltd.,							
	References								
1	Kalyanamoy Deb, "Optimization for Engineering design algorithms and Examindia, 199	mples", PHI							
2	Goldberg D.F. "Genetic algorithms in search optimization and machine" Barnen Addison								
3	PSG Design Data Book, Third Edition, 1978								
	•								
	Useful Links								
1	https://www.youtube.com/watch?v=LL20TZGXp3Q								
-									

CO-PO Mapping															
		Programme Outcomes (PO)										PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3		2										1		
CO2		2											1		
CO3		2		1									1		
The stren	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High														

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course									
B	Bloom's Taxonomy Level	T1	T2	ESE	Total					
1	Remember									
2	Understand									
3	Apply	10	10	25	45					
4	Analyze	5	5	15	25					
5	Evaluate	5	5	20	30					
6	Create									

Total 20 20 60 100

		VV č		e of Engineering ded Autonomous Institu					
			A	Y 2021-22					
			Cours	se Information					
Programme B.Tech. (Mechanical Engineering) Class, Semester Third Year B. Tech., Sem VI									
Class,	Semes	ter	Third Year B. Tec	h., Sem VI					
Cours	e Code								
Cours	e Nam	e	Robotics Lab						
Desire	ed Requ	usites:							
T	1.	0.1							
		g Scheme	T A 1	Examination Sc		Tatal			
Lectu		-	LA1	LA2	ESE 40	Total			
Tutor Practi		- 2 Hrs./Week	30	30	40	100			
Intera				- Credi	te. 1				
шега		-		Ureal	13. I				
			Сош	rse Objectives					
	To de	liver the knowl			tation of Industrial Au	tomation and			
1	1	t programming.	C	1 1					
2					tic systems, SCADA a	nd DCS			
			s systems use in mo						
3			e of various power ctrical controls of m		, Industrial distribution	ı systems,			
	Duses	, protocols, Elec							
		Cou	rse Outcomes (CO)) with Bloom's Taxo	onomy Level				
At the			students will be able						
CO1		ate continuous- cording of data		oftware for the mani	pulation, transmission	, Analyze			
CO2	Decid system		tors and sensors and	d integrate them with	embedded control	Evaluate			
CO3	Desig	n static and dyr		used for combination	nal, synchronous and	Create			
0.05	async	hronous sequen	tial logics.						
			List of Experi	iments / Lab Activit	ies				
List of	f Exper	iments: (any 1	-						
			r system in Robot						
		bot programmi							
		-	ble pick and place						
			mplex pick and pla	ce					
			mple palletization mplex palletization						
			lour based object id	entification					
	~ -	-	ape based object ide						
			omparison of two or						
			and demonstration of						

- Study, designing system and demonstration of various drive systems used in robotics
 Study, designing system and demonstration of various sensors used in robot

	Text Books								
1	Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing,", Prentice Hall International, 2004								
2	Groover M.P., Nagel R.N., Ordey N.G., "Industrial Robotics- Technology, Programming and Applications", McGraw Hill International, 1999								
3	R.K. Mittal, I.J. Nagrath, "Robotics and Control,", Tata McGraw Hill, 1997								
4	Pradeep Chaturvedi, N.K. Tewari, P.V. Rao, G.S. Yadav, "Modern Trends in Manufacturing Technology,", IE India, New Delhi, 2002								
	References								
1	Richard M. Murrai, Zexiang Li, S Shankar Sastry, "Robotic Manipulation," CRC Press, 2001								
2	S.R. Deb, "Robotics Technology and Flexible Automation," Tata McGraw Hill, 2000								
3	Urich Rembold, "Computer Integrated Manufacturing Technology and System," 1995								
	Useful Links								
1	https://nptel.ac.in/content/storage2/112/105/112105249/MP4/mod011ec01.mp4								
2	NPTEL Link: https://youtu.be/a6_fgnuuYfE								
3	NPTEL Link: https://youtu.be/49RET0N-ITY								
4	NPTEL Link: https://youtu.be/9fqygvj-O2s								

	CO-PO Mapping														
	Programme Outcomes (PO)											PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		2											2	2	
CO2				3								1		1	
CO3			3						3						

Assessment									
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.									
Assessmen Based on Conducted by Typical Schedule (for 26-week Sem)									
t				s					
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30					
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50					
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30					
	attendance, journal	Faculty	Marks Submission at the end of Week 12	50					
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40					
Lauese	attendance, journal	Faculty	Marks Submission at the end of Week 18	40					
Week 1 indic	Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown,								
considering a	26-week semester. Th	ne actual schedule	shall be as per academic calendar. Lab						

activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)										
Bloom's Taxonomy Level	LA1	LA2	Lab ESE	Total						
Remember										
Understand										
Apply										
Analyze	10	10	10	30						
Evaluate	10	10	15	35						
Create	10	10	15	35						
Total Marks	30	30	40	100						

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
	AY 2021-22								
Course Information									
Programme	B. Tech. (Mechanical Engineering)								
Class, Semester	Third Year B. Tech., Sem. VI								
Course Code									
Course Name	Internal Combustion Engines Lab								
Desired Requisites:									

Teaching	g Scheme	Examination Scheme (Marks)								
Lecture	-	LA1	LA2	ESE	Total					
Tutorial	-	30	30	40	100					
Practical	2Hrs/Week	-								
Interaction	-	Credits: 1								

	Course Objectives	
1	To study Engines performance parameters such as BMEP, Torque, BSFC and their relat operating conditions.	ionship to
2	To study Ideal air standard cycles and fuel/air cycles.	
3	To understand roll of Parameters affecting volumetric efficiency, valve timing, port des	ign.
4	To know about Turbocharging: compressor and turbine performance, matching compon introduction to impeller design.	
5	To study combustion Processes in both spark and compression ignition engines: flame s cycle-to-cycle variation, knock, ignition, fuel injection, octane number, ignition delay, c number.	
6	To study Emissions: NOx, CO, UHC, Smoke, and Catalic converters.	
	Course Outcomes (CO) with Bloom's Taxonomy Level	
At the	end of the course, the students will be able to,	
CO1	Understand the Basics of engine construction and working of 2 strokes, 4 stroke petrol and diesel engines.	Apply
CO2	Analyze the heat balance sheet of 4 stroke petrol and diesel engines by taking trials.	Analyze

CO3 Evaluate the performance of computerized multi cylinder 4 stroke engine.

List of Experiments / Lab Activities

Evaluate

List of Experiments:

- Term work shall contain any 5 to 6 experiments from following list : Study group:-
 - 1. Constructional details of I.C. Engines
 - 2. Dismantling and assembly of I.C. Engine.
 - 3. Study of Engine air inlet, exhaust, cooling and lubrication systems.
 - 4. Study of Ignition system and starting system.
 - 5. Study of carburetor and petrol injection system.
 - 6. Study of fuel injection system of diesel engine.

Test group:-

- 1. Test on slow speed diesel engine.
- 2. Test on high speed diesel engine.
- 3. Test on variable speed four stroke petrol engine.
- 4. Morse test on multi cylinder engine.
- 5. Test on computerized I.C. engine test rig.

6.	Measurement of I.C. engine emissions.
	Text Books
1	Ganeshan, "Internal Combustion Engines", Tata Mac Hill Publication, 2 nd Edition, 1999
2	Mathur and Sharma, "Internal Combustion Engines", Dhanpat Rai publication, 2 nd Edition, 2000
	References
1	Y. Obert, "Internal Combustion Engines and Air Pollution", In-text Educational Publishers, 51 st
1	Edition, 1973
2	John B Heywood, "Internal Combustion Engines fundamentals", McGraw-Hill, Revised 2 nd
	Edition, 1988
	Useful Links
1	https://www.youtube.com/watch?v=lMkioRm5ZTs&list=PLkUEX3IbW7leYWEB0baTgg6SbS2z
	VE-Au

	CO-PO Mapping														
		Programme Outcomes (PO) PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2														
CO2		2									2		2		
CO3	CO3 2 2 2 1 2 2 2 2														
The stren	gth of 1	mappir	ng is to	be wr	itten as	\$ 1,2,3;	Where	e, 1:Lo	w, 2:N	ledium	, 3:Hig	gh			

		Asses	sment				
There are thr	ee components of lab a	assessment, LA1,	LA2 and Lab ESE.				
IMP: Lab ES	E is a separate head of	passing. LA1, LA	A2 together is treated as In-Semester Evaluat	ion.			
Assessmen Based on Conducted by Typical Schedule (for 26-week Sem) M							
t				S			
LA1	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	attendance, journal	Faculty	Marks Submission at the end of Week 6	50			
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30			
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	50			
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lau ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40			
Week 1 indic	ates starting week of a	semester. The ty	pical schedule of lab assessments is shown,	-			
Ų			shall be as per academic calendar. Lab				
			experiments, mini-project, presentations, drav	•			
			nature and requirement of the lab course. The	e			
experimental	lab shall have typicall	y 8-10 experimen	ts.				

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)										
Bloom's Taxonomy Level LA1 LA2 Lab ESE Total										
Remember										
Understand										
Apply	15	15	20	50						
Analyze	10	10	10	30						

Evaluate	5	5	10	20
Create				
Total Marks	30	30	40	100

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)									
AY 2021-22 Course Information									
									Programme B.Tech. (Mechanical Engineering)
Class,	Class, Semester Third Year B. Tech., Sem VI								
Cours	se Code								
Cours	se Name	2	Industry 4.0 Lab						
Desire	ed Requ	isites:							
		~ -	1						
		Scheme			Scheme (Marks)				
Lectu		-	LA1		ESE	Total			
Tutor		-	30	30	40	100			
Practi Intera		2Hrs/week		<u> </u>	-				
Intera	action	-		Cre	dits: 1				
			Co	urse Objectives					
1 2 3 At the CO1 CO2 CO3	smarti To provariou To dr broug prepar end of Explai manut Able t in an	ness in automa ovide a compre- is Industry 4.0 aw input from ht about by In- red to reap the Cou the course, the in various 1 facturing. o outline the v Industry 4.0 we	ting decision maki ehensive coverage technologies, appl n researchers and p ndustry 4.0, and 1 benefits of this late tree Outcomes (Co students will be all revolutions going various systems use orld. ata with manufactu	ing and processes. on, among others, t lications and case stu practitioners on wha how organizations a est revolution. O) with Bloom's Ta ble to, g on in industria ed in a manufacturin tring system effectiv	at are the opportunition and knowledge work Exonomy Level al automation and g plant and their role ely.	cacturing systems,			
~			List of Expe	eriments / Lab Acti	vities				
 In Cl Di D	loud Ma igital Ty yber sec irtual/ A ig Data a utonome	Internet of Th nufacturing, vin	-						
				Text Books					

	2017.
2	Klaus Schwab, The Fourth Industrial Revolution, Portfolio Penguin, ISBN-0241300754, 2017.
	References
1	Klaus Schwab, Nicholas Davis, Shaping the Future of the Fourth Industrial Revolution: A guide
1	to building a better world, Portfolio Penguin, 2018.
2	Giacomo Veneri Antonio Capasso, Hands-On Industrial Internet of Things: Create a powerful
2	Industrial IoT infrastructure using Industry 4.0, 2018.
	Useful Links
1	https://www.industry.gov.au/sites/default/files/July%202018/document/pdf/industry-4.0-testlabs-
1	report.pdf?acsf_files_redirect
2	https://www.wichita.edu/academics/engineering/ime/_centers_and_labs/Industry40_Lab.php
3	https://www.industry40lab.org/

	CO-PO Mapping														
	Programme Outcomes (PO) PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2					3			3			1	3		
CO2	2			3				3					2		
CO3			2		2									1	

		Asses	sment				
	ee components of lab a E is a separate head of		LA2 and Lab ESE. A2 together is treated as In-Semester Evaluat	ion.			
Assessmen	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Mark			
t				s			
ΤΑΊ	Lab activities,	Lab Course	During Week 1 to Week 6	30			
LAI	LA1 attendance, journal Faculty Marks Submission at the end of Week 6						
LA2	Lab activities, Lab Course During Week 7 to Week 12						
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30			
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40			
Lau ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40			
considering a activities/Lab programming	26-week semester. The performance shall inc	ne actual schedule clude performing o ivities, as per the	pical schedule of lab assessments is shown, shall be as per academic calendar. Lab experiments, mini-project, presentations, dra nature and requirement of the lab course. The ts.	•			

Assessment Plan based on Bloom's Taxonomy Level (Marks) (For lab Courses)									
Bloom's Taxonomy LevelLA1LA2Lab ESETotal									
Remember									
Understand	15	15	20	50					
Apply									

Analyze	10	10	10	30
Evaluate	5	5	10	20
Create				
Total Marks	30	30	40	100

		W		ge of Engineerin								
				Y 2021-22	<i>iuic)</i>							
			Cour	se Information								
Progr	amme		B. Tech. (Mechan	ical Engineering)								
0	Semes	ster	Third Year, Sem									
	e Code											
Cours	e Nam	e	3D Printing									
Desire	ed Req	uisites:										
T		<u>C 1</u>		E • 4• 0								
		g Scheme	T 1	Examination Scheme (Marks) T1 T2								
Lectur		2Hrs/week	T1	T2	ESE	Total						
Tutor		-	20	20	60	100						
Practi												
Intera	iction	n - Credits: 2										
			Cou	rse Objectives								
1	To in	npart knowledg		3D printing technolo	ogies							
2	To de	evelop students	to select material, p	process and application	on of 3D Printing.							
3				ols, processes and tec		manufacturing.						
	1			*								
) with Bloom's Tax	onomy Level							
At the			students will be ab									
CO1	Unde	rstand 3D print	ing process, data fo	rmats and software.		Understan d						
CO2	Selec	t 3D printing te	chniques and mater	rials.		Apply						
CO3	Justi	y product quali	ty and applications	of 3D Printing in va	rious domains.	Analyze						
Modu				ule Contents		Hours						
Ι	0	verview, Hist		tive Manufacturing lassifications, Adva ses		v/s 4						
II	C pr			Data loss, STL forn		e 4						
III	St La Sl	3D Printing Techniques Stereo-lithography Apparatus (SLA), Fused Deposition Modeling (FDM), Laminated Object Manufacturing (LOM), Selective Laser Sintering (SLS), SLM, Binder Jet technology6										
IV	P S		eir properties, Meta	als, Various forms or aration and their des								
V	P	Post Processing and Product Quality 4 Requirement and Techniques, Support Removal, Sanding, Acetone treatment, 4										

	polishing; Inspection and testing; Defects and their cause							
	Application Domains							
VI	Aerospace, Electronics, Health Care, Defense, Automotive, Construction, Food	4						
	Processing, Machine Tools, Retail industry.							
	Text Books							
1	LiouW.Liou, Frank W.Liou, "Rapid Prototyping and Engineering applications: A too	l box						
1	for prototype development", CRC Press, 2007.							
2	Lan Gibson, David W. Rosen and Brent Stucker, "Additive Manufacturing Technol	logies: Rapid						
Z	Prototyping to Direct Digital Manufacturing", Springer, 2010							
3	CK Chua Kah Fai Leong "3D Printing and Panid Prototyning Principles and Applications"							
3	World Scientific, 2017.							
	References							
1	T. A. Grimm & Associates, "Users Guide to Rapid Prototyping", Society of							
1	Manufacturing Engineers (SME) ISBN 0872636976, 2014.							
2	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid	id Tooling,						
2	Rapid Manufacturing", Hanser Publisher, 2011.	e,						
2	C. E. Bocking, AEW Rennie, "Rapid & Virtual Prototyping & applications", W	iley Eastern,						
3	2011.	,						
	•							
	Useful Links							
1	NPTEL and MOOC links							

							Civil	l							
	CO-PO Mapping														
				I	Progra	mme C	Outcom	nes (PC))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			2		2										
CO2			2		2							1			
CO3			2		2							1			
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High															

	Electronics												
	CO-PO Mapping												
		Programme Outcomes (PO) PSO											
	1	2 3 4 5 6 7 8 9 10 11 12 1 2 3											
CO1			2		2								
CO2			2		2						1		
CO3	CO3 2 2 1 1												
The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High													

						ŀ	Electric	al							
						CO-I	PO Ma	pping							
				F	Program	mme C	Outcom	es (PC))					PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			2		2										
CO2			2		2							1			

CO3			2		2							1		
The streng	th of ma	apping	g is to b	e writt	en as 1	,2,3; W	here, 1	:Low,	2:Medi	um, 3:	High			

	Computer Science												
	CO-PO Mapping												
				F	Program	mme C) utcom	es (PC))			PSO	
	1	2 3 4 5 6 7 8 9 10 11 12 1 2 3											
CO1			2		2								
CO2			2		2						1		
CO3	CO3 2 2 1 1												
The streng	The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High												

	Information Technology														
	CO-PO Mapping														
	Programme Outcomes (PO) PSO														
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			2		2										
CO2			2		2							1			
CO3	CO3 2 2 1 1 1														
The strength of mapping is to be written as 1.2.3. Where 1.1 ow 2. Medium 3. High															

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course							
B	Bloom's Taxonomy Level	T1	T2	ESE	Total			
1	Remember							
2	Understand	7	8	20	35			
3	Apply	8	7	17	32			
4	Analyze	5	5	23	33			
5	Evaluate							
6	Create							
	Total	20	20	60	100			

Walchand College of Engineering, Sangli								
	(Government Aided Autonomous Institute)							
	AY 2021-22							
	Course Information							
Programme	B. Tech. (Mechanical Engineering)							
Class, Semester	Third Year B. Tech., Sem. VI							
Course Code								
Course Name	Basics of Automobile Engineering							
Desired Requisites:								

Teaching	g Scheme	Examination Scheme (Marks)									
Lecture	3 Hrs./week	T1	T2	ESE	Total						
Tutorial	-	20	20 20 60								
Practical	-		-								
Interaction	-	Credits: 3									

	Course Objectives
1	To make students familiar with various basic of Engine and modern automobile.
2	To introduce the mathematical treatments required for vehicle performance and for some of important systems such as steering system and brake system.
3	To make students aware about latest trends in transportation towards a safe, pollution free and fully automatic vehicle.
4	To empower students to face the real life automotive usage with greater confidence.

Course Outcomes	(CO) with	n Bloom's Ta	xonomy Level
------------------------	-----------	--------------	--------------

At the end of the course, the students will be able to,

1 it the	ond of the course, the students will be usid to,	
C01	Comprehend about I C Engines and various automotive systems and recent trends in	Understa
	automobile design, development, manufacturing and assembly.	nd
CO2	Relate concepts of vehicle dynamics with daily experiences.	Applying
CO3	Analyze acceleration, barking and steering performance of a vehicle in different	Analyze
	driving conditions.	

Module	Module Contents	Hours
Ι	Introduction, classification, Types of I C Engine. Engine cycles, Combustion in SI & CI engines, Supercharging & emission control techniques, Engine performance parameters.	6
II	Introduction, classification and Automotive power plants Introduction, Broad classification of Automobiles. Major components and their functions. Types of vehicle layouts, Types of bodies. Requirements of automotive power plants, Comparison and suitability considerations. Engine cycles, Electric and Hybrid vehicles- Layout, advantages and limitations.	5
III	Vehicle Performance Resistance to vehicle motion, Air, Rolling and Gradient resistance, Acceleration, Gradeability and draw bar pull, Traction and Tractive effort, Distribution of weight, Power required for vehicle propulsion, Selection of gear ratio, Rear axle ratio.	7
IV	Transmission System	6

V	 Automobile clutch requirements, Types & functions, Single plate, Multi plate, Centrifugal and Fluid clutches. Requirements of gear box, Types of gearboxes, construction and Working Principle of operation of automatic transmission, Torque converter, Epicyclic gear train, Construction and working of Propeller shaft, Universal joint, Final drive, Differential, Rear axles. Suspension, Steering, Braking and Electrical System Suspension requirements, Sprung and Unsprung mass, Types of automotive suspension systems. Conventional and Independent systems, Shock absorber. Types of springs, Hotch- kiss and Torque tube drive, Reaction members-Radius rods, Stabilizer bar, Air suspension system. Function of steering gear boxes, Condition for true rolling, Steering geometry-Camber, Caster, King pin inclination, Toe-in and Toe-out, Wheel alignment, Slip angle, Under steer & over steer conditions, Introduction of power steering, Function of automotive brake system, Types of braking mechanism, internal expanding & Disc brake, Mechanical, Hydraulic & Air brake system, Servo and power brakes, Calculation of braking force required, stopping distance and 	10				
	 dynamic weight transfer Automotive batteries, Automotive lighting system, Starting system, Charging system, Voltage and current regulator, Electric horn, Dashboard gauges, Wiper & side indicator circuit, Engine electronic control modules, Safety devices. 					
VI	Recent trends in Automotive Development	5				
1	Text Books V Ganesan, "Internal combustion Engine", McGraw Hill Education ,4th Edition, 2012					
2	Kripal Singh, "Automobile Engineering Vol. II", Standard Publishers Distributors, Tenth Edi 2007	ition,				
3	P S Gill, "Automobile Engineering II", S K Kataria and Sons, Second Edition, 2012					
4	R K Rajput, "Automobile Engineering", Laxmi Publications, First Edition, 2007					
1	References John B Heywood, "Internal Combustion Engines fundamentals", McGraw-Hill, Revised Edition, 2017	2 nd				
2	Newton, Steeds and Garrett, "The Motor Vehicle", Butterworths International Edition, 11th F 1989	Edition,				
2	Crouse and Anglin, "Automotive Mechanics", McGrawhill Publication, Tenth Edition, 2007					
	\mathbf{D} W W W W W W W W W W					
3	P W Kett, "Motor Vehicle Science Part - 2, "Chapman & Hall", 2nd Edition, 1982					
3						
3 4	Useful Links					
3 4 1	Useful Links https://onlinecourses.nptel.ac.in/noc21_me69/preview					
3 4	Useful Links					

CO-PO Mapping															
	Programme Outcomes (PO) Civil PSO														
	1 2 3 4 5 6 7 8 9 10 11 12									1	2	3			
C01		1	1								1				

CO2	1	1		1												
CO3		1		2								1				
	Programme Outcomes (PO) Electrical													PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1			2								1					
CO2	3			2												
CO3		3		2								1				
				Progra	mme (Dutcon	nes (PC) Elec	tronic	5				PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		2	2								1					
CO2				1												
CO3		1		2								1				
			Progra	amme (Outcon	nes (P	D) Info	rmatio	on tech	nology	r		PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		1									1					
CO2		1		1												
CO3				1								1				
		Progr	amme	Outco	mes (F	PO) Co	mpute	r scien	ce and	engine	eering			PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
CO1		1	1								1					
CO2		1		1												
CO3												1				
The streng	th of n	napping	g is to l	be writt	en as 1	,2,3; W	here, 1	:Low,	2:Med	ium, 3:	High					

Assessment (for Theory Course)

The assessment is based on 2 in-semester examinations in the form of T1 (Test-1) and T2 (Test-2) of 20 marks each. Also there shall be 1 End-Sem examination (ESE) of 60 marks. T1 shall be typically on modules 1 and 2, T2 based typically on modules 3, 4 and ESE shall be on all modules with nearly 50% weightage on modules 1 to 4 and 50% weightage on modules 5, 6.

	Assessment Plan based on Bloom's Taxonomy Level (Marks) For Theory Course									
Bloom's Taxonomy Level T1 T2 ESE Total										
1	Remember									
2	Understand	7	8	20	35					
3	Apply	8	7	17	32					
4	Analyze	5	5	23	33					
5	Evaluate									
6	Create									
	Total 20 20 60 100									