

Textbooks	
1	Sanjit K. Mitra, "Digital Signal Processing: A Computer Based Approach", $4^{\text {th }}$ Edition, Tata McGraw-Hill Publication.
2	Oppenheim \& Schafer, "Discrete Time Signal Processing", ,2nd Edition, Pearson education.
3	
4	
References	
1	J. G. Proakis, "Digital Signal Processing", Prentice Hall India
2	
3	
4	
Useful Links	
1	www.nptel.ac.in
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													2
CO2		3												2
CO3				2										2
CO4	2													2

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment
The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can
be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40\% weightage on modules 1 to 3 and 60% weightage on
modules 4 to 6.
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in
ESE are needed. (ESE shall be a separate head of passing)

V	Communication Protocols On chip serial ports, Serial port programming, setting baud rate, Using UART buffer, printf for serial data transfer, interrupt based serial port handling, I2C protocol, Using I2C for interfacing external EEPROM, SPI protocol and programming.	7
VI	Application Development Finite state machine in designing Embedded Systems, Design considerations for embedded system design, Design of a simple general purpose ARM kit, Case studies of ARM based applications.	4
Textbooks		
1	Andrew Sloss, ARM System Developer's Guide, Elsevier India, 2005	
2	Joseph Yiu, "The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors", Newnes; 3rd edition	
3	"Textbook of EMBEDDED SYSTEM", NA. VIKRAMAN	
4	"Introduction to Microprocessor Based Systems Using the ARM Processor" by Kris Schindler	
References		
1	ARM inc, ARM Reference Manual, ARM, inc., NA, 2011	
2	Technical references, data sheets and user manuals of respective controller	
3	Yifeng Zhu, "Embedded Systems with Arm Cortex-M Microcontrollers in Assembly Language and C", E-Man Press LLC	
4	Frank Vahid and Tony Givargis, "Embedded System Design", Wiley	
Useful Links		
1	https://nptel.ac.in/	
2	https://in.coursera.org/	
3	https://www.nxp.com/	
4	https://www.arm.com/	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	3													
CO3		3			3									
CO4			3											2
1: Low, 2: Medium, 3: High														

Assessment
The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can
be quiz, seminar, assignments or any interactive activity etc. and is expected to map at least one higher
order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on
modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in
ESE are needed. (ESE shall be a separate head of passing)

VI	Error-Control Coding Errors, Error-Detection Methods, Automatic Repeat Request (ARQ), Block Codes, Convolutional Codes, Compound Codes	7
Textbooks		
1	T.L. Singal, "Analog and Digital Communication",6th Edition, Mc Graw Hill, 2012	
2	Roy Blake, "Electronic Communication System", Thomson Publications, 2nd Edition,2002	
References		
1	Simon Hykin, "Communication System", 4th Edition, John Wiley \& Sons, 2000	
2	B P Lathi, "Modern Digital and Analog Communication System", 4 ${ }^{\text {th }}$ Edition, Oxford University Press, 2017	
Useful Links		
1	www.nptel.ac.in	
2		
3		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													2
CO2		1												
CO3			1										2	
CO4			2										2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
AY 2022-23					
Course Information					
Programme		B.Tech. (Electronics Engineering)			
Class, Semester		Third Year B. Tech., Sem I			
Course Code		6EN351			
Course Name		Digital Signal Processing Lab			
Desired Requisites:		Signals and Systems			
Teaching Scheme		Examination Scheme (Marks)			
Practical	$2 \mathrm{Hrs} / \mathrm{Week}$	LA1	LA2	Lab ESE	Total
Interaction		30	30	40	100
Credits: 1					
Course Objectives					
1 The objective of the course is to work out for the convolution.					
2 Correlation, DFT, IDFT, Block convolution.					
3 Signal smoothing, filtering of long duration signals.					
4 S	Spectral analysis of signals using MATLAB simulation.				
	Course Outcomes (CO) with Bloom's Taxonomy Level				
At the end of the course, the students will be able to,					
CO1 Illu	Illustrate the basic operations of Signal processing				Apply
CO2 An	Analyze the spectral parameter of window functions				Understand
CO3 Cr	Create IIR, and FIR filters for band pass, band stop, low pass and high pass filters				Create
CO4 Demonstrate multirate DSP and wavelet transform Evaluate					
List of Experiments / Lab Activities/Topics					
List of Lab Activities: 1. Generation of different signals using MATLAB. 2. Calculation of DFT and plot Magnitude,Phase response for the same. 3. Calculation of IDFT and plot Magnitude response for the same. 4. Implementation of Median Filter. 5. Implementation of Moving Average Filter. 6. Find Circular Convolution of given sequences. 7. Illustration of Overlap-Add Method. 8. Design of simple filter. 9. Design of FIR filter using different window functions. 10. Design of FIR filter using Kaiser window. 11. To plot frequency response of low pass filter using Kaiser window for differenttuning parameters. 12. Illustration of Up sampling of signal. 13. Illustration of Down sampling of signal. 14. Illustration of Effect of window length. 15. Illustration of Effect of Up sampling in Frequency Domain.					
Textbooks					
1	Sanjit K. Mitra, "Digital Signal Processing: A Computer Based Approach",4 $4^{\text {th }}$ Edition, Tata McGraw-Hill Publication.				
2 Oppenheim \& Schafer, "Discrete Time Signal Processing", ,2nd Edition, Pearson education.					
3					
4					
References					
1	J. G. Proakis, "Digital Signal Processing", Prentice Hall India				
2)					

3	
4	
1	www.nptel.ac.in
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													2
CO2		3												2
CO3				2										2
CO4	2													2

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment				
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%				
Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40
Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.				

			Useful Links
1	$\underline{\text { https://nptel.ac.in/ }}$		
2	$\underline{\text { https://in.coursera.org/ }}$		
3	$\underline{\text { https://www.nxp.com/ }}$		
4	$\underline{\text { https://www.arm.com } / \text { ww }}$		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3				2									2
CO2		3												2
CO3			3									3		2
1: Low, 2: Medium, 3: High														

Assessment				
There are three components of lab assessment, LA1, LA2 and Lab ESE. LA1 and LA2 shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be through quizzes, assignments, mini project, lab based activity and submission. Also small weightage is also given to attendance. IMP: Lab ESE is a separate head of passing. ($\min 40 \%$), LA1+LA2 should be $\min 40 \%$				
Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40
Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.				

Useful Links	
1	www.nptel.ac.in
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													3
CO2		3												
CO3			3										3	
CO4			3										3	
The strength of mapping is to be written as $1,2,3$; where, $1:$ Low, 2: Medium, 3 : High Each CO of the course must map to at least one PO, and preferably to only one PO.														

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%

Assessment	Based on LA1	Lab activities, attendance, journal	Lab Course Faculty	Typical Schedule During Week 1 to Week 8 Marks Submission at the end of Week 8
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically $8-10$ experiments and related activities if any.

4	
1	Useful Links
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3								2	2			2
CO2			3		2									
CO3			3		2						1		1	1
CO4		2							3	3				
The strength of mapping is to be written as $1,2,3$; where, 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO, and preferably to only one PO.														

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

1	John. G. Webster, "Medical Instrumentation", John Wiley, 2009	
2	Goddes\& Baker, "Principles of Applied Biomedical Instrumentation", John Wiley, 2008	
3	Carr \& Brown, "Biomedical Instrumentation \& Measurement", Pearson, 2004	
4		
1	R.S. Khandpur, "Hand book of Medical instruments", TMH, New Delhi, 1987.	
2	Sanjay Guha,"Medical Electronics and Instrumentation", University Publication, 200.	
3	Edwand J. Bukstein, "Introduction to Biomedical electronics", Sane and Co. Inc, 1973	
4		
1		
2		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3												2	
CO2					3	2							2	
CO3			3										2	
CO4									3				2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment
The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can
be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on
modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in
ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
AY 2023-24					
Course Information					
Programme		B.Tech. (Electronics Engineering)			
Class, Semester		Third Year B. Tech., Sem. V			
Course Code		6EN312			
Course Name		Professional Elective-I: Microelectronics			
Desired Requisites:					
Teaching Scheme		Examination Scheme (Marks)			
Lecture	$3 \mathrm{Hrs} / \mathrm{week}$	MSE	ISE	ESE	Total
Tutorial		30	20	50	100
Practical	-	Credits: 3			
Interaction					
Course Objectives					
1T	To provide students with a sound understanding of existing semiconductor devices to give meaning to their studies of electronic circuits and systems.				
22 $\begin{aligned} & \text { To } \\ & \text { Bol } \\ & \text { devi }\end{aligned}$	To explain carrier transport phenomena in solids on the basis of energy band theory and Boltzmann transport equation which forms the basis of electrical characteristics of semiconductor devices.				
$3 \begin{aligned} & 3\end{aligned} \begin{aligned} & \text { To } \\ & \text { kee } \\ & \text { upd }\end{aligned}$	To develop capability in students to learn on their own about the new researched devices as they keep emerging in the market in future and lay the foundation for of their a constant career updating and self education.				
4 To	4 To prepare the students for GATE in order to motivate them for higher studies.				
Course Outcomes (CO) with Bloom's Taxonomy Level					
At the end of the course, the students will be able to,					
CO1Exp cap inco	Explain the formation of bandgaps in solids, formation of depletion-diffusion layer capacitance in p-n junction diodes and characteristics of illuminated p-n junction, incoherent (LEDs) and coherent light sources (Lasers)				Understand
CO2 ${ }^{\text {che }}$ ($\begin{aligned} & \text { App } \\ & \text { carr } \\ & \text { of p }\end{aligned}$	Apply continuity equation and Poisson's equation to derive time dependence of carrier concentration on electric fields and potentials by considering band diagram of p -n junction in equilibrium.				Apply
CO3 $\begin{aligned} & \text { Mo } \\ & \text { and }\end{aligned}$	Model the operation of bipolar junction transistor in three regions (cut-off, linear and saturation) using Ebers Moll coupled diode model.				Apply
CO4 ${ }^{\text {Ann }}$	Analyze BJT band diagram and explain current gain, base transport factor, and emitter injection efficiency.				Analyze
CO5 Int MO vol	Interpret C-V characteristics of MOS capacitor and I-V characteristics of JFET, MOSFET with relevance to their ethical parameters like pinch off voltage, threshold voltage etc.				Evaluate
Module	Module Contents				Hours
I	Energy Bands and Charge Carriers in Semiconductors Bonding forces and energy bands in solids, Charge carriers in semiconductors, Carrier concentration, drift of carriers in electric and magnetic fields, invariance of Fermi level at equilibrium.				6
II	Excess Carriers in Semiconductors Diffusion of carriers, Diffusion current, Drift current, Mobility of carriers, Recombination, Continuity equation, Quasi Fermi levels, Gradients in Quasi Fermi levels, resistivity of materials.				6
III	Junctions Formation of p-n junctions, Equilibrium conditions, Steady state conditions, Transient and AC conditions, deviations from simple theory, MetalSemiconductor Junctions.				8
IV	Field Effect Transistors JFET (characteristics), MOS capacitor (threshold voltage, C-V characteristics), MOSFET: I-V characteristics, Equivalent circuits for the MOSFET.				7

V	Bipolar Junction Transistors Minority carrier distributions and terminal currents, Generalized Biasing: The Coupled-Diode Model, Charge control analysis; switching, drift in base region, base narrowing, avalanche breakdown, thermal effects, Kirk effect.	7
VI	Optoelectronic Devices Photodiodes: I-V characteristics in an illuminated junction, Solar Cells, Photodetectors; LEDs, Semiconductor Lasers.	6
Text Books		
1	B.G. Streetman, S. K. Banerjee, " Solid State Electronic Devices ", 7th edition, Pearson India Education Service Pvt. Ltd., 2017.	
2		
3		
4		
References		
1	S. M. Sze, "Physics of Semiconductor Devices", $2^{\text {nd }}$ Edition, PHI, 2005.	
2	Donald. A. Neamen, "Semiconductor Physics and Devices: Basic Principles", $3^{\text {rd }}$ Edition, McGraw Hill Higher Education, 2003.	
Useful Links		
1	https://nptel.ac.in/courses/108/107/108107142/	
2	https://www.youtube.com/playlist?list=PLF178600D851B098F	
3	https://www.youtube.com/playlist?list=PLgMDNELGJ1CaNcuuQv9xN07ZWkXE-wCGP	
4		

CO- PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													1
CO2	3													1
CO3	3	2												
CO4	3	2												
CO5	2	2												1

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40\% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

VI	Applications Matrices in engineering, single value decomposition, Computer Graphics, Leastsquares approximation.	4
Textbooks		
1	Gilbert Strang, Wellesley-Cambridge, "Introduction to Linear Algebra" $5^{\text {th }}$ edition, Press, 2016	
2	Jim Defranza and Daniel Gagliardi,"Introduction to Linear Algebra with Applications" McGraw Hill Education (India) Edition 2012	
3	Stephen Boyd and Lieven Vandenberghe, "Introduction to Applied Linear Algebra", CambridgeUniversity Press, 2018	
4		
References		
1	Ward Cheney and David Kincaid, Jones, "Linear Algebra Theory and Applications and Bartlett", Publishers, Indian Edition 2010	
2	David C. Lay, Steven R. Lay, and Judi J., "Linear Algebra and its Applications" McDonald, Pearson, 5 edition, 2015	
3		
4		
Useful Links		
1		
2		
3		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3												1
CO2	3	3												1
CO3	3													1
CO4														

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40\% marks in (MSE+ISE+ESE) are needed and Min. 40\% marks in ESE are needed. (ESE shall be a separate head of passing)

IV	Vehicle Motion Controls Representative Cruise Control System, Cruise Control Electronics, Antilock Braking System, Electronic Suspension System, Electronic Suspension Control System, Four-Wheel Steering CAR	4
V	Automotive Instrumentation Modern Automotive Instrumentation, Input and Output Signal Conversion, Display Devices, Fuel Quantity Measurement, Coolant Temperature Measurement, Oil Pressure Measurement, Vehicle Speed Measurement,	4
VI	Vehicle Communications IVN, CAN, Local Interconnect Network (LIN), FlexRay IVN, MOST IVN, Vehicle to Infrastructure Communication, Vehicle-to-Cellular Infrastructure, Short-Range Wireless Communications, Satellite Vehicle Communication, GPS Navigation, Safety Aspects of Vehicle-to-Infrastructure Communication	8
Textbooks		
1	William Ribbens, "Understanding Automotive Electronics An Engineering Perspective" Elsevier	
2	Bosch Automotive, Robert Bosch GmbH "Electrics and Automotive Electronics: Systems and Components, Networking and Hybrid Drive", Springer Science \& Business Media, 2013	
3		
4		
References		
1	Najamuz Zaman, "Automotive Electronics Design Fundamentals", Springer Cham, October 2016	
2	Ronald K. Jurgen ,"Automotive Electronics Handbook", McGraw Hill Professional, 1999	
3		
4		
Useful Links		
1		
2		
3		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1				3										
CO2				3										
CO3				3										
CO4														
The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.														

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

1	Robert Lafore, " Object Oriented Programming in C++", SAMS publishing, Fourth Edition, ISBN: 0-672-32308-7. (If needed the relevant language book will be referred)
2	Arduino Library related Internet resources
3	
4	
	References
1	Bjorne Stroustrup, "The C++ programming language", $4^{\text {th }}$ Edition, Addison-Wesley Professional, ISBN: 978-0321563842
2	Web tutorials C++ and Object Oriented Programming
3	NPTEL lectures, Object-Oriented Programming by IITBx (free audit course)
4	Arduino Library related Internet resources
	Useful Links
1	
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3												3	
CO2			2											2
CO3		3											3	
CO4			3											3

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		3											
CO2														
CO3				3										3
CO4	3				3									

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

III	Sources and Detectors Optical Sources : Semiconductor Physics background, Light emitting diode (LEDs)- structures, materials, Figure of merits, characteristics \& Modulation. Laser Diodes -Modes \& threshold conditions, Diode Rate equations, resonant frequencies, structures, characteristics and figure of merits, single mode lasers, Modulation of laser diodes, Spectral width, temperature effects, and Light source linearity. Optical Detectors: PIN Photo detectors, Avalanche photo diodes, construction, characteristics and properties, Comparison of performance, Photo detector noise Noise sources, Signal to Noise ratio, Detector response time	7
IV	Coupling and Receiver operation Power Launching and Coupling: Source to fiber power launching, Lensing schemes, fiber-to-fiber joints, LED coupling to single mode fibers, fiber splicing, Optical fiber connectors. Optical Receiver Operation : Receiver operation, Preamplifier types, receiver performance and sensitivity, Eye diagrams, Coherent detection, Specification of receivers	6
V	Optical Transmission System Transmission Systems : Point -to-point link -system considerations, Link power budget and rise time budget methods for design of optical link, BER calculation Optical Amplifiers : Semiconductor optical Amplifier, EDFA, Raman Amplifier, Wideband Optical Amplifiers	6
VI	Measurements and Advances in Optical Fiber Systems Fiber Attenuation measurements- Dispersion measurements - Fiber Refractive index profile measurements - Fiber cut- off Wave length Measurements - Fiber Numerical Aperture Measurements - Fiber diameter measurements Principles of WDM, DWDM, Telecommunications \& broadband application, SONET/SDH, MUX, Analog \& Digital broadband, optical switching	6
Textbooks		
1	Keiser, G, "Optical Fiber Communications", ISBN - 9780071164689, by McGraw-Hill, $5^{\text {th }}$ Edition, 2000.	
2	John M. Senior, M. Yousif Jamro, "Optical Fiber Communications: Principles and Practice", ISBN - 9780130326812, Prentice Hall Internacional series in optoelectronics, 2009	
3		
4		
References		
1	Singal, T.L, "Optical Fiber Communications: Principles and Applications". 9781316870532, 2017, Cambridge University Press	N
2	Rogers, A.J, "Understanding Optical Fiber Communications", ISBN - 9780890064 House optoelectronics library, 2001	Artech
3		
4		
Useful Links		
1	https://archive.nptel.ac.in/courses/108/106/108106167/	
2		
3		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													

CO2				3										
CO3				3										
CO4				3										

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40\% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													2
CO2	3		2											2
CO3		3												3
CO4	3		2											3

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)					
AY 2023-24					
Course Information					
Programme		B.Tech. (Electronics Engineering)			
Class, Semester		Third Year B. Tech., Sem V			
Course Code		6OE358			
Course Name		Open Elective - Signals and Systems			
Desired Requisites:		-			
Teaching Scheme		Examination Scheme (Marks)			
Lecture	$3 \mathrm{Hrs} / \mathrm{week}$	MSE	ISE	ESE	Total
Tutorial	-	30	20	50	100
Credits: 3					
Course Objectives					
1	Develop the mathematical skills to solve problems involving signals and systems in various areas of appllications				
2	To Understand signals and systems in terms of both the time and transform domains with , complementary insights into tools for analysis				
4					
Course Outcomes (CO) with Bloom's Taxonomy Level					
At the end of the course, the students will be able to,					
CO1 C	Classify the different signals and systems				Understand
CO2 C	Characterize LTI systems in the time domain and frequency domain				Apply
CO3 ${ }^{\text {U }}$	Use MATLAB software to implement the signal processing and system analysis for different applications				Apply
Module	Module Contents				Hours
1	Classification of Signals and Systems: Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids, Classification of signals - Continuous time (CT) and Discrete Time (DT) signals, Periodic \& Aperiodic signals, Deterministic \& Random signals, Energy \& Power signals, Classification of systems- CT systems and DT systems, Linear \& Nonlinear, Time-variant \& Time-invariant, Causal \& Noncausal, Stable \& Unstable.				6
II	Analysis of CT and DT signals Fourier series for periodic signals - Fourier Transform - properties- Laplace Transforms and properties.				8
III	Analysis of DT signals Baseband signal Sampling - Fourier Transform of discrete time signals (DTFT) - Properties of DTFT - Z Transform \& Properties				6
IV	Linear Time Invariant DT Systems Impulse response - Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform Analysis of Recursive \& Non-Recursive systemsDT systems connected in series and parallel.				8
V	Application areas of Signals and Systems Overview of applications of Signals and Systems in the fields of Speech and audio processing.Multimedia processing (image and video),Underwater acoustic, Biological signal analysis, Biometrics, control applications				7
VI	Analysis of Signals and Systems using Simulation Tools Introduction to MATLAB, Use MATLAB software to implement the signal processing and system analysis.				4

Textbooks	
1	B.P. Lathi, "Signals, Systems \& Communications"- BS Publications, 2003.
2	A.V. Oppenheim, A.S. Willsky and S.H. Nawab,"Signals and Systems"- PHI, 2nd Edn.
3	
4	
1	Simon Haykin and Van Veen,"Signals \& Systems" -,Wiley, 2nd Edition.
2	
3	
4	
1	NPTEL lectures
2	https://www.mathworks.com
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2		2												
CO3					3								2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

3	Critical Path Networks - Principles of Resource Scheduling. Numeric Models of Project, Non-Numeric Models of Project, Scoring Models of Project, Project Network and CPM, Gantt Charts, Resource allocation and Controlling phases of a project	4
4	Executing and Controlling. Audit schedules and auditing a project and identifying deviations, quality needs in a project, applying relevant quality tools in a project and interpreting the results of the tools to monitor the quality Commercial Management and various regulations. Potential risks in a project, Categorizing of project risks, and defining the strategies for managing the project risks	4
5	Study and use of software related to Project Management System.	3
6	Human Values and Professional Ethics Need, basic guidelines, content \& process for value education, understanding harmony in the human being- harmony in myself, understanding harmony in the family \& society- harmony in human relationship, understanding harmony in the nature \& existence, implications of the above holistic understanding of harmony on professional ethics.	7
Text Books		
1	Dennis Lock ," Project Management ", Gower Publishing Limited, 2013	
2	Samuel J. Mantel, Jr., Jack R. Meredith, Scott M. Shafer, Margaret M. Sutton, "Project Management in Practice " JOHN WILEY \& SONS, INC., 2011	
3	Horald Kerzner, "Project Management: A systems approach to planning, scheduling and controlling", John Wiley \& Sons Inc., 2009	
References		
1	K. Nagarajan, Project Management, New Age Int., 2nd ed. 2004.	
2	B.M.Naik, "Project Management-Scheduling and Monitoring", PERT/CPM, 1984	
3	William R Duncan, "A guide to the project management body of knowledge", PMI Publications, 1996	
4	The factories act 1948 - Government of India 6. Meri Williams ,"The Principles of Project Management ", By - Site point Pvt Ltd., 2008	
Useful Links		
1	https://www.apm.org.uk/resources/what-is-project-management/	
2	https://www.projectmanager.com/project-management	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1								1					1	1
CO2									2					2
CO3							1						2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High

Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

| | $\begin{array}{l}\text { Transmission Lines } \\ \text { Types of two-conductor transmission lines, equivalent circuit, transmission line } \\ \text { parameters, transmission line equations, lossless propagation, wave reflection, } \\ \text { standing waves and voltage standing wave ratio, reflection coefficient, Smith } \\ \text { Chart. }\end{array}$ | 4 |
| :---: | :--- | :--- | :--- |$\}$

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2											2	
CO2		2		1									2	
CO3	3												2	
CO4	3			2									2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6.
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

Walchand College of Engineering, Sangli (Government Aided Autonomous Institute)						
AY 2023-24						
Course Information						
Programme		B.Tech. (Electronics Engineering)				
Class, Semester		Third Year B. Tech., Sem VI				
Course Code		6EN322				
Course Name		Digital System Architecture				
Desired Requisites:		Digital Electronics				
Teaching Scheme		Examination Scheme (Marks)				
Lecture	e\| $3 \mathrm{Hrs} / \mathrm{week}$	MSE	ISE	ESE		Total
Tutorial	1	30	20	50		100
		Credits: 3				
Course Objectives						
$1{ }^{1}$ U	To explain the designs of building blocks of digital system viz. data path design, control unit design, memory units to finally design the microprocessor 2.3.4.5.					
	To illustrate the concepts behind designing the robust digital systems.					
3 T	To unfold the architectures of DACs and ADCs using various approaches motivating students to compare their performance.					
4T st 相	To assign medium complexity digital system design related problems in batches as a self study exercise.					
To illustrate HDL implementation of digital designs in FPGA						
Course Outcomes (CO) with Bloom's Taxonomy Level						
At the end of the course, the students will be able to,						
CO1 $\begin{aligned} & \text { E } \\ & \end{aligned}$	Explain the architectures of FPGAs and the concept behind programmable devices				Understand	
CO2 $\begin{aligned} & \text { A } \\ & \\ & p \\ & p\end{aligned}$	Apply FSM approach to develop sequential digital circuits, and floating point and fixed point arithmetic to develop architectures of floating/fixed pointdata-path blocks.				Apply	
CO3 ${ }^{\text {A }}$	Analyze digital circuits and their architectures for functionality, and memory units for timing performance using timing diagrams.				Analyze	
CO4C A p	Compare various approaches of designing memory blocks, DACs and ADCs with references to their merits and demerits and performance parameters respectively				Evaluate	
CO5D k m	Develop architectures of digital blocks (Data-path, Control units) with knowledge of functionality extending further to 4 -bit/8-bit microprocessor with defined set of instructions.				Create	
Module	Module Contents					Hours
I	Designing Datapath Blocks Number representation (fixed point and floating point), Fixed Pont arithmetic, floating point arithmetic, High speed adders/ Multipliers (Robertson's algorithm and Booth's algorithm), pipeline processing.					
II	Designing Control units Concepts, Hardwired Control, Examples on hardwired control (Multiplier control unit), CPU control unit, Microprogrammed Control Unit, Example based on micro-programmed control unit, Concepts in Pipeline control					6

III	Designing Memory Blocks ROM, Internal Structure, Rom control inputs and timing, Static RAM, Internal Structure, Timing, Dynamic RAM, Timing, Memory Systems (Multilevel memories, Address translation, replacement policies), Caches (Address mapping, Associative, Direct and set-associative mapping), Cache performance	7
IV	Processor Design Introduction, Microcomputer Organization, Microprocessor Organization, Set of Instructions, Addressing Modes, Designing instruction, stack, subroutines and interrupt, Input-Output interface, Serial and parallel communication with processor, Direct Memory Access	6
V	PLDs and Their Architectures Introduction to Programmable Logic Devices, Field Programmable Gate Arrays, FPGA Architectures (Xilinx Spartan Series, Altera Stratix Series) involving Configurable Logic Blocks, I/O blocks, Programmable interconnects.	4
VI	Data Converters: DAC Binary weighted Resistor, R/2R ladder, Performance metrics of DAC (Resolution, Settling time, linearity, speed and Errors) ADC - Flash ADC, Successive Approximation ADC, Single slope ADC, Dual Slop ADC, ADC specifications (Quantization error, Intergral non-linearity error, Gain and Offset Error, Signal to Noise Ratio, Dynamic Range, Effective number of bits, Bit Error Rate, Figure of Merit)	9
Textbooks		
1	Morris Mano, "Digital Logic and Microprocessoor Design", PHI, 2001	
2	John Wakerley, "Digital Design , Principles and Practices", PHI, 20053.	
3	Hayes, "Computer Architecture and Organization", McGraw Hill, 3rd Edition, 2012	
References		
1	Frank Vahid "Digital Electronics" Wiley Publication. 2012	
2	Enoch O. Hwang, "Digital Logic and Microprocessoor Design with VHDL", Thomson Publication, 2007 Reprint	
Useful Links		
1	www.xilinx.com	
2	www.altera.com	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2												
CO 2	3													
CO3		3												
CO4		3												
CO5			3			1	1							3

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2	3	1											2
CO3	2	3												
CO4		2	2											2

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40\% marks in (MSE+ISE+ESE) are needed and Min. 40\% marks in ESE are needed. (ESE shall be a separate head of passing)

Useful Links

Useful Links	
1	www.xilinx.com
2	www.altra.com

CO-PO Mapping																
	Programme Outcomes (PO)		PSO													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
$\mathbf{C O 1}$	3															
$\mathbf{C O 2}$		3														
$\mathbf{C O 3}$						1	1							2		The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High
:---																
Each CO of the course must map to at least one PO, and preferably to only one PO.																

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically $8-10$ experiments and related activities if any.

2	M. D. Singh \& K. B. Khanchandani, "Power Electronics", Second Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.		
3	V. R. Moorthi, "Power Electronics: Devices, Circuits and Industrial Applications", Oxford University Press, 2010.		
4			
\quad References			
1	D. R. Grafham, J. C. Hey, "SCR Manual", Fifth Edition, General Electric, New York, 1972.		
2	https://www.powersimtech.com/wp-content/uploads/2021/01/PSIM-User-Manual.pdf		
3			
4			
\quad Useful Links			
1	https://powersimtech.com/products/psim/capabilities-applications/		
2	https://in.mathworks.com/solutions/power-electronics-control/power-electronics-simulation.html		
3	https://www.plexim.com/products/plecs		
4			

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1			3										
CO2				3	3									2
CO3		1		3	3									2
CO4	1			3	2									

The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO, and preferably to only one PO.

Assessment				
There are three components of lab assessment, LA1, LA2 and Lab ESE. IMP: Lab ESE is a separate head of passing.(min 40 \%), LA1+LA2 should be min 40\%.				
Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 6 Marks Submission at the end of Week 6	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 7 to Week 12 Marks Submission at the end of Week 12	30
Lab ESE	Lab activities, attendance, journal	Lab Course Faculty	During Week 15 to Week 18 Marks Submission at the end of Week 18	40
Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.				

3	
4	
1	Useful Links
2	
3	
4	

							Ma							
					og	me	com	(P)						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3								2	2			2
CO2			3		2									
CO3			3		2						1		1	1
CO4		2							3	3				
The strength of mapping is to be written as 1,2,3; where, 1: Low, 2: Medium, 3: High														

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.
IMP: Lab ESE is a separate head of passing.(min 40%), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
LA1	Lab activities, attendance, journal	Lab Course Faculty	During Week 1 to Week 8 Marks Submission at the end of Week 8	30
LA2	Lab activities, attendance, journal	Lab Course Faculty	During Week 9 to Week 16 Marks Submission at the end of Week 16	30
Lab ESE	Lab activities, journal/ performance	Lab Course Faculty and External Examiner as applicable	During Week 18 to Week 19 Marks Submission at the end of Week 19	40

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		3												
CO2			3										3	
CO3		3												

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

References

1	High Speed Digital Design, A Handbook of Black Magic, Howard W. Johnson, Martin Graham, Prentice Hall PTR, Englewood Cliffs, NJ 0763.
2	High Speed Digital System Design: Interconnect Theory and Design Practices" Stephen H. Hall, Garrett W. Hall, James A. McCall, WileyIEEE Press (ISBN: 978-0-471-36090-2
3	
4	
	Useful Links
1	http://cva.stanford.edu/books/dig_sys_engr/
2	
3	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	3													
CO3				3										
CO4				3										

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1												
CO2	2													2
CO3			2											
CO4		1												

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

| | Cloud Computing and Software Defined Networking(SDN):
 Business Drivers - Technology Innovations - Basic Concepts and
 Terminology Cloud Characteristics - Cloud Delivery Models - Cloud
 Deployment Models, Basics and Open flow, SDN Controller, SDN challenges,
 SDN and virtualization. | 6 |
| :---: | :--- | :--- | :--- |
| 1 | B A Forouzan," Computer Networks", McGraw Hill Education 2016 | |

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			2										2	
CO2		2												1
CO3		1												1
CO4	1	1												1

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40\% marks in (MSE+ISE+ESE) are needed and Min. 40\% marks in ESE are needed. (ESE shall be a separate head of passing)

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													1
CO2			2											1
CO3		3	2											2
CO4		2	3											2

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

[^0]| Walchand College of Engineering, Sangli
 (Government Aided Autonomous Institute) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AY 2023-24 | | | | | |
| Course Information | | | | | |
| Programme | | B.Tech. (Electronics Engineering) | | | |
| Class, Semester | | Third Year B. Tech., Sem VI | | | |
| Course Code | | 6EN336 | | | |
| Course Name | | Professional Elective IV: Digital Image Processing | | | |
| Desired Requisites: | | Digital Signal Processing | | | |
| | | | | | |
| Teaching Scheme | | Examination Scheme (Marks) | | | |
| Lecture | $2 \mathrm{Hrs} / \mathrm{week}$ | MSE | ISE | ESE | Total |
| Tutorial | $1 \mathrm{Hr} /$ week | 30 | 20 | 50 | 100 |
| Credits: 3 | | | | | |
| | | | | | |
| Course Objectives | | | | | |
| 1 T | To develop an overview of the field of image processing. | | | | |
| 2 T | To illustrate the fundamental algorithms and their implementation. | | | | |
| 3 T | To apply image processing algorithms for real problems. | | | | |
| Course Outcomes (CO) with Bloom's Taxonomy Level | | | | | |
| At the end of the course, the students will be able to, | | | | | |
| CO1 ${ }^{\text {A }}$ | Apply digital image enhancement techniques for gray scale images and colour images | | | | Apply |
| CO2 A | Analyze various image segmentation techniques | | | | Analyze |
| CO3 E | Explain image restoration, de noising and image compression techniques | | | | Evaluate |
| CO4 I | Identify image representation and description techniques | | | | Understand |
| | | | | | |
| Module | Module Contents | | | | Hours |
| I | Introduction to Digital Image Processing
 Fundamental steps in digital image processing- Components of Image processing system Image sensing and acquisition - Image sampling and Quantization - relationship between pixels. Image file formats | | | | 5 |
| II | Image Enhancement Techniques
 Spatial Domain: Gray level transformation - Histogram processing, Spatial filtering - smoothing filters, sharpening filters ; Frequency Domain: Fourier transform - smoothing frequency domain filters, sharpening filters , Homographic filtering. | | | | 5 |
| III | Image Restoration, Denoising and Image Compression Techniques Model of Image degradation/ restoration process Types of image blur- Noise models, Classification of Image restoration techniques, Blind de convolution, Image de noising, Median filtering, Inverse filtering, Weiner, least square, Geometric mean filters; Classification of compression techniques, Fundamentals of Information Theory, Shannon Fano coding, Huffman coding, Transform based compression. | | | | |
| IV | Color Image Processing
 Color fundamentals, color models, pseudo color image processing, basics offull-color image processing, color transforms, smoothing and sharpening, color segmentation. | | | | 7 |
| V | Image Segmentation
 Classification of Image segmentation Techniques, Region approach to Imagesegmentation, Edge based segmentation, Classification of edges, edge detection, edge linking, Hough Transform, Clustering Techniques, WatershedTransformation. | | | | 7 |

VI	Representation \& Description Chain codes - Polygonal Approximations - signatures - Boundary segments Skeletons; Boundary Descriptors - Regional descriptors.	7
Textbooks		
1	R.C. Gonzalez and R.E. Woods, "Digital Image Processing", 3 rd Edition, Prentice-Hall,	
2	Pratt, W.K., "Digital Image Processing", John Wiley and Sons, New York, 1978.	
3		
4		
References		
1	A.K. Jain, "Fundamentals of Digital Image Processing"	
2	M Sonka, V Hlavac and R Boyle, "Image Processing, Analysis and Machine Vision", PWS 1999	
3		
4		
Useful Links		
1	www.nptel.com	
2		
3		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3												2	3
CO2		3											2	
CO3	3												2	3

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

4	
1	Lars T Berger K Iniewski, "Smart Grid Applications, Communications, and Security", Wiley Publications
2	
3	
4	
1	http://www.cyphylab.ee.ucla.edu
2	
4	

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2		2												
CO3				3										
CO4														
$\begin{aligned} & \text { The stre } \\ & \text { Each C } \end{aligned}$		upp						$1 \mathrm{~m}, 3$						

Assessment

The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

1	John. G. Webster, "Medical Instrumentation", John Wiley, 2009	
2	Goddes\& Baker, "Principles of Applied Biomedical Instrumentation", John Wiley, 2008	
3	Carr \& Brown, "Biomedical Instrumentation \& Measurement", Pearson, 2004	
4		
1	R.S. Khandpur, "Hand book of Medical instruments", TMH, New Delhi, 1987.	
2	Sanjay Guha,"Medical Electronics and Instrumentation", University Publication, 200.	
3	Edwand J. Bukstein, "Introduction to Biomedical electronics", Sane and Co. Inc, 1973	
4		
1		
2		
4		

CO-PO Mapping														
	Programme Outcomes (PO)												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3												2	
CO2					3	2							2	
CO3			3										2	
CO4									3				2	

The strength of mapping is to be written as 1: Low, 2: Medium, 3: High
Each CO of the course must map to at least one PO.

Assessment
The assessment is based on MSE, ISE and ESE.
MSE shall be typically on modules 1 to 3 .
ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can
be field visit, assignments etc. and is expected to map at least one higher order PO.
ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on
modules 4 to 6 .
For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in
ESE are needed. (ESE shall be a separate head of passing)

V	From funding the venture to launching, growing, and ending the new venture Strategies for Growth and Managing the Implications of Growth , Accessing Resources for Growth from External Sources , Succession Planning and Strategies for Harvesting and Ending the Venture	7
VI	Case Study Case study of 3 to 4 successful entrepreneurs covering above theory. Case study of 2 to 3 failure entrepreneurs.	6
Text Books		
1	Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd , "ENTREPRENEURSHIP" MGH $10^{\text {th }}$ Edition.	
2	Howard, Allan , Donald "Entrepreneurship : Theory / Process / Practice" Cengage Learning $4^{\text {th }}$ Edition	
3	William Bygrave, Andrew Zacharakis "Entrepreneurship" Wiley ${ }^{\text {nd }}$ Edition	
References		
1	Lee A. Swanson "Entrepreneurship and Innovation Toolkit" ${ }^{\text {rd }}$ Edition	
2	Lee A. Swanson "BUSINESS PLAN DEVELOPMENT GUIDE" 8 th Edition	
3	Hitesh Jhanji "ENTREPRENEURSHIP AND SMALL BUSINESS MANAGEMENT" Lovely Professional University, India	
Useful Links		
1		
2		
3		
4		
5		

CO-PO Mapping															
	Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on in-semester examinations in the form of online quiz and group activity of 30 marks each as LA1 and LA2. There shall be 1 End-Sem examination (ESE) of 40 marks. LA1 shall be typically on modules 1,2 and 3 , and LA2 shall be typically on modules 4,5 and 6 . ESE shall be on all modules.

Assessment Plan based on Bloom's Taxonomy Level (Marks)					
Bloom's Taxonomy Level		T1	T2	ESE	Total
1	Remember				

2	Understand				
3	Apply	5	5	12	22
4	Analyze	5	5	12	22
5	Evaluate	4	4	11	19
6	Create	6	6	25	37
	Total	$\mathbf{3 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{1 0 0}$

V	Module 5 : Oral Communication 1. Asking for and telling telephone numbers with dial code numbers 2. Making request 3. Word order in sentences/statements and full question 4. Speak on given topic 5. Asking questions (Forming Question)
VI	Module 6 : Written Communication : Basic Writing Skills 1. Paragraph Writing 2. Comprehension 3. Short Essay Writing 4. Filling in Personal Information
Text Books	
1	.Hartmut Auf der strasse, Heiko Bock, Mechthild Gerdes, Jutta Mueller, Helmut Mueller,"Themen Aktuell1- Deutsch als Fremdsprache-Kursbuch",Max Hueber Verlag,Munich,Germany and Langers International Pvt.Ltd.,New Delhi ,ISBN: 3-19-00016909,Reprint 2014
2	.Hartmut Auf der strasse, Heiko Bock, Mechthild Gerdes, Jutta Mueller,Helmut Mueller,"Themen Aktuell1- Deutsch als Fremdsprache-Arbeitsbuch",Max Hueber Verlag,Munich,Germany and Langers International Pvt.Ltd.,New Delhi ,ISBN: 3-19-0116903,Reprint 201
3	Alan B, Jones A."Themen Aktuell 1- Deutsch als Fremdsprache - Glossar",Max Hueber Verlag, Munich,Germany and Langers International Pvt.Ltd.,New Delhi ,ISBN: 3-19-0001690-9,Reprint 2014
References	
1	Archana Gogate, "German Workbook", Shubhasha Publications,Pune, Reprint July 2016
2	Stefanie Dengler,Paul Rusch,Helen Schmitz,Tanja Sieber, "Netzwerk A1- Deutsch als FremdspracheKursbuch ",Klett Langenscheidt, Munich,Germany and GOYAL Publishers Pvt. Ltd.,New Delhi, First Indian edition-2015
3	Stefanie Dengler,Paul Rusch,Helen Schmitz,Tanja Sieber, "Netzwerk A1- Deutsch alsFremdspracheArbeitsbuch ",Klett Langenscheidt,Munich,Germany and GOYAL Publishers Pvt.Ltd.,New Delhi, First Indian edition-2015
4	Stefanie Dengler,Paul Rusch,Helen Schmitz,Tanja Sieber, Gavin Schalliol"Netzwerk A1Deutsch alsFremdsprache- Glossar ",Klett Langenscheidt, Munich, Germany and GOYAL Publishers Pvt.Ltd.,New Delhi, First Indian edition-2015
Useful Links	
1	www.klett-sprachen.de/netzwerk
2	www.cornelsen.de/studio-d
3	
4	

CO-PO Mapping															
	Programme Outcomes (PO)												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1										1					
CO2										1					

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

The assessment is based on 2 in-semester evaluations (LA) of 30 marks each, end-sem examination (ESE) of 40 marks.
LA1 and LA2 are based on the modules taught (typically Module 1-3) and ESE is based on all modules with $30-40 \%$ weightage on modules before LA1 and $60-70 \%$ weightage on modules LA2.

[^0]: Assessment
 The assessment is based on MSE, ISE and ESE.
 MSE shall be typically on modules 1 to 3 .
 ISE shall be taken throughout the semester in the form of teacher's assessment. Mode of assessment can be field visit, assignments etc. and is expected to map at least one higher order PO.
 ESE shall be on all modules with around 40% weightage on modules 1 to 3 and 60% weightage on modules 4 to 6 .
 For passing a theory course, Min. 40% marks in (MSE+ISE+ESE) are needed and Min. 40% marks in ESE are needed. (ESE shall be a separate head of passing)

