(Government Aided Autonomous Institute)

AY 2025-26

\sim	T 0	4.	
Course	Info	rmation	

Programme	M. Tech. (Design Engineering)
Class, Semester	Second Year M. Tech., Sem III
Course Code	7DE691
Course Name	Dissertation Phase I

Desired Requisites: Concept knowledge of research methodology, project management,

mechanical engineering

Teaching Scheme			Examination	Scheme (Marks)	
Practical	24 Hrs/ Week	LA1	LA2	Lab ESE	Total
Interaction	-	30	30	40	100
		Credits: 12			

Course Objectives

- To develop the student to apply the knowledge gained to identify problems for research and provide the solutions by self-study and interaction with stakeholders.
- 2 Acquire knowledge to tackle real world problems of societal concerns
- 3 Impart flexibility to the student to have increased control over his/ her learning
- 4 Teachers would serve as mentor/facilitator of inquiry and reflection rather than as an instructor
- 5 Enhance a students' learning through increased interaction with peers and colleagues.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Utilize the required software programs to analyse the data and record	III	Applying
	the findings.		
CO2	Search the existing literature and identification of research problem	IV	Analyzing
CO3	Design and develop the solution for complex engineering problem	V	Evaluating
CO4	Create the new knowledge in the specialized field	VI	Creating

Course Content

Students are expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, formulation of the research problem, and development/fabrication of experimental set-up (if any/required). In fourth semester, the students continue their dissertation work. The students are required to submit the dissertation work in the form of report as per the institute rule.

	Textbooks
1	As per the research topic
	References
1	National and International Journals
	Useful Links
1	https://nptel.ac.in/courses/121/106/121106007/
2	https://www.youtube.com/watch?v=mAVswCbz_jM&feature=emb_imp_woyt
3	https://nptel.ac.in/courses/110/104/110104073/
4	https://nptel.ac.in/courses/110/107/110107081/

			CO-PO Mapp	ing		
			Programme O	utcomes (PO)		
	1	2	3	4	5	6
CO1	1	2	1			
CO2	1			1		2
CO3	1		1		2	1
CO4		2				1

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing.(min 40 %), LA1+LA2 should be min 40%

Assessment	Based on	Conducted by	Typical Schedule	Marks
	Lab activities,		During Week 1 to Week 8	
LA1	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 8	
	Lab activities,		During Week 9 to Week 16	
LA2	attendance,	Lab Course Faculty	Marks Submission at the end of	30
	journal		Week 16	
	Lab activities,	Lab Course Faculty and	During Week 18 to Week 19	
Lab ESE	journal/	External Examiner as	Marks Submission at the end of	40
	performance	applicable	Week 19	

Week 1 indicates starting week of a semester. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming, and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments and related activities if any.

(Government Aided Autonomous Institute)

AY 2025-26

\sim	T 4		4 •
Course	Int	OPMO	ION
COULSE		OI IIIA	

	Course information			
Programme M. Tech. (Design Engineering)				
Class, Semester	Second Year M. Tech., Sem IV			
Course Code	7DE692			
Course Name	Dissertation Phase II			

Desired Requisites:

Teaching Scheme (Hrs)		Examination Scheme (Marks)			
Practical	34	LA1	LA2	ESE	Total
Interaction	-	30	30	40	100
		Credits: 17			

Course Objectives

- To develop the student to apply the knowledge gained to identify problem for research provide the solutions by self-study and interaction with stake holders
- 2 Acquire knowledge to tackle real world problems of societal concerns
- 3 Impart flexibility to the student to have increased control over his/ her learning.
- 4 Teachers would serve as mentor/facilitator of inquiry and reflection rather than as an instructor
- 5 Enhance student's learning through increased interaction with peers and colleagues.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, students will be able to,

СО	Course Outcome Statement/s	Bloom's Taxonomy Level	Bloom's Taxonomy Description
CO1	Apply advanced data collection and processing techniques	III	Applying
CO2	Search the existing literature and identification of research problem	IV	Analysing
CO3	Design and develop the solution for complex engineering problem	V	Evaluating
CO4	Create the new knowledge in the specialized field	VI	Creating

Course Contents

Students are expected to carry out independent research work on the chosen topic. In this semester it is expected that the student has carried out substantial research work including exhaustive literature survey, development/fabrication of experimental set-up (if any/required) and testing, and analysis of initial results thus obtained. In fourth semester, the students continue their dissertation work. It is expected that the student has completed most of the experimental/computation works and analysed the results so obtained as proposed in the synopsis. The work should be completed in all respects in this semester. The students are required to submit the dissertation work in the form of report as per the institute rule.

	Text Books
1	As per the research topic
	References
1	National and International Journals
	Useful Links
1	https://nptel.ac.in/courses/110/104/110104073/

CO-PO Mapping								
		Programme Outcomes (PO)						
	1 2 3 4 5 6							
CO1		3	2					
CO2	1			1		2		
CO3			1		2			
CO4		2				2		

The strength of mapping is to be written as 1,2,3; Where, 1:Low, 2:Medium, 3:High Each CO of the course must map to at least one PO.

Assessment

There are three components of lab assessment, LA1, LA2 and Lab ESE.

IMP: Lab ESE is a separate head of passing. LA1, LA2 together is treated as In-Semester Evaluation.

Assessment	Based on	Conducted by	Typical Schedule (for 26-week Sem)	Marks	
Ι Α 1	Lab activities,	Lab Course	During Week 1 to Week 6	20	
attendance, journal Faculty Marks Submission at the		Marks Submission at the end of Week 6	30		
LA2	Lab activities,	Lab Course	During Week 7 to Week 12	30	
LAZ	attendance, journal	Faculty	Marks Submission at the end of Week 12	30	
Lab ESE	Lab activities,	Lab Course	During Week 15 to Week 18	40	
Lau ESE	attendance, journal	Faculty	Marks Submission at the end of Week 18	40	

Week 1 indicates starting week of a semester. The typical schedule of lab assessments is shown, considering a 26-week semester. The actual schedule shall be as per academic calendar. Lab activities/Lab performance shall include performing experiments, mini-project, presentations, drawings, programming and other suitable activities, as per the nature and requirement of the lab course. The experimental lab shall have typically 8-10 experiments.

(Government Aided Autonomous Institute)

AY 2025-26

	Course Information
Programme	M. Tech. (Design Engineering)

Class, Semester Second Year M. Tech., Semester IV

Course Code 7DE645

Course Name Internship

Desired Requisites: Courses taught in semester I and II

Teaching Scheme		Examination Scheme (Marks)						
Lecture	-	LA1	LA1 LA2 ESE Total					
Tutorial	-	-	-	100	100			
Practical	4 Hrs./Week	Credits: 2						

Course Objectives

- 1 To expose the students to real life engineering problems encountered in industry/society.
- 2 To provide an opportunity to work in collaborative and multidisciplinary environment.

Course Outcomes (CO) with Bloom's Taxonomy Level

At the end of the course, the students will be able to,

CO	Description	Blooms Taxonomy	
	Description	Descriptor	Level
CO1	Perceive knowledge of group dynamics and contribute to multidisciplinary work.	Understand	II
CO2	Demonstrate knowledge to solve societal problems and apply it for efficient management of projects independently and in teams.	Apply	III
CO3	Communicate with industry/society regarding engineering activities effectively and comprehend and write effective reports.	Understand	II
CO4	Demonstrate ethical behaviour with professional code of conduct and contribute to sustainable development of society.	Apply	III

Contents

The objective of this training is to expose the students to industry environment and practices. Students are sent to leading Engineering organizations/Research laboratories/Design and Consultancy organizations to undergo a rigorous training for a minimum period of **one month** during summer term/vacation.

CO-PO Mapping									
]	Programme Outcomes (PO)							
	1	2	3	4	5	6			
CO1					2				
CO2				2					
CO3		2							
CO4					2				

Assessment

- The assessment is based on ESE. The panel of minimum two members from the department shall assess the student for the internship.
- o The students are expected to present the work done in an internship tenure.
- The students shall also submit a detailed report based on activities done in an internship and learnings through the same.
- The students shall also submit the duly signed internship certificate from the organization/s where internship was done, clearly indicating the period of internship in the certificate.

(Government Aided Autonomous Institute)

AY 2025-26

Course Information					
Programme	M. Tech. (Design Engineering)				
Class, Semester	Second Year M. Tech., Semester IV				
Course Code	7DE646				
Course Name	Techno-Socio Activity				

Desired Requisites: -

Teaching Scheme		Examination Scheme (Marks)					
Lecture	-	LA1 LA2 ESE Total					
Tutorial	-	-	-	100	100		
Practical	2 Hrs./Week						
Interaction	-	Credits: 1					

Course Objectives

- Develop skills like teamwork, and communication through technical contribution on socioeconomic issues
- 2 Enhance understanding of the socio-economic impact of engineering projects and technology on society.
- 3 Apply engineering knowledge and problem-solving skills to address real-world challenges

Course Outcomes (CO)

At the end of the course, the students will be able to,

CO	Description		Blooms Taxonomy	
	Description	Descriptor	Level	
CO1	Explain professional culture/ethics and build proficiency in professional	Understand	II	
COI	communication, working in teams, decision making and leadership.		III	
CO2	Apply the technical knowledge through participation in techno-socio	Apply	Ш	
	assignments.	Арргу	111	
CO3	Demonstrate ethical quality and social responsibilities through the technical	Evaluate	V	
COS	knowledge gained.	Evaluate	,	

List of Activities

List of Activities:

- 1. Involvement in techno-socio activity
 - a) Presentation on involvement in techno-socio activity individually/through student clubs during F.Y. & S.Y. M. Tech.
 - b) Submission of summary report on these activities.
- 2. Techno-socio activity (Team Activity)
 - a) Organization of a technical activity/event for the benefit of society in a batch.
 - b) Submission of report on the organized activity.
- 3. Submission of certificates/documents required for student port-folio (Participation in Curricular and Extra-Curricular Activities within and outside the campus).

	References						
1	National Institute for Engineering Ethics (NIEE)						
2	Professional ethics, National Society of Professional Engineers (NSPE).						
	Useful Links						
1	https://www.asce.org/pdf/ethics_manual.pdf						
2	https://www.aicte-india.org/atal						

CO-PO Mapping								
	I	Programme Outcomes (PO)						
	1	2	3	4	5	6		
CO1		3			3			
CO2			2		3			
CO3			2		3			

Assessment

The assessment is based on ESE. The panel of minimum two members from the department shall assess the student for the techno-socio activity.

The students are expected to present the work done in an four semesters.

The students shall also submit a detailed report based on activities done and learnings through the same.

The students shall also submit the duly signed certificate from the organization/s, local bodies where activities were carried out.