Walchand College of Engineering

(Government Aided Autonomous Institute)

Vishrambag, Sangli. 416415

Course Contents for F.Y. M.Tech. (Control System Engineering) Sem I and II

2022-23

Semester - I Professional Core (Theory) Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information				
Programme M.Tech. (Control System Engineering)				
Class, Semester First Year M. Tech., Sem I				
Course Code 6CS501				
Course Name Applied Digital Control				
Desired Requisites:	Control System Engineering			

Teachi	ing Scheme		Examination S	Scheme (Marks)		
Lecture	3 Hrs/week	MSE	ISE	ESE	Total	
Tutorial		30	20	50	100	
		Credits: 3				

Course Objectives

- 1 This course provides the basics of modelling of the physical system, analysis.
- 2 It provides the methodology of designing the controller with realization.
- 3 It gives the overview of advanced controllers like LQR.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Analyze various controller structures	IV	Analyze
CO2	Evaluate controller performance using various control algorithms.	V	Evaluate
CO3	Design a controller to meet given performance specification.	VI	Create

Module	Module Contents	Hours
I	Controller Structures Feed forward controllers, One degree of freedom, Two degree of freedom, Lag-Lead controller, PID Controller, Well behaved signal, Solving Aryabhatta's Identity.	6
II	Controller Realization Direct structure, Canonical and non-canonical structure, Cascade and parallel realization, PID controller Implementation, Microcontroller implementation of 1 st , 2 nd and higher order modules, Choice of Sampling interval.	6
III	PID Controller Introduction, sampling, discretization techniques, PID controller, methods of tuning, 2-DOF controller with integral action, bump less PID controller, PID with filtering, 2-DOF PID, systems with delay.	6
IV	Pole Placement Controllers Dead-Beat and Dahlin Control, Pole Placement Controller with performance specifications, Implementation of Unstable Controllers, Internal Model Principle for Robustness, Redefining Good & Bad Polynomials, Comparing 1-DOF & 2-DOF Controllers, Anti Windup Controller, PID Tuning Through Pole Placement Control.	6
V	Pole Placement Controllers Through IMC Smith Predictor, Internal Model Control (IMC), IMC Design for Stable Plants, IMC in Conventional Form for Stable Plants, PID Tuning Through IMC, and IMC design for unstable plant, LQR through pole placement.	6

VI	State Space Technique to Control Design Pole placement, Ackerman formula, controllability, estimators, prediction estimators, observability, current estimators, regulator design, combined control law and estimator, LQR, Kalman filter design.	6				
	Textbooks					
1	"Digital Control", by Kannan M. Moudgalya, John Wiley and Sons Ltd., 2007.					
2	2 "Microcontroller Based Applied Digital Control", by Dogan Ibrahim, John Wiley and sons Ltd. Edition 2006.					
	References					
1	"Digital Control Engineering Analysis and Design", by M. Sami Fadali and Antivier publication 2 nd Edition 2013.	oniVisioli Else				
2	"Discrete Time Control System" By Katsuhiko Ogata, Pearson Education 2nd Ed	ition 2005.				
	Useful Links					
1	http://nptel.ac.in/downloads/117105077					
2	http://www.nptelvideos.in/2012/12/digital-communication.html					
3	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-450-jdigital-communications-i-fall-2006/video-lectures/	principles-of-				

	CO-PO Mapping							
Programme Outcomes (PO)								
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1				3				
CO2			2					
CO3				3				
CO4								

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2022-23 **Course Information Programme** M.Tech. (Control System Engineering) Class, Semester First Year M. Tech., Sem I **Course Code** 6CS502 **Course Name Advanced Process Control Desired Requisites:** Control System Engineering **Teaching Scheme Examination Scheme (Marks)** Lecture 3 Hrs/week **MSE** ISE ESE Total 20 **Tutorial** 30 50 100 Credits: 3 **Course Objectives** This course provides the basics of process control. 1 It provides the methodology of modelling the process and close loop control. 2 It also provides the design of various types of controllers for single loop and multi loop control 3 It gives the overview of advanced controllers used in process control and multivariable predictive 4 control Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to, Bloom's Bloom's CO **Course Outcome Statement/s** Taxonomy **Taxonomy** Description Level CO₁ **Calculate** the various models of industrial processes. Ш Apply Analyze the problems associated with open loop and close loop CO₂ Analyze IV process control system. CO₃ Evaluate the performance of processes with various conventional Evaluate V and advanced controllers. CO₄ **Design** various conventional and advanced controllers for the Create VI processes. Module **Module Contents** Hours **Introduction to Process Control** Introduction, Design aspects of a process control system, Hardware for a process I control system. Mathematical modelling and analysis of processes, development 5 of a mathematical model, Modelling considerations for control purposes, the input-output model, degree of freedom. **Modelling of Process** Computer Simulation and linearization of nonlinear systems, Transfer functions II 5 and the Input-output models. Dynamic behaviour of first-order systems, secondorder system and higher order systems. **Feedback Control of Process** Elements of feedback control system, types of feedback controllers, sensors,

Transmission lines, final control elements. Dynamic behaviour of feedback-

controlled process, Effect of proportional (p) control, Integral (I) control and derivative (D) control on the response of controlled process, effect of composite

6

Ш

control actions.

	Multi Loop Control	
IV	Feedback control of system with large dead time or inverse response, processes with large Dead time, Dead time compensation, and control of systems with inverse response. Control systems with multiple loops, cascade control, split-range control, feed forward control, Ratio-control, problem in designing feed forward controllers, practical aspects on the design of feed forward controllers, F/F – F/B control.	7
V	MIMO Process Multi-input, multi-output processes, degree of freedom and number of controlled and Manipulated variables, interaction and decoupling of control loops, relative gain array and selection of loops, design of non-interacting control loops. Overview of modern control methodologies: PLC, SCADA, DCS, Adaptive control, variable structure control.	7
VI	Centralized Multivariable Control Multivariable model predictive control, single-variable dynamic matrix control (DMC) algorithm, multivariable dynamic matrix control, internal model control, smith predictive, model predictive control, process model-based control, implementation guidelines. Process control design: sequence of design steps, statistical process control.	6
	Textbooks	
	George Stephanopoulos, "Chemical Process Control - An introduction to Theory	and Practice"
1	Prentice-Hall of India, 1st Edition 1984.	ana i raciice,
	References	
1	Thomas E. Marlin, "Process Control - Design Processes and Control System Performance", 2nd Edition, Mc Graw Hill publication.	
2	F.G. Shinskey, "Process Control System – Application, Design and Tuning", Publication, 3rd Edition, 1988.	McGraw-Hill
3	Curtis D. Johnson, "Process Control Instrumentation Technology", 7th Edi Education, 7th Edition. 2003.	tion, Pearson
	Useful Links	
1	https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-ch10/	
2	https://nptel.ac.in/noc/courses/noc21/SEM1/noc21-ge01/	

	CO-PO Mapping						
	Programme Outcomes (PO)						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1			1				
CO2			1				
CO3				2			
CO4				2		1	

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Professional Core (Lab) Courses

		Wal		ge of Engine	eering, Sangl	i	
			A	Y 2022-23			
			Cou	rse Information	1		
Prograi	nme		M.Tech. (Cont	trol System Eng	ineering)		
Class, S	emester		First Year M.7	Tech., Sem I			
Course	Code		6CS547				
Course	Name		Research Meth	nodology for Co	ntrol System Eng	ineers	
Desired	Requisite	s:					
T	eaching S	cheme		Examin	ation Scheme (M	larks)	
Practica	al		LA1	LA2	Lab ESE		Total
Interact	tion	2 Hrs/	30	30	40		100
	Week						
					Credits: 2		
			Cou	rse Objectives			
1	To devel research		orientation amon	g the students a	nd to acquaint the	em with f	undamentals of
2					search process ar		
3					review and data		
4					of conducting ap	plied rese	arch.
5	To devel		ing about patent		s Taxonomy Lev	al.	
At the e	nd of the c		ents will be able		s raxonomy Lev	ei	
7 tt the c		ourse, the stud	ents win be able	, 10,	Blo	om's	Bloom's
CO		Course	Outcome State	ement/s		nomy	Taxonomy
					L	evel	Description
CO1	<u> </u>		ds to solve resea			Ш	Apply
CO2	Construct a research problem in respective engineering domain. Apply					Apply	
CO3	Investigation problem.		a analysis techn	iques for a resea	arch	IV	Analyze
CO4			ctual Property R	dights procedure	S	Ш	Apply

List of Topics:

I. Research Fundamentals

What is research, types of research, the process of research, Literature survey and review, Formulation of a research problem.

II. Research Methods

Research design- Meaning, Need and Types, Research Design Process, Measurement and scaling techniques, Data Collection – concept, types and methods, Processing and analysis of data, Design of Experiment

III. Analysis Techniques

Quantitative Techniques, sampling fundamentals, testing of hypothesis using various tests like Multivariate analysis, Use of standard statistical software, Data processing, Preliminary data analysis and interpretation, Uni-variate and bi-variate analysis of data, testing of hypotheses.

IV. Research Communication

Writing a conference paper, Journal Paper, Technical report, dissertation/thesis writing. Presentation techniques, software used for report writing such as WORD, Latex etc. Types of journal/conference papers

V. Intellectual Property Rights

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

VI. Patents and Patenting Procedures

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs

	Textbooks					
1	C. R. Kothari, "Research Methodology", New Age international					
2	Deepak Chopra and Neena Sondhi, "Research Methodology: Concepts and cases", Vikas Publishing House, New Delhi					
	References					
1	E. Philip and Derek Pugh, How to get a Ph. D. – a handbook for students and their supervisors, open university press					
2	Stuart Melville and Wayne Goddard, "Research Methodology: An Introduction for Science & Engineering Students"					
	Useful Links					
1	NPTEL Lectures					

	CO-PO Mapping						
	Programme Outcomes (PO)						
	PO1 PO2 PO3 PO4 PO5 PO6						
CO1	2		1				
CO2					2	2	
CO3				2			
CO4		2					

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High. Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

Programme	M.Tech. (Control System Engineering)
Class, Semester	First Year M. Tech., Sem I
Course Code	6CS545
Course Name	Applied Digital Control Laboratory
Desired Requisites:	Control System Engineering

Teaching Scheme		Examination Scheme (Marks)				
Practical 2 Hrs/ Week		LA1	LA2	Lab ESE	Total	
Interaction		30	30	40	100	
		Credits: 1				

Course Objectives

- 1 This course provides the basics of modelling of the physical system, analysis
 - 2 It provides the methodology of designing the controller with realization
 - 3 It gives the overview of advanced controllers like LQR

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Analyze various types of digital controllers	IV	Analyzing
CO2	Experiment on closed loop systems using controllers	III	Apply
CO3	Design pole placement controllers for various electrical systems	VI	Creating

List of Experiments / Lab Activities/Topics

Lab activities/performance shall include mini project, presentations, drawings, case study, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming, and other suitable activities as per nature and requirement of lab course

	Textbooks
1	Kannan M. Moudgalya, "Digital Control", Wiley, 2007.
	References
1	Belanger, "Control Engineering – Modern Approach", International Edition 1995.
2	Z.Gajic, M. Lelic, "Modern Control Systems Engineering", PHI Series in System & Control
	Engineering 1996.
3	Torkel Glaw and Lennard Ljung, "Control Theory-Multivariable & Nonlinear Methods", Taylor
3	& Francis Publication London & New York,2002.
4	Bernard FriedLand, "Advanced Control System Design", Prentice Hall International, 2000.
5	B.C.Kuo, "Digital Control System", 2nd Edition, Oxford Press, 2003.
	Useful Links
1	-

	CO-PO Mapping								
	Programme Outcomes (PO)								
	PO1 PO2 PO3 PO4 PO5 PO6								
CO1			3						
CO2				2					
CO3				2		1			
CO4									

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment Based on		Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 8		
	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

Programme	M.Tech. (Control System Engineering)
CI C 4	EL TATALON A

Class, Semester First Year M. Tech., Sem I

Course Code 6CS546

Course Name Advanced Process Control Laboratory

Desired Requisites: Control System Engineering

Teaching Scheme		Examination Scheme (Marks)			
Practical 2 Hrs/ Week		LA1	LA2	Lab ESE	Total
Interaction		30	30	40	100
		Credits: 1			

Course Objectives

- 1 To provide the foundation level knowledge of Process Control.
- 2 To provide the basics for mathematical model of the process.
- To provide the knowledge of various types of controller for single loop and multi-loop control system.
- 4 To provide the knowledge of advanced controllers used in process control.
- 5 Provide the knowledge of multivariable predictive control.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Determine the model of process by performing experiments on Process	II	Understand
	Control System.		
CO2	Apply the tuning techniques for various controllers.	III	Apply
CO3	Evaluate the performance of given Process Control system.	V	Evaluate
CO4	Demonstrate the use of advanced controllers.	III	Apply

List of Experiments / Lab Activities/Topics

Lab activities/performance shall include mini project, presentations, drawings, case study, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming, and other suitable activities as per nature and requirement of lab course

	George Stephanopoulos, "Chemical Process Control - An introduction to Theory and Practice", Prentice-Hall of India, 1st Edition ,1984.		
1			

Toythooks

	References					
1	Thomas E. Marlin, "Process Control - Design Processes and Control System for Dynamic Performance", 2nd Edition, Mc Graw Hill publication.					
2	F.G. Shinskey, "Process Control System – Application, Design and Tuning", McGraw-Hill Publication, 3rd Edition, 1988.					

Curtis D. Johnson, "*Process Control Instrumentation Technology*", 7th Edition, Pearson Education, 7th Edition. ,2003.

Useful Links

1 http://vlabs.iitkgp.ernet.in/cpd/index.html#

2	http://vlabs.iitb.ac.in/vlab/maglev/index.html#									
		C	CO-PO Mapping	g						
	Programme Outcomes (PO)									
	PO1	PO2	PO3	PO4	PO5	PO6				
CO1			1							
CO2				1						

2

2

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High. Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

CO₃

CO₄

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2022-23 **Course Information Programme** M. Tech. (Control System Engineering) Class, Semester First Year M. Tech., Sem I Course Code 6CS551 **Course Name** Presentation and Technical Report Writing **Desired Requisites:** MS Office **Teaching Scheme Examination Scheme (Marks)** LA1 LA2 Lab ESE **Practical** Total

1140404		2.11	23.12	Euo EoE	10001
Interaction	1 Hrs/ Week	30	30	40	100
			Cre	edits: 1	
Course Objectives					

To provide an opportunity to student to do work independently on a topic.

2 To encourage creative thinking process in technical report writing

3	To enable student for good technical report writing and effective presentations.
	Course Outcomes (CO) with Bloom's Tayonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Demonstrate the characteristics of technical and business writing.	III	Apply
CO2	Produce documents related to technology and writing in the workplace	VI	Create
	and will have improved their ability to write clearly, concisely, and		
	accurately.		
CO3	Use a variety of materials to produce appropriate visual presentation	V	Evaluate
	for documents, such as instructions, descriptions, and research reports.		

List of Experiments / Lab Activities/Topics

This course introduces students to the discipline of technical communication. Preparation of visuals to supplement text, workplace communication, descriptions of mechanisms, explanations of processes, and writing reports are the major topics included.

This course is designed for students enrolled in technical degree programs for making them industry ready.

	Textbooks				
1	Suitable books based on the contents of the topic.				
	References				
1	Suitable books based on the contents of the selected topic and research papers from reputed national				
1	and international journals and conferences.				
	Useful Links				
1	As per the need of the topic of report and presentation				

	CO-PO Mapping					
		Progra	amme Outcome	s (PO)		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1		3				
CO2		2		1		
CO3		1				2

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High. Each CO of the course must map to at least one PO.

	Assessment						
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%							
Assessment	Based on	Conducted by	Typical Schedule	Marks			
	Lab activities,		During Week 1 to Week 8				
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30			
	journal		Week 8				
	Lab activities,		During Week 9 to Week 16				
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30			
	iournal		Week 16				

	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

	Course information
M.Tech.	(Control System Engineering)

Class, Semester First Year M. Tech., Sem I

Course Code 6CS552

Course Name Professional Skills 1

Desired Requisites:

Programme

Teachin	g Scheme		Examination	Scheme (Marks)	
Practical		LA1	LA2	Lab ESE	Total
Interaction	1 Hrs/ Week	30	30	40	100
			Cr	edits: 1	

Course Objectives

- 1 To provide a hands-on experience of software in solving complex Electrical engineering problems.
- 2 To enhance the employability of Electrical engineering student.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

		Bloom's	Bloom's
CO	Course Outcome Statement/s	Taxonomy	Taxonomy
		Level	Description
CO1	Use of the software related to Electrical engineering effectively.	V	Evaluate
CO2	Develop skills related to employment for Electrical engineering	VI	Create
	students.		
CO3	Explain the process of problem-solving using computing tools.	II	Understand

List of Experiments / Lab Activities/Topics

This course is based on computing as a tool to design and analyse the Electrical system. In the modern day work environment, the Electrical engineers should be able to simulate and solve complex problems on computers. The Electrical engineer must be highly computer literate. The engineer with strong fundamentals in Electrical Engineering and computer software proficiency is highly in demand from industry. Employability of the student can be enhanced by providing software training in Electrical engineering, Aptitude and reasoning practice sessions, interpersonal skill improvement activities etc.

	Textbooks				
1	Suitable books based on the software selected.				
	References				
1	Suitable books based on the contents of software selected				
Useful Links					
1	As per the need of the software training				

	CO-PO Mapping					
	Programme Outcomes (PO)					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2					
CO2			2			
CO3		3				1

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Based on	Conducted by	Typical Schedule	Marks		
Lab activities,		During Week 1 to Week 8			
attendance,	Lab Course Faculty	Marks Submission at the end of	30		
journal		Week 8			
Lab activities,		During Week 9 to Week 16			
attendance,	Lab Course Faculty	Marks Submission at the end of	30		
journal		Week 16			
Lab activities,	Lab Course Faculty and	During Week 18 to Week 19			
journal/	External Examiner as	Marks Submission at the end of	40		
performance	applicable	Week 19			
	Lab activities, attendance, journal Lab activities, attendance, journal Lab activities, journal/	Lab activities, attendance, journal Lab activities, attendance, journal Lab activities, Lab Course Faculty journal Lab activities, Lab Course Faculty and journal/ External Examiner as	Lab activities, attendance, journal Lab activities, attendance, journal Lab activities, attendance, journal Lab Course Faculty Lab Course Faculty Marks Submission at the end of Week 8 During Week 9 to Week 16 Marks Submission at the end of Week 16 Lab activities, Lab Course Faculty and journal/ External Examiner as During Week 1 to Week 8 Marks Submission at the end of Week 16 During Week 18 to Week 19 Marks Submission at the end of		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Professional Elective (Theory) Courses

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute) AY 2022-23 **Course Information** Programme M.Tech. (Control System Engineering) First Year M. Tech., Sem I Class, Semester **Course Code** 6CS511 Course Name Professional Elective 1: Optimal Control **Desired Requisites:** Control System Engineering

Teaching Scheme		Examination Scheme (Marks)				
Lecture	3 Hrs/week	MSE	ISE	ESE	Total	
Tutorial		30	20	50	100	
		Credits: 3				

Course Objectives
This course provides the basic concepts of optimal control
It provides the methodology of designing LQR and LQT optimal control
It gives the overview of optimization in constrained and non-constrained controls.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Apply various concepts of optimal control.	III	Applying
CO2	Analyze the systems using LQR and LQT optimal control.	IV	Analyzing
CO3	Design of optimal control in constrained and non-constrained systems.	VI	Creating

Module	Module Contents	Hours
I	Introduction to Optimal Control Classical and Modern Control, Optimization, Optimal Control, Plant,	8
	Performance Index, Constraints, Calculus of Variations.	
П	Optimum of a Function and a Functional, Basic Variational Problem, Fixed-End Time and Fixed-End State System, Euler-Lagrange Equation, Different Cases for Euler-Lagrange Equation, The Second Variation, Extrema of Functions with Conditions, Direct Method, Lagrange Multiplier Method, Extrema of Functionals with Conditions, Terminal Cost Problem.	6
III	Linear Quadratic Optimal Control Systems Finite-Time Linear Quadratic Regulator, Riccati Coefficient, Finite-Time Linear Quadratic Regulator: Time-Varying Case, Infinite-Time LQR System	6
IV	Linear Quadratic Tracking System Linear Quadratic Tracking System: Finite-Time Case, LQT System: Infinite-Time Case, Fixed-End-Point Regulator System And Frequency-Domain Interpretation.	6

	Constrained Optimal Control Systems	
V	Time-Optimal Control of LTI System, Solution of the TOC System, TOC of a Double Integral System, Fuel-Optimal Control Systems, Energy-Optimal Control Systems. Optimal Control Systems with State Constraints.	7
	Pontryagin Minimum Principle	
VI	Constrained System, Pontryagin Minimum Principle, The Hamilton-Jacobi-Bellman Equation, LQR System Using H-J-B Equation	7
	Textbooks	
1	D.S.Naidu, 'Optimal Control Systems', CRC Press, 2002.	
	References	
1	Frank L Lewis, "Optimal Control", John Wiley, New York, 1986.	
2	Kirk D.E, "Optimal Control Theory", Dover Publications, 2004.	
	Useful Links	
1	-	

CO-PO Mapping						
		Pro	gramme Outo	comes (PO)		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1			3			
CO2				2		
CO3						1

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

V	Walchand College of Engineering, Sangli			
	(Government Aided Autonomous Institute)			
	AY 2022-23			
	Course Information			
Programme	M.Tech. (Control System Engineering)			
Class, Semester	First Year M. Tech., Sem I			
Course Code	Course Code 6CS512			
Course Name Professional Elective-1: System Identification				
Desired Requisites:	Engineering Mathematics			

Teaching Scheme (Marks)							
Lecture	3 Hrs/week	MSE	MSE ISE ESE Total				
Tutorial		30	20	50	100		
		Credits: 3					

Course Objectives

- To make students familiar with estimation of parametric, non-parametric models and notions of model quality.
- 2 To develop skills in students for choosing model structures.
- 3 To make students develop transfer function and state space models.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Explain fundamental aspects of system identification.	II	Understand
CO2	Apply system identification for predicting dynamic models.	III	Apply
CO3	Analyze models obtained from system identification.	IV	Analyze

Module	Module Contents	Hours		
	LTI System			
I	Introduction, Step-wise Procedure for Identification, Models and classification,	4		
	Non-parametric, parametric models, state space descriptions, Sampled data			
	systems. Random Processes			
	Random Processes			
II	Random variables, Covariance and Correlation, Auto-Correlation and Cross-	6		
	Correlation functions, Moving Average models, Auto-Regressive models,			
	ARMA models, Spectral representations.			
	Estimation Theory			
III		6		
	Introduction to Estimation, Properties of estimator, Estimation methods,			
	Estimation of Signal Properties. Models and Predictions			
	Wodels and Fredictions			
IV	General structure of LTI models in identification, Quasi stationarity, Non-	7		
- '	parametric models (impulse, step and frequency response), Family of Parametric	,		
	models, Predictions, One- step ahead prediction, Infinite-step ahead prediction.			
	Input-Output Identifications			
X 7				
V	Estimation of Time-Series Models, Estimation of Impulse/Step (Response)	7		
	Models, Estimation of Frequency Response Functions, Estimation of Parametric Input-Output Models.	/		
	Sub-space Identification			
X 7T	-F			
VI	State Space model for identification, Kalman filter, Innovations form, Sub-space			
	identification algorithm, Estimating grey-box models.	6		
	Textbooks	7.D 601		
1	Arun K Tangirala, "Principles of System Identification Theory and Practice", CRC Press, 2015.			
2	Sodderstrom & Stoica, "System Identification", PHI, 1989			

References

1	Ljung L, Glad T, "Modeling of Dynamic Systems", PHI, 1994			
Useful Links				
1	-			

	CO-PO Mapping							
	Programme Outcomes (PO)							
PO1 PO2 PO3 PO4 PO5 PO								
CO1				2				
CO2						1		
CO3				3				

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

3

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli							
(Government Aided Autonomous Institute)							
		AY	2022-23				
		Course	Information				
Programme		M.Tech. (Contro	l System Engineeri	ng)			
Class, Semest	er	First Year M. Te	ch., Sem I				
Course Code		6CS513					
Course Name	;	Professional Elective 2: Multivariable Control					
Desired Requ	isites:	Control System					
Teachi	ng Scheme		Examination S	Scheme (Marks)			
Lecture	3 Hrs/week	MSE	ISE	ESE	Total		
Tutorial		30	20	50	100		
Credits: 3							
Course Objectives							
1 This course provides the basic concepts of Multivariable Control.							

At the end of the course, the students will be able to,							
со	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description				
CO1	Interpret the basic concepts of Multivariable Control.	III	Applying				

Course Outcomes (CO) with Bloom's Taxonomy Level

It provides the methodology of designing Multivariable Control. It gives the overview of centralized Multivariable controllers.

	nalyze the centralized, decentralized and decoupled control in ultivariable control system	IV	Analyze		
	Evaluate algorithms for centralized, decentralized and decoupled ontrol in multivariable control system.				
Module	Module Contents		Hours		
	Multivariable Control				
I	I Introduction, Process and Instrumentation, process variable, Behavior, control aims, modes of operation, Feedback need, Model based control, Modeling errors, multivariable systems, implementation issue.				
	Linear system models				
II	Introduction, objective and modeling, first principle, state variable, line I/O representation, system &subsystem, discretized model, equivalent representation, disturbance model, case study-paper machine head bo	nce of	6		
	Linear system Analysis				
III	III Introduction ,linear system time response ,stability condition ,discretization ,gains and frequency response , system internal structure ,block system structure, Kalman form, I/O properties, model reduction , key issues in MIMO system analysis Case study -distillation column.		6		
	Solution to control problem				
IV	IV Control system design problem, control goal, variable selection, control structure, feedback control, feed forward control, two degree of freedom controller, Hierarchical control, control design issue, case study – ceramic kiln.		6		
	Decentralized and decoupled control				
V	Introduction, multi-loop control, pairing selection, decoupling, SISO MIMO cascade control, other possibilities, sequential –Hierarchical cuning, case study –steam Boiler, Mixing process.		6		
	Centralized closed loop control				
VI	State feedback, output feedback, rejection of deterministic, unrudisturbance, Augmented plant, process and disturbance models, camagnetic suspension.		6		

Textbooks					
1	P.Albertos, A.Sala, "Multivariable Control", springer Int. 2008.				
2	Z. Bubnicki, "Multivariable Control", springer Int. 2005.				
3	B. WayneBeguetle, "Modelling with Control", PHI 2008.				

	References
1	Gopal, "Modern Control System -State variable analyses", TMH Publications, 2010.
	Useful Links
1	-

CO-PO Mapping								
	Programme Outcomes (PO)							
PO1 PO2 PO3 PO4 PO5 PO6								
CO1			3					
CO2				2				
CO3						1		

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

	Walc	0	of Engineering	,				
	(Government Aided Autonomous Institute)							
		\mathbf{AY}	2022-23					
		Course 1	Information					
Programme		M.Tech. (Control	l System Engineerii	ng)				
Class, Semes	Class, Semester First Year M. Tech., Sem I							
Course Code		6CS514						
Course Name	9	Professional Elec	tive 2: Advanced D	Digital Signal Proce	essing			
Desired Requ	iisites:							
Teachi	Teaching Scheme Examination Scheme (Marks)							
Lecture	3 Hrs/week	MSE ISE ESE Total						
Tutorial		30	20	50	100			
C 14 2								

Teaching Scheme		Examination Scheme (Marks)					
Lecture 3 Hrs/week		MSE	ISE	ESE	Total		
Tutorial		30	20	50	100		
		Credits: 3					
·							

	Course Objectives						
1	To develop skills for analysing discrete time signals using transforms.						
2	To make students familiar with methods of digital filters design.						
3	3 To develop basic knowledge of random signal processing.						
	C (CO) -:41 D1 7 T I 1						

Course Outcomes (CO) with Bloom's Taxonomy Level At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Apply transforms to discrete time signals for analysis.	III	Apply
CO2	Analyze the properties of discrete time systems and random signals processing.	IV	Analyze
CO3	Evaluate digital filters, structures and discrete time random signals.	V	Evaluate

Module	Module Contents	Hours
	Discrete Time Signal and System	
I	Classification of signals, operation on sequences, properties of systems, convolution sum, sampling process.	4
II	Discrete Time Fourier Transform DFT, FFT, DIT FFT, DIF FFT algorithm, circular convolution.	6

	Digital Filter Structure				
III	review of z transform, transfer function classification, iir and fir filter characteristics, complementary transfer function, inverse system, digital two-pairs, algebraic stability test, block diagram representation, equivalent structures, fir and iir digital filter structures, all pass filters, lattice structures, all pass realization of iir transfer function.	8			
	Digital Filter Design				
IV	Butter worth and chebyshev filters, IIR filter design, impulse invariant method, bilinear transformation, FIR filter design.	7			
	Discrete Time Random Processes				
V	Review of linear algebra, quadratic and hermitian form, random variables, random processes, filtering random processes, special type of random processes.	7			
	Signal Modeling				
VI	Least square method, pade approximation, prony's method, FIR least square inverse filters.	5			
	Textbooks				
1	Sanjit Mitra, "Digital Signal Processing" Tata McGraw Hill Publication, 3rd Ed	lition, 2008.			
2	Monson Hayes, "Statiscal Signal Modeling", John Wiley 2002.				
3	Rao & Gejji, "Digital Signal processing", Pearson Education, 2ndEdition, 2008.				
	D. C.				
	References	D1			
1	Oppenheim Schafer, Ronald, "Discrete Time Signal Processing", Pearso 2nd Edition, 1999.	n Education,			
2	Ifeachor, Jerris, Pearson Education, "Discrete Signal Processing", 2nd Edition, 2002.				
3	Ashok Ambardar, "Digital Signal Processing: A Modern Introduction", Thomso	on, 2007.			
1	Useful Links				
1	-				

CO-PO Mapping Programme Outcomes (PO)									
									PO1 PO2 PO3 PO4 PO5 PO6
CO1				2					
CO2				2					
CO3			1	2					
CO4									

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Semester -II Professional Core (Theory) Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

	Course information					
Programme	Programme M.Tech. (Control System Engineering)					
Class, Semester	Class, Semester First Year M. Tech., Sem II					
Course Code	6CS521					
Course Name	Non-Linear Dynamical Systems					

Desired Requisites:	Control System Engineering

Teaching	Scheme	Examination Scheme (Marks)					
Lecture	3 Hrs/week	MSE ISE ESE Total					
Tutorial		30 20 50			100		
		Credits: 3					

Course Objectives

- 1 To make students familiar with features of nonlinear dynamical systems.
- 2 To develop skills in students for analyzing the behaviour of nonlinear systems.
- 3 To develop skills in students for evaluating nonlinear system.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Classify features of nonlinear systems.	III	Apply
CO2	Examine behaviour of nonlinear systems through various mathematical tools.	IV	Analyze
CO3	Recommend step by step approach for investigating the dynamics of nonlinear systems.	V	Evaluate

Module	Module Contents	Hours
	Nonlinear Dynamical Systems	
I	Introduction, some features of nonlinear dynamical systems, first order systems,	6
	second order system, equilibrium points, classification of equilibrium points.	
II	Differential Equation Solution Lipschitz functions, locally/globally Lipschitz, existence/uniqueness of solutions, Cauchy sequence, Banach spaces, Bellman Gronwall inequality, Stability of equilibrium point, Stability in sense of Lyapunov, Asymptotic stability, Lyapunov's theorem on stability, global asymptotic stability, linear systems.	8
III	Advanced Stability Theory Extension of Lyapunov's theorem in different context, converse Lyapunov theorem, instability theorem, equilibrium sets, LaSalle's Invariance principle, Barbashin and Krasovskii's theorems	5
IV	Periodic Orbits Bendixson criterion and Poincare-Bendixson criterion, Lotka predator prey model, van-der-Pol oscillator, Linearization.	6
V	Interconnection Between Linear System and Nonlinearities Signals, operators, norm of signals, finite gain L2 stable, passive filters, dissipation equality, positive real lemma, Kalman Yakubovich-Popov theorem, memoryless nonlinearities, loop transformation, circle criterion, limit cycle, Popov criterion.	8

VI	Describing Function Describing function method, jump hysteresis, sufficient condition for existence and nonexistence of periodic orbits, Describing function for nonlinearities, ideal relay with hysteresis and dead zone.	6
	Textbooks	
1	H.K.Khalil, "Nonlinear systems", Prentice Hall, 3rd Edition 2002.	
2	Jean-Jacques E.Slotine & Weiping Li., "Applied Nonlinear Control", by Prentic	e Hall, 1991.
	References	
1	Shankar Sastry, "Nonlinear Systems: Analysis, Stability and Control", Spring 1999.	er, New-York,
2	M. Vidyasagar, "Nonlinear Systems Analysis", Prentice-Hall, 1993.	
	Useful Links	
1	https://nptel.ac.in/courses/108/101/108101002/	

CO-PO Mapping								
Programme Outcomes (PO)								
	PO1 PO2 PO3 PO4 PO5 PO6							
CO1				3				
CO2				3				
CO3						2		
CO4								

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

V	Valchand College of Engineering, Sangli (Government Aided Autonomous Institute)
	AY 2022-23
	Course Information
Programme	M.Tech. (Control System Engineering)
Class, Semester	First Year M. Tech., Sem II
Course Code	6CS522
Course Name	PLC and Embedded Control
Desired Requisites:	Instrumentation Techniques, Electrical Measurements, Microcontroller
	and Applications

		g Scheme		Examination S		· · · · · · · · · · · · · · · · · · ·	
Lectur		3 Hrs/week	MSE	ISE		ESE	Total
Tutori	al		30	20		50	100
				Cred	dits: 3		
4	- TO 1			Objectives	c · 1		
1 2				Embedded Control ing ladder logic for			
				omation systems en			
3	Control		or aut	official systems of	пртоуп	g i de una di	iocaaca
				vith Bloom's Taxo	nomy I	Level	
At the	end of th	e course, the stude	nts will be able to),		DI 1	DI 1
co		Course	Outcome State	mont/s		Bloom's Taxonomy	Bloom's Taxonomy
		Course	outcome States	menus		Level	Description
CO1	Interpr	et features of PLC	and Embedded	Control Systems us	sed for	III	Applying
		al Automation.					
CO2	Use lac		amming technic	que for various	PLC	III	Applying
CO3				ork configurations,	PLC	IV	Evaluating
	function	ns used for differen	it application				
Modu	اما		Module	Contents			Hours
Modu		oduction to PLC	Wioduic	Contents			Hours
I	Intro PLC	Introduction, Advantages, Disadvantages, Parts of PLC, PLC Input module, PLC Output Module, PLC Architecture, PLC Operation, PLC as a computer, PLC memory and interfacing, Power Supply for PLC					6
II	PLC programming PLC timer functions, Types of PLC timers, Programming of Non-retentive timers for various applications, Programming of ON timers, OFF timers, PLC counter functions, Programming of UP, DOWN counters, Case studies related to Industrial Automations					6	
III	PLC Timer and Counter Functions PLC timer functions, Types of PLC timers, Programming of Non-retentive timers for various applications, Programming of ON timers, OFF timers, PLC counter functions, Programming of UP, DOWN counters, Case studies related to Industrial Automations				6		
IV	PLC Arithmetic, Comparison and Branch functions PLC Arithmetic functions, PLC comparison functions, Conversion functions, Master control relay functions, PLC jump functions, Jump with return and Jump with No return functions, Programs related to Arithmetic, Comparison and Branch functions					6	
V	Advanced PLC functions Data move system, data handling functions, Digital bit functions and applications, sequencer functions Analog PLC operations, PID control of continuous process, PID modules & tuning, typical PID functions					6	
VI	PLC Networking Networking of PLCs, Levels of Industrial Control, Types of Networking, Network Communications, Cell control by PLC Networks, Factors to consider in selecting a PLC					6	
			Tev	ktbooks			
			102	KUUUKS			

	References					
1	John R. Hackworth and Peterson, "PLC controllers programming methods and applications", PHI, 2004.					
2	Gary dunning, "Introduction to PLC", Thomson learning, Edition III, 2006.					
3	William H. Bolton, "Programmable logic controllers", Newnes, Edition VI, 2006.					
	Useful Links					
1	https://nptel.ac.in/courses/108/105/108105062/					
2	https://nptel.ac.in/courses/108/105/108105063/					
3	https://www.sanfoundry.com/100-plc-programming-examples/					

CO-PO Mapping						
	Programme Outcomes (PO)					
	PO1	PO2	PO3	PO4	PO5	PO6
CO1				3		
CO2				3		
CO3				2		
CO4						

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Professional Core (Lab) Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

	Course information			
Programme	M.Tech. (Control System Engineering)			
Class, Semester	First Year M. Tech., Sem II			
Course Code	6CS591			
Course Name	Non-Linear Dynamical Systems Laboratory			

Desired Requisites:

Teaching Scheme			Examination	Scheme (Marks)		
Practical	2 Hrs/ Week	LA1	LA1 LA2 Lab ESE Total			
Interaction		30	30	40	100	
		Cr	edits: 1			

Course Objectives

- 1 To make students simulate nonlinear system for analyzing its properties.
- 2 To develop skills in programming for determining stability of nonlinear system.
- 3 To make students understand the behavior of Periodic orbit through programming and simulation.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Demonstrate the properties of nonlinear systems using simulation.	III	Apply
CO2	Analyze the stability of nonlinear system using programming and simulation tools.	IV	Analyze
CO3	Evaluate the behaviour of periodic orbit using programming and simulation tools.	V	Evaluate

List of Experiments / Lab Activities/Topics

Lab activities/Lab performance shall include mini-project, presentations, drawings, case studies, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming and other suitable activities, as per the nature and requirement of the lab course.

	Textbooks				
1	Jean-Jacques E.Slotine & Weiping Li., "Applied Nonlinear Control", Prentice Hall, 1991.				
	References				
1	H.K.Khalil, "Nonlinear systems", 3rd Edition, Prentice Hall, 2002.				
2	Vukic, kuljaca, Donlagic, "Nonlinear control systems", Marcel Dekker publisher, 2003.				
Useful Links					
1	https://nptel.ac.in/courses/108/101/108101002/				

	CO-PO Mapping					
	Programme Outcomes (PO)					
	1	2	3	4	5	6
CO1				2		
CO2				2		
CO3						2

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by Typical Schedule		Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

	Walchand College of Engineering, Sangli					
		(Government Aid	led Autonomous Insti	tute)		
		AY	Z 2022-23			
		Course	e Information			
Programme		M.Tech. (Control	System Engineeri	ng)		
Class, Semester	r	First Year M. Tech., Sem II				
Course Code		6CS592				
Course Name		PLC and Embedded Control Laboratory				
Desired Requis	sites:	Instrumentation Techniques, Electrical Measurements Lab, Microcontroller				
		and Applications	Lab			
Teaching	Scheme		Examination	Scheme (Marks)		
Practical	2 Hrs/ Week	LA1	LA1 LA2 Lab ESE Total			
Interaction		30	30	40	100	

Credits: 1

	Course Objectives				
1	The lab course is aimed to develop programming skills using PLC for Industrial Automation				
2	The course intends to introduce the use of PLC for solving real world problems.				
3 It will enable students to use PLC for control applications in electrical engineering					

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Execute experiments based on PLC systems.	III	Applying
CO2	Construct basic control systems using PLCs.	IV	Analyzing
CO3	Design ladder logic programs for various PLC applications.	VI	Creating

List of Experiments / Lab Activities/Topics

Lab activities/Lab performance shall include mini-project, presentations, drawings, case studies, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming and other suitable activities, as per the nature and requirement of the lab course.

	Textbooks						
1	John W. Webb, Ronald A. Reis, " <i>Programmable logic controllers, principles & applications</i> ", PHI publication, Eastern Economic Edition, 1994.						
	References						
1	John R. Hackworth and Peterson, "PLC controllers programming methods and applications", PHI, 2004.						
2	Gary dunning, "Introduction to PLC", Thomson learning, Edition III, 2006.						
3	William H. Bolton, "Programmable logic controllers", Newnes, Edition VI, 2006.						
	Useful Links						
1	https://nptel.ac.in/courses/108/105/108105062/						
2	https://nptel.ac.in/courses/108/105/108105063/						
3	https://www.sanfoundry.com/100-plc-programming-examples/						

CO-PO Mapping						
Programme Outcomes (PO)						
	1 2 3 4 5 6					
CO1			2			
CO2				2		
CO3				2		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

attendance,

journal

LA1

Assessment					
	There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%				
Assessment	Based on	Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		

Marks Submission at the end of

Week 8

30

Lab Course Faculty

	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	ab ESE journal/ External Examiner as		Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23 Course Information

Course imormation	
M.Tech. (Control System Engineeri	ing)

Class, Semester	First Year M. Tech., Sem II

6CS593 **Course Code**

Course Name Pre-dissertation Work and Seminar

Desired Requisites:

Programme

Teaching Scheme		Examination Scheme (Marks)				
Practical	4 Hrs/ Week	LA1 LA2 Lab ESE Total				
Interaction		30	30	40	100	
		Credits: 2				

Course Objectives

- This course is aimed at developing the skills like literature review, identification and analysis of 1 issues in societal context in general and electrical control systems in particular.
- This course shall provide an opportunity to the student to develop self-learning, critical thinking and 2 communication skill.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO	Course Outcome Statement/s	Bloom's Taxonomy	Bloom's Taxonomy
		Level	Description
CO1	Summarize the basics concepts used in research paper.	II	Understanding
CO2	Outline the important contributions and the impact of proposed	V,II	Evaluating
	solutions on electrical control systems.	V ,11	Understanding
CO3	Examine different contributions in electrical control systems	III, IV	Applying
	engineering and identify promising directions in the societal context.	111, 1 V	Analyzing
CO4	Analyze and evaluate research papers critically and efficiently.	IV, V	Analyzing
		1 V , V	Evaluating

List of Experiments / Lab Activities/Topics

Pre-Dissertation Seminar shall be delivered on one of the advanced topics chosen in control systems after compiling the information from the latest literature and also internet. The concepts must be clearly understood and presented by the student. All modern methods of presentation should be used by the student. A hard copy of the report (25 to 30 pages A4 size, 12 fonts, Times New Roman, single spacing both side printed, preferably in IEEE format) should be submitted. A PDF copy of the report in soft form must also be submitted with other details if any.

	Textbooks					
1	As per topic Selected and Journal papers, Conference papers, Handbooks.					
	References					
1	As per topic Selected and Journal papers, Conference papers, Handbooks.					
Useful Links						
1	-					

CO-PO Mapping									
		Programme Outcomes (PO)							
	1	2	3	4	5	6			
CO1	2								
CO2		2	2		2				
CO3					3	2			
CO4				3		2			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Professional Elective (Theory) Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

Course intol mation					
Programme M.Tech. (Control System Engineering)					
Class, Semester	First Year M.Tech., Sem II				
Course Code	6CS531				
Course Name	Professional Elective 3: Neural Network and Fuzzy Control				

Desired Requisites: Engineering Mathematics

Teachin	g Scheme		Examination S	cheme (Marks)			
Lecture	3 Hrs/week	week MSE ISE ESE Tot					
Tutorial		30	20	50	100		
		Credits: 3					

Course Objectives

- 1 This course provides the basic concepts of Neural Networks and Fuzzy Control
 - 2 It provides the methodology of design Neural Networks and Fuzzy control.
 - 3 It gives the overview of genetic algorithms and applications development.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

со	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Explain Neural Networks and Fuzzy Control.	II	Understandin
			g
CO2	Apply genetic algorithms and optimization in NN, fuzzy applications development.	III	Applying
CO3	Analyze Neural Networks and Fuzzy Controller algorithms.	IV	Analyzing

Module	Module Contents	Hours
I	Neural Network Neuron model & architectures, Learning rule, Training multiple Neuron, convergence, Performance surfaces & optimum points, Taylor's series & directives & minimum values, Quadratic functions, Performance optimization, Steepest descent, Newton method, Conjugate gradients.	6
II	Supervised Learning Networks Adaline network, Mean square error, LMS algorithm, Analysis of convergence, MLPs, back propagation, Choice of network architecture, Convergence, Drawbacks & modification of BPN, Application to control.	6
III	Unsupervised Learning Networks Associative learning- simple associative learning, Unsupervised Hebb, Modifications in Hebb, Instar and out star rule, Application to control.	6
IV	Fuzzy Logic Fuzzy mathematics, Fuzzy mapping, Fuzzy relations, Implication rules, Mamdani & Sugeno models, Fuzzy rule Base structure, FKBS systems, FKBC PID.	6
V	Fuzzy Controller Design Mamdani techniques, Takagi Sugeno Model, PDC techniques, Stability Analysis using matrix inequality, Application and implementation.	6
VI	Genetic-Neuro-Fuzzy System Optimization, Genetic Algorithm, Theory of GA, Processes involve in genetic optimizations, Applications of genetic algorithm, Neural-fuzzy combinations, Fuzzy GA combinations.	6

CO-PO Mapping								
	Programme Outcomes (PO)							
	1	2	3	4	5	6		
CO1			3					
CO2				2				
CO3				2				

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

	Textbooks				
1	M.T.Hagan, H.B.Demuth, M.H.Beale, "Neural Network Design", PWS Publications, 1996				
2	Timothy J. ross, "Fuzzy Logic with Engineering Applications", Pearson Publications, 2010				
	References				
1	Driankov, "Fuzzy Control", Narosa Publications, 2000				
2	B.Yegnanarayana, "Artificial Neural Networks", PHI Publications, 2008				
3	Simon Haykin, "Neural Networks and Learning Machines", Pearson-PHI publications, 2009.				
	Useful Links				
1	https://onlinecourses.nptel.ac.in/noc21_ge07/preview				

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

3

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

	Wald	chand College	of Engineering	g, Sangli		
		(Government Aided	d Autonomous Institu	te)		
		AY	2022-23			
		Course	Information			
Programme		M.Tech. (Contro	l System Engineeri	ng)		
Class, Semest	ter	First Year M. Te	ch., Sem II			
Course Code		6CS532				
Course Name	?	Professional Elective 3: Modern Signal Processing				
Desired Requ	isites:	Digital Signal Processing				
Teachi	ng Scheme		Examination S	cheme (Marks)		
Lecture	3 Hrs/week	MSE	ISE	ESE	Total	
Tutorial		30	20	50	100	
		Credits: 3				
		Course	Objectives			

It provides the methodology of the adaptive filter theory and applications.

It is intended to design of Kalman filter and implementation issues. It provides the basics of embedded processors for DSP applications.

	Course Outcomes (CO) with Bloom's Taxonomy Level						
At the	At the end of the course, the students will be able to,						
со	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description				
CO1	Apply the least square algorithms to adaptive signal processing	III	Applying				
CO2	Use of Embedded processors for DSP applications	III	Applying				
CO3	Analyze adaptive and kalman filter.	IV	Analyzing				

Module	Module Contents	Hours
I	Statistical Signal Processing Algorithms: Steepest descent algorithm- wiener filter, w-h equations, basic idea of steepest descent algorithm, algorithm applied to wiener filter, stability of steepest descent algorithm, deterministic search method, limitation of algorithm.	6
II	Least Means Square Algorithms: Least mean square adaptive algorithm-LMS adaptation algorithm, statistical LMS theory, comparison of LMS with steepest descent algorithm, adaptive prediction, convergence of algorithm, robustness of LMS filter, h-infinity criterion, upper bound of step size parameter, transfer function approach for deterministic input.	6
III	Recursive Least Means Square Algorithms: Normalized LMS and recursive adaptive algorithm- normalized LMS algorithm, constrained optimization problem, stability of normalized LMS algorithm, step size control, convergence process, RLS algorithm, weighted RLS algorithm, update recursion, convergence analysis, robustness of RLS algorithm.	6
IV	Kalman Filter: Kalman filter-introduction, recursive minimum mean square estimation, Kalman filter problem, innovation process, estimation of state, Kalman filtering, initial conditions, Kalman and RLS filter, variants of Kalman filter, extended Kalman filter	6
V	Digital Signal Processors: Programmable DSPs-overview of embedded systems, DSP processors, architecture, instructions, pipelining and memory management, controls, interrupts and event managers, Texas instruments chips-6713 applications	6
VI	DSP based Motor Control: DSP for control applications- DSPs in control applications, Texas instruments chips-2407, architecture and instructions, interrupts and event managers, peripherals, motor control application, induction motor and PMBDC motor control case studies.	6
	Textbooks	
1	B.Widrow, S.D.Stearns, "Adaptive Signal Processing", Pearson Education, 2001.	
2	Simon Haykin, "Adaptive filter theory", Pearson Education, 4th Edition, 2002.	
3	B. Venkataramani, M. Bhaskar, "Programming with DSPs", Tata-McGraw-Hil 2004.	l publication,
	Doforman	
1	References Texas Instruments DSP manuals-2407 and 6713 processors	
	*	
1	Useful Links	
1	-	

CO-PO Mapping
Programme Outcomes (PO)

	1	2	3	4	5	6
CO1				3		
CO2				2		
CO3				3		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Professional Elective (Lab) Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

	Course Information
Programme	M.Tech. (Control System Engineering)
Class, Semester	First Year M. Tech., Sem II

Course Code 6CS571

Course Name Professional Elective 3 Laboratory: Neural Network and Fuzzy Control Laboratory

Desired Requisites: Engineering Mathematics

Teaching Scheme		Examination Scheme (Marks)				
Practical	2 Hrs/ Week	LA1 LA2 Lab ESE Total				
Interaction		30	30	40	100	
		Credits: 1				

Course Objectives

- 1 This course provides the basic concepts of Neural Networks and Fuzzy Control
 - 2 It provides the methodology of design Neural Networks and Fuzzy control.
 - 3 It gives the overview of genetic algorithms and applications development.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Demonstrate the Neural Networks and Fuzzy Control techniques.	III	Applying
CO2	Analyze different Neural Networks and Fuzzy Control	IV	Analyzing
CO3	Evaluate different Neural Networks and Fuzzy Control	V	Evaluating

List of Experiments / Lab Activities/Topics

Lab activities/Lab performance shall include mini-project, presentations, drawings, case studies, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming and other suitable activities, as per the nature and requirement of the lab course.

Textbooks					
1	M.T.Hagan, H.B.Demuth, M.H.Beale, "Neural Network Design", PWS Publications, 1996				
2	Timothy J. ross, "Fuzzy Logic with Engineering Applications", Pearson Publications, 2010				
	References				
1	Driankov, "Fuzzy Control", Narosa Publications, 2000				
2	B.Yegnanarayana, "Artificial Neural Networks", PHI Publications, 2008				
3	Simon Haykin, "Neural Networks and Learning Machines", Pearson-PHI publications, 2009.				
Useful Links					
1	https://onlinecourses.nptel.ac.in/noc21_ge07/preview				

CO-PO Mapping						
Programme Outcomes (PO)						
	1	2	3	4	5	6
CO1	1			3		
CO2	1			3		

CO3	1		3	

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

 \mathbf{CO}

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

	Wal		e of Engineer			
	(Government Aided Autonomous Institute)					
		A	Y 2022-23			
		Cours	se Information			
Programme M.Tech. (Control System Engineering)						
Class, Semeste	r	First Year M. Tech., Sem II				
Course Code 6CS572						
Course Name		Professional Elec	ctive 3 Laboratory	: Modern Signal Prod	cessing Laboratory	
Desired Requi	sites:	Digital Signal Pr	ocessing			
Teaching	g Scheme		Examination	n Scheme (Marks)		
Practical	2 Hrs/ Week	LA1	LA2	Lab ESE	Total	
Interaction		30	30	40	100	
		Credits: 1				

Course Objectives								
1	This course provides the basic concepts of least square algorithms and it	s applications	to adaptive					
1	signal processing.							
2	It provides the methodology of the adaptive filter theory and applications.							
3	It is intended to design of Kalman filter and implementation issues.							
4	It provides the basics of embedded processors for DSP applications.							
Course Outcomes (CO) with Bloom's Taxonomy Level								
At the	At the end of the course, the students will be able to,							
		Bloom's	Bloom's					

Taxonomy

Level

Taxonomy

Description

Course Conten	ts for MTech Pro	oramme Denartm	ent of Electrical I	Fnoineerino	AY2022-23

Course Outcome Statement/s

CO1	Demonstrate the least square algorithms to adaptive signal processing.	III	Applying
CO2	Analyze adaptive and kalman filter.	IV	Analyzing
CO3	Experiment with Embedded processors for DSP applications.	IV	Analyzing

List of Experiments / Lab Activities/Topics

Lab activities/Lab performance shall include mini-project, presentations, drawings, case studies, report writing, site visit, lab experiment, tutorials, assignments, group discussion, programming and other suitable activities, as per the nature and requirement of the lab course.

	Textbooks				
1	B.Widrow, S.D.Stearns, "Adaptive Signal Processing", Pearson Education, 2001.				
2	Simon Haykin, "Adaptive filter theory", Pearson Education, 4th Edition, 2002.				
3	B.Venkataramani, M.Bhaskar, "Programming with DSPs", Tata-McGraw-Hill publication, 2004.				
	References				
1	Texas Instruments DSP manuals-2407 and 6713 processors				
	Useful Links				
1	-				

CO-PO Mapping								
	Programme Outcomes (PO)							
	1 2 3 4 5 6							
CO1	1			2				
CO2	CO2 1 2							
CO3	CO3 1 2							

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High

Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks	
	Lab activities,		During Week 1 to Week 8		
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 8		
	Lab activities,		During Week 9 to Week 16		
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30	
	journal		Week 16		
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19		
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40	
	performance	applicable	Week 19		

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

Open Elective Courses

Walchand College of Engineering, Sangli

(Government Aided Autonomous Institute)

AY 2022-23

Course Information

Course information				
Programme	M.Tech. (Control System Engineering)			
Class, Semester First Year M. Tech., Sem II				
Course Code	6OE506			
Course Name Open Elective : Control Techniques for Electrical Drives				

Desired Requisites: M.Tech. (Control System Engineering)

Teaching Scheme		Examination Scheme (Marks)				
Lecture 3 Hrs/week		MSE	ISE	ESE	Total	
Tutorial		30	20	50	100	
		Credits: 3				

Course Objectives

- 1 To provide the latest knowledge in the field of electrical drives.
- To provide sufficient knowledge in the area of advanced control techniques for induction motor and synchronous machines.
- 3 To make the student aware of the research in the field of electrical drives.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Explain various concept used in AC and DC drives.	II	Understand
CO2	Apply control techniques to AC and DC drives.	III	Apply
CO3	Analyze control techniques for AC and DC drives.	IV	Analyze
CO4	Evaluate various control schemes of AC and DC drives.	V	Evaluate

Module	Module Contents	Hours
I	Basics of drives Types & parts of the Electrical drives, fundamental torque equation, speed torques characteristics DC motor & Induction motor, multi quadrant operation of the drive, classification of mechanical load torques, steady state stability of the drive, constant torque and constant HP operation of the drive, closed loop speed control.	6
II	DC motor drives Methods of speed control, starting and breaking operation, single phase and three phase full controlled and half controlled converter fed DC drives, Multi quadrant operation of separately excited DC shunt motor, dual converter fed DC drives, circulating and non – circulating mode of operation, chopper control of DC shunt motor drives, four quadrant operation of chopper fed DC shunt motor drive.	5
III	Induction motor drives Speed control methods for three phase induction motor, VSI fed induction motor drive, constant torque (constant E/F and constant V/F), constant HP operation, closed loop speed control block diagram., CSI fed induction motor drive, speed torque characteristics of CSI fed drive, closed loop speed control block diagram, comparison of CSI fed and VSI fed induction motor drive, Stator voltage control, Chopper controlled resistance in rotor circuit, slip power recovery using converter cascade in rotor circuit, sub synchronous and super synchronous speed control, Kramer speed control.	6

	Modeling of Induction Motor and PWM Techniques				
IV	abc – dq transformation, transformation from stationary reference frame to				
	synchronously rotating reference frame and vice versa. Equivalent circuits of				
	induction motor in dynamic dq stationary and synchronously rotating reference	6			
	frame. Permanent magnet synchronous machine dq equivalent circuits. The				
	three phase six step bridge inverter, three phase PWM inverter, PWM techniques				
	such as sinusoidal PWM, hysteresis band current control PWM.				
	Vector Control and Direct Torque Control of Induction Motor				
	Vector control of induction motor, DC drive analogy, equivalent circuit, phasor				
* 7	diagram. Direct rotor flux oriented vector control and indirect rotor flux oriented				
V	vector control, stator flux oriented vector control.	6			
	Torque equation of IM in terms of stator and rotor flux, direct torque and flux				
	control method (DTC) and self-commissioning of the drive.				
	Synchronous motor and SRM Drives				
	VSI fed synchronous motor drives, true synchronous and self-control mode,				
	open loop and closed loop speed control of Permanent magnet synchronous				
VI	machine, brushless DC motor drives.	6			
	Switched reluctance motor drives, torque equation, converter circuits, operating				
	modes and applications. Solar panel VI characteristics, solar powered pump,				
	maximum power point tracking and battery operated vehicles.				
	Textbooks				
1	G. K. Dubey, "Fundamentals of Electrical Drives", Narosa publication, 2nd edit	ion, 2002.			
2	B. K. Bose, "Modern Power Electronics and AC drives", Prentice Hall of India Pr	vt. India, 1986			
	References				
1	Peter Vas, "Vector Control of AC machines", Clarendon Press Oxford, 1999.				
	Ned Mohan, "Advanced Electrical drives - Analysis, control and modeling us	ing Simulink"			
2	John Wiley and sons, 2001.				
3	P. S. Bhimra, "Power Electronics", 2nd edition, Khanna Publishers.				
	Useful Links				
1	NPTEL video lectures on Electrical Drives				

CO-PO Mapping							
Programme Outcomes (PO)							
	PO1 PO2 PO3 PO4 PO5 PO6						
CO1				1			
CO2				1			
CO3			1	2			
CO4			1	3			

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High. Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.

MSE shall be typically on modules 1 to 3.

ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.

ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.

For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)